perf_event.c 33.3 KB
Newer Older
1
/* Performance event support for sparc64.
2
 *
3
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16
#include <linux/kprobes.h>
17
#include <linux/ftrace.h>
18 19 20 21
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

22
#include <asm/stacktrace.h>
23
#include <asm/cpudata.h>
24
#include <asm/uaccess.h>
25 26 27 28
#include <asm/atomic.h>
#include <asm/nmi.h>
#include <asm/pcr.h>

29 30
#include "kstack.h"

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

54
#define MAX_HWEVENTS			2
55 56 57 58
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
59
#define PIC_NO_INDEX			-1
60

61
struct cpu_hw_events {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

	/* Software copy of %pcr register on this cpu.  */
91
	u64			pcr;
92 93

	/* Enabled/disable state.  */
94
	int			enabled;
95 96

	unsigned int		group_flag;
97
};
98
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
99

100 101 102 103
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
 */
104 105 106 107 108 109 110 111
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

112
/* Encode a perf_event_map entry into a long.  */
113 114 115 116 117
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

118 119 120 121 122 123
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
124
{
125
	return val >> 16;
126 127
}

128 129 130 131 132 133 134 135 136 137
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

138 139
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
140
	const cache_map_t		*cache_map;
141 142 143 144
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
145
	int				hv_bit;
146
	int				irq_bit;
147 148
	int				upper_nop;
	int				lower_nop;
149 150
};

151
static const struct perf_event_map ultra3_perfmon_event_map[] = {
152 153 154 155 156 157
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

158
static const struct perf_event_map *ultra3_event_map(int event_id)
159
{
160
	return &ultra3_perfmon_event_map[event_id];
161 162
}

163
static const cache_map_t ultra3_cache_map = {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

250 251 252 253
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
254 255 256
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
257 258
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
259 260
};

261 262
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
263
 * problems.  Some hardware designs make one wonder if the creator
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
};

376 377 378 379 380 381 382 383 384
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

385
static const struct perf_event_map *niagara2_event_map(int event_id)
386
{
387
	return &niagara2_perfmon_event_map[event_id];
388 389
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

477 478
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
479
	.cache_map	= &niagara2_cache_map,
480 481 482 483 484
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
485
	.irq_bit	= 0x30,
486 487 488 489
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
};

490 491
static const struct sparc_pmu *sparc_pmu __read_mostly;

492
static u64 event_encoding(u64 event_id, int idx)
493 494
{
	if (idx == PIC_UPPER_INDEX)
495
		event_id <<= sparc_pmu->upper_shift;
496
	else
497 498
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
499 500 501 502 503 504 505 506 507 508
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
509 510
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
511 512
}

513
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
514 515 516
{
	u64 val, mask = mask_for_index(idx);

517 518 519 520 521 522
	val = cpuc->pcr;
	val &= ~mask;
	val |= hwc->config;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
523 524
}

525
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
526 527 528
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
529
	u64 val;
530

531 532 533 534 535 536
	val = cpuc->pcr;
	val &= ~mask;
	val |= nop;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
}

static u32 read_pmc(int idx)
{
	u64 val;

	read_pic(val);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	read_pic(pic);
	pic &= ~mask;
	pic |= val;
	write_pic(pic);
}

567 568 569 570 571 572 573 574
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
575
	prev_raw_count = local64_read(&hwc->prev_count);
576 577
	new_raw_count = read_pmc(idx);

578
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
579 580 581 582 583 584
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

585 586
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
587 588 589 590

	return new_raw_count;
}

591
static int sparc_perf_event_set_period(struct perf_event *event,
592
				       struct hw_perf_event *hwc, int idx)
593
{
594
	s64 left = local64_read(&hwc->period_left);
595 596 597 598 599
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
600
		local64_set(&hwc->period_left, left);
601 602 603 604 605 606
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
607
		local64_set(&hwc->period_left, left);
608 609 610 611 612 613
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

614
	local64_set(&hwc->prev_count, (u64)-left);
615 616 617

	write_pmc(idx, (u64)(-left) & 0xffffffff);

618
	perf_event_update_userpage(event);
619 620 621 622

	return ret;
}

623 624 625 626 627
/* If performance event entries have been added, move existing
 * events around (if necessary) and then assign new entries to
 * counters.
 */
static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
628
{
629
	int i;
630

631 632
	if (!cpuc->n_added)
		goto out;
633

634 635 636
	/* Read in the counters which are moving.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
637

638 639 640 641 642 643 644
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
660
		pcr &= ~mask_for_index(idx);
661 662 663 664
		pcr |= event_encoding(enc, idx);
	}
out:
	return pcr;
665 666
}

667
void hw_perf_enable(void)
668
{
669 670
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 pcr;
671

672 673
	if (cpuc->enabled)
		return;
674

675 676
	cpuc->enabled = 1;
	barrier();
677

678 679 680 681 682
	pcr = cpuc->pcr;
	if (!cpuc->n_events) {
		pcr = 0;
	} else {
		pcr = maybe_change_configuration(cpuc, pcr);
683

684 685 686 687 688 689
		/* We require that all of the events have the same
		 * configuration, so just fetch the settings from the
		 * first entry.
		 */
		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
	}
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	pcr_ops->write(cpuc->pcr);
}

void hw_perf_disable(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

	val = cpuc->pcr;
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
711 712
}

713
static void sparc_pmu_disable(struct perf_event *event)
714
{
715 716
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
717 718
	unsigned long flags;
	int i;
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	local_irq_save(flags);
	perf_disable();

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
			int idx = cpuc->current_idx[i];

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_disable_event(cpuc, hwc, idx);
			barrier();
			sparc_perf_event_update(event, hwc, idx);
743

744
			perf_event_update_userpage(event);
745

746 747 748 749
			cpuc->n_events--;
			break;
		}
	}
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	perf_enable();
	local_irq_restore(flags);
}

static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
766 767
}

768
static void sparc_pmu_read(struct perf_event *event)
769
{
770 771
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);
772
	struct hw_perf_event *hwc = &event->hw;
773

774
	sparc_perf_event_update(event, hwc, idx);
775 776
}

777
static void sparc_pmu_unthrottle(struct perf_event *event)
778
{
779
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
780
	int idx = active_event_index(cpuc, event);
781
	struct hw_perf_event *hwc = &event->hw;
782

783
	sparc_pmu_enable_event(cpuc, hwc, idx);
784 785
}

786
static atomic_t active_events = ATOMIC_INIT(0);
787 788
static DEFINE_MUTEX(pmc_grab_mutex);

789 790 791 792 793 794 795 796
static void perf_stop_nmi_watchdog(void *unused)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	stop_nmi_watchdog(NULL);
	cpuc->pcr = pcr_ops->read();
}

797
void perf_event_grab_pmc(void)
798
{
799
	if (atomic_inc_not_zero(&active_events))
800 801 802
		return;

	mutex_lock(&pmc_grab_mutex);
803
	if (atomic_read(&active_events) == 0) {
804
		if (atomic_read(&nmi_active) > 0) {
805
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
806 807
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
808
		atomic_inc(&active_events);
809 810 811 812
	}
	mutex_unlock(&pmc_grab_mutex);
}

813
void perf_event_release_pmc(void)
814
{
815
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
816 817 818 819 820 821
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

853
static void hw_perf_event_destroy(struct perf_event *event)
854
{
855
	perf_event_release_pmc();
856 857
}

858 859 860
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
861 862 863 864 865 866
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
867
 */
868 869
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
870
{
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

	if (n_ev > perf_max_events)
		return -1;

	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
905 906
	}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
923
	return -1;
924 925 926 927 928 929

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
961 962
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
963 964 965 966 967 968 969 970
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
971 972
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
973 974 975 976 977 978 979
	}
	list_for_each_entry(event, &group->sibling_list, group_entry) {
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
980 981
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
982 983 984 985 986
		}
	}
	return n;
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static int sparc_pmu_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);
	perf_disable();

	n0 = cpuc->n_events;
	if (n0 >= perf_max_events)
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

1004 1005 1006 1007 1008
	/*
	 * If group events scheduling transaction was started,
	 * skip the schedulability test here, it will be peformed
	 * at commit time(->commit_txn) as a whole
	 */
1009
	if (cpuc->group_flag & PERF_EVENT_TXN)
1010 1011
		goto nocheck;

1012 1013 1014 1015 1016
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1017
nocheck:
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
	perf_enable();
	local_irq_restore(flags);
	return ret;
}

1028
static int sparc_pmu_event_init(struct perf_event *event)
1029
{
1030
	struct perf_event_attr *attr = &event->attr;
1031
	struct perf_event *evts[MAX_HWEVENTS];
1032
	struct hw_perf_event *hwc = &event->hw;
1033
	unsigned long events[MAX_HWEVENTS];
1034
	int current_idx_dmy[MAX_HWEVENTS];
1035
	const struct perf_event_map *pmap;
1036
	int n;
1037 1038 1039 1040

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1041 1042
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1043 1044 1045
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1046 1047 1048
		break;

	case PERF_TYPE_HW_CACHE:
1049 1050 1051
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1052 1053 1054
		break;

	case PERF_TYPE_RAW:
1055 1056
		return -EOPNOTSUPP;

1057 1058 1059 1060 1061
	default:
		return -ENOENT;

	}

1062
	/* We save the enable bits in the config_base.  */
1063
	hwc->config_base = sparc_pmu->irq_bit;
1064 1065 1066 1067
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
1068 1069
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1070

1071 1072
	hwc->event_base = perf_event_encode(pmap);

1073 1074 1075 1076
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
				   perf_max_events - 1,
1077
				   evts, events, current_idx_dmy);
1078 1079 1080
		if (n < 0)
			return -EINVAL;
	}
1081
	events[n] = hwc->event_base;
1082 1083 1084 1085 1086
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1087
	if (sparc_check_constraints(evts, events, n + 1))
1088 1089
		return -EINVAL;

1090 1091
	hwc->idx = PIC_NO_INDEX;

1092 1093 1094 1095 1096 1097
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1098 1099 1100
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1101
		local64_set(&hwc->period_left, hwc->sample_period);
1102 1103 1104 1105 1106
	}

	return 0;
}

1107 1108 1109 1110 1111
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1112
static void sparc_pmu_start_txn(struct pmu *pmu)
1113 1114 1115
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1116
	perf_disable();
1117
	cpuhw->group_flag |= PERF_EVENT_TXN;
1118 1119 1120 1121 1122 1123 1124
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1125
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1126 1127 1128
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1129
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1130
	perf_enable();
1131 1132 1133 1134 1135 1136 1137
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1138
static int sparc_pmu_commit_txn(struct pmu *pmu)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n;

	if (!sparc_pmu)
		return -EINVAL;

	cpuc = &__get_cpu_var(cpu_hw_events);
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1153
	cpuc->group_flag &= ~PERF_EVENT_TXN;
1154
	perf_enable();
1155 1156 1157
	return 0;
}

P
Peter Zijlstra 已提交
1158
static struct pmu pmu = {
1159
	.event_init	= sparc_pmu_event_init,
1160 1161 1162 1163
	.enable		= sparc_pmu_enable,
	.disable	= sparc_pmu_disable,
	.read		= sparc_pmu_read,
	.unthrottle	= sparc_pmu_unthrottle,
1164 1165 1166
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1167 1168
};

1169
void perf_event_print_debug(void)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pcr = pcr_ops->read();
	read_pic(pic);

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

1192
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1193
					    unsigned long cmd, void *__args)
1194 1195 1196
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1197
	struct cpu_hw_events *cpuc;
1198
	struct pt_regs *regs;
1199
	int i;
1200

1201
	if (!atomic_read(&active_events))
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1214
	perf_sample_data_init(&data, 0);
1215

1216
	cpuc = &__get_cpu_var(cpu_hw_events);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
	if (sparc_pmu->irq_bit)
		pcr_ops->write(cpuc->pcr);

1228 1229 1230
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1231
		struct hw_perf_event *hwc;
1232 1233
		u64 val;

1234 1235
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1236 1237 1238
		if (val & (1ULL << 31))
			continue;

1239 1240
		data.period = event->hw.last_period;
		if (!sparc_perf_event_set_period(event, hwc, idx))
1241 1242
			continue;

1243
		if (perf_event_overflow(event, 1, &data, regs))
1244
			sparc_pmu_disable_event(cpuc, hwc, idx);
1245 1246 1247 1248 1249
	}

	return NOTIFY_STOP;
}

1250 1251
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1252 1253 1254 1255
};

static bool __init supported_pmu(void)
{
1256 1257 1258 1259 1260
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1261 1262
		return true;
	}
1263 1264 1265 1266
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1267 1268 1269 1270
	if (!strcmp(sparc_pmu_type, "niagara2")) {
		sparc_pmu = &niagara2_pmu;
		return true;
	}
1271 1272 1273
	return false;
}

1274
void __init init_hw_perf_events(void)
1275
{
1276
	pr_info("Performance events: ");
1277 1278 1279 1280 1281 1282 1283 1284

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
		return;
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

1285 1286
	/* All sparc64 PMUs currently have 2 events.  */
	perf_max_events = 2;
1287

1288
	perf_pmu_register(&pmu);
1289
	register_die_notifier(&perf_event_nmi_notifier);
1290
}
1291

1292 1293
void perf_callchain_kernel(struct perf_callchain_entry *entry,
			   struct pt_regs *regs)
1294 1295
{
	unsigned long ksp, fp;
1296 1297 1298
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1299

1300 1301
	stack_trace_flush();

1302
	perf_callchain_store(entry, regs->tpc);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1326
		perf_callchain_store(entry, pc);
1327 1328 1329 1330 1331
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1332
				perf_callchain_store(entry, pc);
1333 1334 1335 1336
				graph++;
			}
		}
#endif
1337 1338 1339
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1340 1341
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1342 1343 1344
{
	unsigned long ufp;

1345
	perf_callchain_store(entry, regs->tpc);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
	do {
		struct sparc_stackf *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1358
		perf_callchain_store(entry, pc);
1359 1360 1361
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1362 1363
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1364 1365 1366
{
	unsigned long ufp;

1367
	perf_callchain_store(entry, regs->tpc);
1368

1369
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	do {
		struct sparc_stackf32 *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf32 *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp;
1380
		perf_callchain_store(entry, pc);
1381 1382 1383
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1384 1385
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1386
{
1387 1388 1389 1390 1391
	flushw_user();
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1392
}