perf_event.c 35.5 KB
Newer Older
1
/* Performance event support for sparc64.
2
 *
3
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16
#include <linux/kprobes.h>
17
#include <linux/ftrace.h>
18 19 20 21
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

22
#include <asm/stacktrace.h>
23
#include <asm/cpudata.h>
24
#include <asm/uaccess.h>
A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27 28
#include <asm/nmi.h>
#include <asm/pcr.h>

29
#include "kernel.h"
30 31
#include "kstack.h"

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

55
#define MAX_HWEVENTS			2
56 57 58 59
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
60
#define PIC_NO_INDEX			-1
61

62
struct cpu_hw_events {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

	/* Software copy of %pcr register on this cpu.  */
92
	u64			pcr;
93 94

	/* Enabled/disable state.  */
95
	int			enabled;
96 97

	unsigned int		group_flag;
98
};
99
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100

101 102 103 104
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
 */
105 106 107 108 109 110 111 112
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

113
/* Encode a perf_event_map entry into a long.  */
114 115 116 117 118
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

119 120 121 122 123 124
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
125
{
126
	return val >> 16;
127 128
}

129 130 131 132 133 134 135 136 137 138
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

139 140
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
141
	const cache_map_t		*cache_map;
142 143 144 145
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
146
	int				hv_bit;
147
	int				irq_bit;
148 149
	int				upper_nop;
	int				lower_nop;
150 151
};

152
static const struct perf_event_map ultra3_perfmon_event_map[] = {
153 154 155 156 157 158
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

159
static const struct perf_event_map *ultra3_event_map(int event_id)
160
{
161
	return &ultra3_perfmon_event_map[event_id];
162 163
}

164
static const cache_map_t ultra3_cache_map = {
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
249 250 251 252 253 254 255 256 257 258 259 260 261 262
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
263 264
};

265 266 267 268
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
269 270 271
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
272 273
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
274 275
};

276 277
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
278
 * problems.  Some hardware designs make one wonder if the creator
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
378 379 380 381 382 383 384 385 386 387 388 389 390 391
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
392 393 394 395 396 397 398 399 400 401 402 403 404
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
};

405 406 407 408 409 410 411 412 413
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

414
static const struct perf_event_map *niagara2_event_map(int event_id)
415
{
416
	return &niagara2_perfmon_event_map[event_id];
417 418
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
497 498 499 500 501 502 503 504 505 506 507 508 509 510
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
511 512 513 514 515 516 517 518 519
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

520 521
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
522
	.cache_map	= &niagara2_cache_map,
523 524 525 526 527
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
528
	.irq_bit	= 0x30,
529 530 531 532
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
};

533 534
static const struct sparc_pmu *sparc_pmu __read_mostly;

535
static u64 event_encoding(u64 event_id, int idx)
536 537
{
	if (idx == PIC_UPPER_INDEX)
538
		event_id <<= sparc_pmu->upper_shift;
539
	else
540 541
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
542 543 544 545 546 547 548 549 550 551
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
552 553
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
554 555
}

556
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
557 558 559
{
	u64 val, mask = mask_for_index(idx);

560 561 562 563 564 565
	val = cpuc->pcr;
	val &= ~mask;
	val |= hwc->config;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
566 567
}

568
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
569 570 571
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
572
	u64 val;
573

574 575 576 577 578 579
	val = cpuc->pcr;
	val &= ~mask;
	val |= nop;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
}

static u32 read_pmc(int idx)
{
	u64 val;

	read_pic(val);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	read_pic(pic);
	pic &= ~mask;
	pic |= val;
	write_pic(pic);
}

610 611 612 613 614 615 616 617
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
618
	prev_raw_count = local64_read(&hwc->prev_count);
619 620
	new_raw_count = read_pmc(idx);

621
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
622 623 624 625 626 627
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

628 629
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
630 631 632 633

	return new_raw_count;
}

634
static int sparc_perf_event_set_period(struct perf_event *event,
635
				       struct hw_perf_event *hwc, int idx)
636
{
637
	s64 left = local64_read(&hwc->period_left);
638 639 640 641 642
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
643
		local64_set(&hwc->period_left, left);
644 645 646 647 648 649
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
650
		local64_set(&hwc->period_left, left);
651 652 653 654 655 656
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

657
	local64_set(&hwc->prev_count, (u64)-left);
658 659 660

	write_pmc(idx, (u64)(-left) & 0xffffffff);

661
	perf_event_update_userpage(event);
662 663 664 665

	return ret;
}

666 667 668 669 670
/* If performance event entries have been added, move existing
 * events around (if necessary) and then assign new entries to
 * counters.
 */
static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
671
{
672
	int i;
673

674 675
	if (!cpuc->n_added)
		goto out;
676

677 678 679
	/* Read in the counters which are moving.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
680

681 682 683 684 685 686 687
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
688

689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
703
		pcr &= ~mask_for_index(idx);
P
Peter Zijlstra 已提交
704 705 706 707
		if (hwc->state & PERF_HES_STOPPED)
			pcr |= nop_for_index(idx);
		else
			pcr |= event_encoding(enc, idx);
708 709 710
	}
out:
	return pcr;
711 712
}

P
Peter Zijlstra 已提交
713
static void sparc_pmu_enable(struct pmu *pmu)
714
{
715 716
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 pcr;
717

718 719
	if (cpuc->enabled)
		return;
720

721 722
	cpuc->enabled = 1;
	barrier();
723

724 725 726 727 728
	pcr = cpuc->pcr;
	if (!cpuc->n_events) {
		pcr = 0;
	} else {
		pcr = maybe_change_configuration(cpuc, pcr);
729

730 731 732 733 734 735
		/* We require that all of the events have the same
		 * configuration, so just fetch the settings from the
		 * first entry.
		 */
		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
	}
736

737 738 739
	pcr_ops->write(cpuc->pcr);
}

P
Peter Zijlstra 已提交
740
static void sparc_pmu_disable(struct pmu *pmu)
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

	val = cpuc->pcr;
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
757 758
}

P
Peter Zijlstra 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
}

static void sparc_pmu_start(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		sparc_perf_event_set_period(event, &event->hw, idx);
	}

	event->hw.state = 0;

	sparc_pmu_enable_event(cpuc, &event->hw, idx);
}

static void sparc_pmu_stop(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (!(event->hw.state & PERF_HES_STOPPED)) {
		sparc_pmu_disable_event(cpuc, &event->hw, idx);
		event->hw.state |= PERF_HES_STOPPED;
	}

	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
		sparc_perf_event_update(event, &event->hw, idx);
		event->hw.state |= PERF_HES_UPTODATE;
	}
}

static void sparc_pmu_del(struct perf_event *event, int _flags)
804
{
805
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
806 807
	unsigned long flags;
	int i;
808

809
	local_irq_save(flags);
P
Peter Zijlstra 已提交
810
	perf_pmu_disable(event->pmu);
811 812 813

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
P
Peter Zijlstra 已提交
814 815 816 817
			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_stop(event, PERF_EF_UPDATE);
818 819 820 821 822 823 824 825 826 827 828 829

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			perf_event_update_userpage(event);
830

831 832 833 834
			cpuc->n_events--;
			break;
		}
	}
835

P
Peter Zijlstra 已提交
836
	perf_pmu_enable(event->pmu);
837 838 839
	local_irq_restore(flags);
}

840
static void sparc_pmu_read(struct perf_event *event)
841
{
842 843
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);
844
	struct hw_perf_event *hwc = &event->hw;
845

846
	sparc_perf_event_update(event, hwc, idx);
847 848
}

849
static atomic_t active_events = ATOMIC_INIT(0);
850 851
static DEFINE_MUTEX(pmc_grab_mutex);

852 853 854 855 856 857 858 859
static void perf_stop_nmi_watchdog(void *unused)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	stop_nmi_watchdog(NULL);
	cpuc->pcr = pcr_ops->read();
}

860
void perf_event_grab_pmc(void)
861
{
862
	if (atomic_inc_not_zero(&active_events))
863 864 865
		return;

	mutex_lock(&pmc_grab_mutex);
866
	if (atomic_read(&active_events) == 0) {
867
		if (atomic_read(&nmi_active) > 0) {
868
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
869 870
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
871
		atomic_inc(&active_events);
872 873 874 875
	}
	mutex_unlock(&pmc_grab_mutex);
}

876
void perf_event_release_pmc(void)
877
{
878
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
879 880 881 882 883 884
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

916
static void hw_perf_event_destroy(struct perf_event *event)
917
{
918
	perf_event_release_pmc();
919 920
}

921 922 923
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
924 925 926 927 928 929
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
930
 */
931 932
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
933
{
934 935 936 937 938 939 940 941 942
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

P
Peter Zijlstra 已提交
943
	if (n_ev > MAX_HWEVENTS)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		return -1;

	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
968 969
	}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
986
	return -1;
987 988 989 990 991 992

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
993 994
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
1024 1025
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
1026 1027 1028 1029 1030 1031 1032 1033
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
1034 1035
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
1036 1037 1038 1039 1040 1041 1042
	}
	list_for_each_entry(event, &group->sibling_list, group_entry) {
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
1043 1044
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
1045 1046 1047 1048 1049
		}
	}
	return n;
}

P
Peter Zijlstra 已提交
1050
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1051 1052 1053 1054 1055 1056
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1057
	perf_pmu_disable(event->pmu);
1058 1059

	n0 = cpuc->n_events;
P
Peter Zijlstra 已提交
1060
	if (n0 >= MAX_HWEVENTS)
1061 1062 1063 1064 1065 1066
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

P
Peter Zijlstra 已提交
1067 1068 1069 1070
	event->hw.state = PERF_HES_UPTODATE;
	if (!(ef_flags & PERF_EF_START))
		event->hw.state |= PERF_HES_STOPPED;

1071 1072
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1073
	 * skip the schedulability test here, it will be performed
1074 1075
	 * at commit time(->commit_txn) as a whole
	 */
1076
	if (cpuc->group_flag & PERF_EVENT_TXN)
1077 1078
		goto nocheck;

1079 1080 1081 1082 1083
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1084
nocheck:
1085 1086 1087 1088 1089
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
P
Peter Zijlstra 已提交
1090
	perf_pmu_enable(event->pmu);
1091 1092 1093 1094
	local_irq_restore(flags);
	return ret;
}

1095
static int sparc_pmu_event_init(struct perf_event *event)
1096
{
1097
	struct perf_event_attr *attr = &event->attr;
1098
	struct perf_event *evts[MAX_HWEVENTS];
1099
	struct hw_perf_event *hwc = &event->hw;
1100
	unsigned long events[MAX_HWEVENTS];
1101
	int current_idx_dmy[MAX_HWEVENTS];
1102
	const struct perf_event_map *pmap;
1103
	int n;
1104 1105 1106 1107

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1108 1109
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1110 1111 1112
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1113 1114 1115
		break;

	case PERF_TYPE_HW_CACHE:
1116 1117 1118
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1119 1120 1121
		break;

	case PERF_TYPE_RAW:
1122 1123
		pmap = NULL;
		break;
1124

1125 1126 1127 1128 1129
	default:
		return -ENOENT;

	}

1130 1131 1132
	if (pmap) {
		hwc->event_base = perf_event_encode(pmap);
	} else {
1133 1134
		/*
		 * User gives us "(encoding << 16) | pic_mask" for
1135 1136 1137 1138 1139
		 * PERF_TYPE_RAW events.
		 */
		hwc->event_base = attr->config;
	}

1140
	/* We save the enable bits in the config_base.  */
1141
	hwc->config_base = sparc_pmu->irq_bit;
1142 1143 1144 1145
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
1146 1147
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1148

1149 1150 1151
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
P
Peter Zijlstra 已提交
1152
				   MAX_HWEVENTS - 1,
1153
				   evts, events, current_idx_dmy);
1154 1155 1156
		if (n < 0)
			return -EINVAL;
	}
1157
	events[n] = hwc->event_base;
1158 1159 1160 1161 1162
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1163
	if (sparc_check_constraints(evts, events, n + 1))
1164 1165
		return -EINVAL;

1166 1167
	hwc->idx = PIC_NO_INDEX;

1168 1169 1170 1171 1172 1173
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1174 1175 1176
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1177
		local64_set(&hwc->period_left, hwc->sample_period);
1178 1179 1180 1181 1182
	}

	return 0;
}

1183 1184 1185 1186 1187
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1188
static void sparc_pmu_start_txn(struct pmu *pmu)
1189 1190 1191
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1192
	perf_pmu_disable(pmu);
1193
	cpuhw->group_flag |= PERF_EVENT_TXN;
1194 1195 1196 1197 1198 1199 1200
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1201
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1202 1203 1204
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1205
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1206
	perf_pmu_enable(pmu);
1207 1208 1209 1210 1211 1212 1213
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1214
static int sparc_pmu_commit_txn(struct pmu *pmu)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n;

	if (!sparc_pmu)
		return -EINVAL;

	cpuc = &__get_cpu_var(cpu_hw_events);
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1229
	cpuc->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1230
	perf_pmu_enable(pmu);
1231 1232 1233
	return 0;
}

P
Peter Zijlstra 已提交
1234
static struct pmu pmu = {
P
Peter Zijlstra 已提交
1235 1236
	.pmu_enable	= sparc_pmu_enable,
	.pmu_disable	= sparc_pmu_disable,
1237
	.event_init	= sparc_pmu_event_init,
P
Peter Zijlstra 已提交
1238 1239 1240 1241
	.add		= sparc_pmu_add,
	.del		= sparc_pmu_del,
	.start		= sparc_pmu_start,
	.stop		= sparc_pmu_stop,
1242
	.read		= sparc_pmu_read,
1243 1244 1245
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1246 1247
};

1248
void perf_event_print_debug(void)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pcr = pcr_ops->read();
	read_pic(pic);

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

1271
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1272
					    unsigned long cmd, void *__args)
1273 1274 1275
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1276
	struct cpu_hw_events *cpuc;
1277
	struct pt_regs *regs;
1278
	int i;
1279

1280
	if (!atomic_read(&active_events))
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1293
	perf_sample_data_init(&data, 0);
1294

1295
	cpuc = &__get_cpu_var(cpu_hw_events);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
	if (sparc_pmu->irq_bit)
		pcr_ops->write(cpuc->pcr);

1307 1308 1309
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1310
		struct hw_perf_event *hwc;
1311 1312
		u64 val;

1313 1314
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1315 1316 1317
		if (val & (1ULL << 31))
			continue;

1318 1319
		data.period = event->hw.last_period;
		if (!sparc_perf_event_set_period(event, hwc, idx))
1320 1321
			continue;

1322
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1323
			sparc_pmu_stop(event, 0);
1324 1325 1326 1327 1328
	}

	return NOTIFY_STOP;
}

1329 1330
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1331 1332 1333 1334
};

static bool __init supported_pmu(void)
{
1335 1336 1337 1338 1339
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1340 1341
		return true;
	}
1342 1343 1344 1345
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1346 1347
	if (!strcmp(sparc_pmu_type, "niagara2") ||
	    !strcmp(sparc_pmu_type, "niagara3")) {
1348 1349 1350
		sparc_pmu = &niagara2_pmu;
		return true;
	}
1351 1352 1353
	return false;
}

1354
int __init init_hw_perf_events(void)
1355
{
1356
	pr_info("Performance events: ");
1357 1358 1359

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1360
		return 0;
1361 1362 1363 1364
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

P
Peter Zijlstra 已提交
1365
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1366
	register_die_notifier(&perf_event_nmi_notifier);
1367 1368

	return 0;
1369
}
1370
early_initcall(init_hw_perf_events);
1371

1372 1373
void perf_callchain_kernel(struct perf_callchain_entry *entry,
			   struct pt_regs *regs)
1374 1375
{
	unsigned long ksp, fp;
1376 1377 1378
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1379

1380 1381
	stack_trace_flush();

1382
	perf_callchain_store(entry, regs->tpc);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1406
		perf_callchain_store(entry, pc);
1407 1408 1409 1410 1411
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1412
				perf_callchain_store(entry, pc);
1413 1414 1415 1416
				graph++;
			}
		}
#endif
1417 1418 1419
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1420 1421
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1422 1423 1424
{
	unsigned long ufp;

1425
	perf_callchain_store(entry, regs->tpc);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
	do {
		struct sparc_stackf *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1438
		perf_callchain_store(entry, pc);
1439 1440 1441
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1442 1443
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1444 1445 1446
{
	unsigned long ufp;

1447
	perf_callchain_store(entry, regs->tpc);
1448

1449
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	do {
		struct sparc_stackf32 *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf32 *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp;
1460
		perf_callchain_store(entry, pc);
1461 1462 1463
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1464 1465
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1466
{
1467 1468 1469 1470 1471
	flushw_user();
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1472
}