perf_event.c 34.3 KB
Newer Older
1
/* Performance event support for sparc64.
2
 *
3
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16
#include <linux/kprobes.h>
17
#include <linux/ftrace.h>
18 19 20 21
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

22
#include <asm/stacktrace.h>
23
#include <asm/cpudata.h>
24
#include <asm/uaccess.h>
25 26 27 28
#include <asm/atomic.h>
#include <asm/nmi.h>
#include <asm/pcr.h>

29
#include "kernel.h"
30 31
#include "kstack.h"

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

55
#define MAX_HWEVENTS			2
56 57 58 59
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
60
#define PIC_NO_INDEX			-1
61

62
struct cpu_hw_events {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

	/* Software copy of %pcr register on this cpu.  */
92
	u64			pcr;
93 94

	/* Enabled/disable state.  */
95
	int			enabled;
96 97

	unsigned int		group_flag;
98
};
99
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100

101 102 103 104
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
 */
105 106 107 108 109 110 111 112
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

113
/* Encode a perf_event_map entry into a long.  */
114 115 116 117 118
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

119 120 121 122 123 124
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
125
{
126
	return val >> 16;
127 128
}

129 130 131 132 133 134 135 136 137 138
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

139 140
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
141
	const cache_map_t		*cache_map;
142 143 144 145
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
146
	int				hv_bit;
147
	int				irq_bit;
148 149
	int				upper_nop;
	int				lower_nop;
150 151
};

152
static const struct perf_event_map ultra3_perfmon_event_map[] = {
153 154 155 156 157 158
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

159
static const struct perf_event_map *ultra3_event_map(int event_id)
160
{
161
	return &ultra3_perfmon_event_map[event_id];
162 163
}

164
static const cache_map_t ultra3_cache_map = {
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

251 252 253 254
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
255 256 257
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
258 259
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
260 261
};

262 263
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
264
 * problems.  Some hardware designs make one wonder if the creator
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
};

377 378 379 380 381 382 383 384 385
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

386
static const struct perf_event_map *niagara2_event_map(int event_id)
387
{
388
	return &niagara2_perfmon_event_map[event_id];
389 390
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

478 479
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
480
	.cache_map	= &niagara2_cache_map,
481 482 483 484 485
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
486
	.irq_bit	= 0x30,
487 488 489 490
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
};

491 492
static const struct sparc_pmu *sparc_pmu __read_mostly;

493
static u64 event_encoding(u64 event_id, int idx)
494 495
{
	if (idx == PIC_UPPER_INDEX)
496
		event_id <<= sparc_pmu->upper_shift;
497
	else
498 499
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
500 501 502 503 504 505 506 507 508 509
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
510 511
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
512 513
}

514
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
515 516 517
{
	u64 val, mask = mask_for_index(idx);

518 519 520 521 522 523
	val = cpuc->pcr;
	val &= ~mask;
	val |= hwc->config;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
524 525
}

526
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
527 528 529
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
530
	u64 val;
531

532 533 534 535 536 537
	val = cpuc->pcr;
	val &= ~mask;
	val |= nop;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
}

static u32 read_pmc(int idx)
{
	u64 val;

	read_pic(val);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	read_pic(pic);
	pic &= ~mask;
	pic |= val;
	write_pic(pic);
}

568 569 570 571 572 573 574 575
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
576
	prev_raw_count = local64_read(&hwc->prev_count);
577 578
	new_raw_count = read_pmc(idx);

579
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
580 581 582 583 584 585
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

586 587
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
588 589 590 591

	return new_raw_count;
}

592
static int sparc_perf_event_set_period(struct perf_event *event,
593
				       struct hw_perf_event *hwc, int idx)
594
{
595
	s64 left = local64_read(&hwc->period_left);
596 597 598 599 600
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
601
		local64_set(&hwc->period_left, left);
602 603 604 605 606 607
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
608
		local64_set(&hwc->period_left, left);
609 610 611 612 613 614
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

615
	local64_set(&hwc->prev_count, (u64)-left);
616 617 618

	write_pmc(idx, (u64)(-left) & 0xffffffff);

619
	perf_event_update_userpage(event);
620 621 622 623

	return ret;
}

624 625 626 627 628
/* If performance event entries have been added, move existing
 * events around (if necessary) and then assign new entries to
 * counters.
 */
static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
629
{
630
	int i;
631

632 633
	if (!cpuc->n_added)
		goto out;
634

635 636 637
	/* Read in the counters which are moving.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
638

639 640 641 642 643 644 645
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
661
		pcr &= ~mask_for_index(idx);
P
Peter Zijlstra 已提交
662 663 664 665
		if (hwc->state & PERF_HES_STOPPED)
			pcr |= nop_for_index(idx);
		else
			pcr |= event_encoding(enc, idx);
666 667 668
	}
out:
	return pcr;
669 670
}

P
Peter Zijlstra 已提交
671
static void sparc_pmu_enable(struct pmu *pmu)
672
{
673 674
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 pcr;
675

676 677
	if (cpuc->enabled)
		return;
678

679 680
	cpuc->enabled = 1;
	barrier();
681

682 683 684 685 686
	pcr = cpuc->pcr;
	if (!cpuc->n_events) {
		pcr = 0;
	} else {
		pcr = maybe_change_configuration(cpuc, pcr);
687

688 689 690 691 692 693
		/* We require that all of the events have the same
		 * configuration, so just fetch the settings from the
		 * first entry.
		 */
		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
	}
694

695 696 697
	pcr_ops->write(cpuc->pcr);
}

P
Peter Zijlstra 已提交
698
static void sparc_pmu_disable(struct pmu *pmu)
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

	val = cpuc->pcr;
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
715 716
}

P
Peter Zijlstra 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
}

static void sparc_pmu_start(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		sparc_perf_event_set_period(event, &event->hw, idx);
	}

	event->hw.state = 0;

	sparc_pmu_enable_event(cpuc, &event->hw, idx);
}

static void sparc_pmu_stop(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (!(event->hw.state & PERF_HES_STOPPED)) {
		sparc_pmu_disable_event(cpuc, &event->hw, idx);
		event->hw.state |= PERF_HES_STOPPED;
	}

	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
		sparc_perf_event_update(event, &event->hw, idx);
		event->hw.state |= PERF_HES_UPTODATE;
	}
}

static void sparc_pmu_del(struct perf_event *event, int _flags)
762
{
763
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
764 765
	unsigned long flags;
	int i;
766

767
	local_irq_save(flags);
P
Peter Zijlstra 已提交
768
	perf_pmu_disable(event->pmu);
769 770 771

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
P
Peter Zijlstra 已提交
772 773 774 775
			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_stop(event, PERF_EF_UPDATE);
776 777 778 779 780 781 782 783 784 785 786 787

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			perf_event_update_userpage(event);
788

789 790 791 792
			cpuc->n_events--;
			break;
		}
	}
793

P
Peter Zijlstra 已提交
794
	perf_pmu_enable(event->pmu);
795 796 797
	local_irq_restore(flags);
}

798
static void sparc_pmu_read(struct perf_event *event)
799
{
800 801
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);
802
	struct hw_perf_event *hwc = &event->hw;
803

804
	sparc_perf_event_update(event, hwc, idx);
805 806
}

807
static atomic_t active_events = ATOMIC_INIT(0);
808 809
static DEFINE_MUTEX(pmc_grab_mutex);

810 811 812 813 814 815 816 817
static void perf_stop_nmi_watchdog(void *unused)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	stop_nmi_watchdog(NULL);
	cpuc->pcr = pcr_ops->read();
}

818
void perf_event_grab_pmc(void)
819
{
820
	if (atomic_inc_not_zero(&active_events))
821 822 823
		return;

	mutex_lock(&pmc_grab_mutex);
824
	if (atomic_read(&active_events) == 0) {
825
		if (atomic_read(&nmi_active) > 0) {
826
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
827 828
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
829
		atomic_inc(&active_events);
830 831 832 833
	}
	mutex_unlock(&pmc_grab_mutex);
}

834
void perf_event_release_pmc(void)
835
{
836
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
837 838 839 840 841 842
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

874
static void hw_perf_event_destroy(struct perf_event *event)
875
{
876
	perf_event_release_pmc();
877 878
}

879 880 881
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
882 883 884 885 886 887
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
888
 */
889 890
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
891
{
892 893 894 895 896 897 898 899 900
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

P
Peter Zijlstra 已提交
901
	if (n_ev > MAX_HWEVENTS)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		return -1;

	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
926 927
	}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
944
	return -1;
945 946 947 948 949 950

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
982 983
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
984 985 986 987 988 989 990 991
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
992 993
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
994 995 996 997 998 999 1000
	}
	list_for_each_entry(event, &group->sibling_list, group_entry) {
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
1001 1002
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
1003 1004 1005 1006 1007
		}
	}
	return n;
}

P
Peter Zijlstra 已提交
1008
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1009 1010 1011 1012 1013 1014
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1015
	perf_pmu_disable(event->pmu);
1016 1017

	n0 = cpuc->n_events;
P
Peter Zijlstra 已提交
1018
	if (n0 >= MAX_HWEVENTS)
1019 1020 1021 1022 1023 1024
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

P
Peter Zijlstra 已提交
1025 1026 1027 1028
	event->hw.state = PERF_HES_UPTODATE;
	if (!(ef_flags & PERF_EF_START))
		event->hw.state |= PERF_HES_STOPPED;

1029 1030
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1031
	 * skip the schedulability test here, it will be performed
1032 1033
	 * at commit time(->commit_txn) as a whole
	 */
1034
	if (cpuc->group_flag & PERF_EVENT_TXN)
1035 1036
		goto nocheck;

1037 1038 1039 1040 1041
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1042
nocheck:
1043 1044 1045 1046 1047
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
P
Peter Zijlstra 已提交
1048
	perf_pmu_enable(event->pmu);
1049 1050 1051 1052
	local_irq_restore(flags);
	return ret;
}

1053
static int sparc_pmu_event_init(struct perf_event *event)
1054
{
1055
	struct perf_event_attr *attr = &event->attr;
1056
	struct perf_event *evts[MAX_HWEVENTS];
1057
	struct hw_perf_event *hwc = &event->hw;
1058
	unsigned long events[MAX_HWEVENTS];
1059
	int current_idx_dmy[MAX_HWEVENTS];
1060
	const struct perf_event_map *pmap;
1061
	int n;
1062 1063 1064 1065

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1066 1067
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1068 1069 1070
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1071 1072 1073
		break;

	case PERF_TYPE_HW_CACHE:
1074 1075 1076
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1077 1078 1079
		break;

	case PERF_TYPE_RAW:
1080 1081
		pmap = NULL;
		break;
1082

1083 1084 1085 1086 1087
	default:
		return -ENOENT;

	}

1088 1089 1090
	if (pmap) {
		hwc->event_base = perf_event_encode(pmap);
	} else {
1091 1092
		/*
		 * User gives us "(encoding << 16) | pic_mask" for
1093 1094 1095 1096 1097
		 * PERF_TYPE_RAW events.
		 */
		hwc->event_base = attr->config;
	}

1098
	/* We save the enable bits in the config_base.  */
1099
	hwc->config_base = sparc_pmu->irq_bit;
1100 1101 1102 1103
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
1104 1105
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1106

1107 1108 1109
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
P
Peter Zijlstra 已提交
1110
				   MAX_HWEVENTS - 1,
1111
				   evts, events, current_idx_dmy);
1112 1113 1114
		if (n < 0)
			return -EINVAL;
	}
1115
	events[n] = hwc->event_base;
1116 1117 1118 1119 1120
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1121
	if (sparc_check_constraints(evts, events, n + 1))
1122 1123
		return -EINVAL;

1124 1125
	hwc->idx = PIC_NO_INDEX;

1126 1127 1128 1129 1130 1131
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1132 1133 1134
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1135
		local64_set(&hwc->period_left, hwc->sample_period);
1136 1137 1138 1139 1140
	}

	return 0;
}

1141 1142 1143 1144 1145
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1146
static void sparc_pmu_start_txn(struct pmu *pmu)
1147 1148 1149
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1150
	perf_pmu_disable(pmu);
1151
	cpuhw->group_flag |= PERF_EVENT_TXN;
1152 1153 1154 1155 1156 1157 1158
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1159
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1160 1161 1162
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1163
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1164
	perf_pmu_enable(pmu);
1165 1166 1167 1168 1169 1170 1171
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1172
static int sparc_pmu_commit_txn(struct pmu *pmu)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n;

	if (!sparc_pmu)
		return -EINVAL;

	cpuc = &__get_cpu_var(cpu_hw_events);
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1187
	cpuc->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1188
	perf_pmu_enable(pmu);
1189 1190 1191
	return 0;
}

P
Peter Zijlstra 已提交
1192
static struct pmu pmu = {
P
Peter Zijlstra 已提交
1193 1194
	.pmu_enable	= sparc_pmu_enable,
	.pmu_disable	= sparc_pmu_disable,
1195
	.event_init	= sparc_pmu_event_init,
P
Peter Zijlstra 已提交
1196 1197 1198 1199
	.add		= sparc_pmu_add,
	.del		= sparc_pmu_del,
	.start		= sparc_pmu_start,
	.stop		= sparc_pmu_stop,
1200
	.read		= sparc_pmu_read,
1201 1202 1203
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1204 1205
};

1206
void perf_event_print_debug(void)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pcr = pcr_ops->read();
	read_pic(pic);

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

1229
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1230
					    unsigned long cmd, void *__args)
1231 1232 1233
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1234
	struct cpu_hw_events *cpuc;
1235
	struct pt_regs *regs;
1236
	int i;
1237

1238
	if (!atomic_read(&active_events))
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1251
	perf_sample_data_init(&data, 0);
1252

1253
	cpuc = &__get_cpu_var(cpu_hw_events);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
	if (sparc_pmu->irq_bit)
		pcr_ops->write(cpuc->pcr);

1265 1266 1267
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1268
		struct hw_perf_event *hwc;
1269 1270
		u64 val;

1271 1272
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1273 1274 1275
		if (val & (1ULL << 31))
			continue;

1276 1277
		data.period = event->hw.last_period;
		if (!sparc_perf_event_set_period(event, hwc, idx))
1278 1279
			continue;

1280
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1281
			sparc_pmu_stop(event, 0);
1282 1283 1284 1285 1286
	}

	return NOTIFY_STOP;
}

1287 1288
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1289 1290 1291 1292
};

static bool __init supported_pmu(void)
{
1293 1294 1295 1296 1297
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1298 1299
		return true;
	}
1300 1301 1302 1303
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1304 1305 1306 1307
	if (!strcmp(sparc_pmu_type, "niagara2")) {
		sparc_pmu = &niagara2_pmu;
		return true;
	}
1308 1309 1310
	return false;
}

1311
int __init init_hw_perf_events(void)
1312
{
1313
	pr_info("Performance events: ");
1314 1315 1316

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1317
		return 0;
1318 1319 1320 1321
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

P
Peter Zijlstra 已提交
1322
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1323
	register_die_notifier(&perf_event_nmi_notifier);
1324 1325

	return 0;
1326
}
1327
early_initcall(init_hw_perf_events);
1328

1329 1330
void perf_callchain_kernel(struct perf_callchain_entry *entry,
			   struct pt_regs *regs)
1331 1332
{
	unsigned long ksp, fp;
1333 1334 1335
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1336

1337 1338
	stack_trace_flush();

1339
	perf_callchain_store(entry, regs->tpc);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1363
		perf_callchain_store(entry, pc);
1364 1365 1366 1367 1368
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1369
				perf_callchain_store(entry, pc);
1370 1371 1372 1373
				graph++;
			}
		}
#endif
1374 1375 1376
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1377 1378
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1379 1380 1381
{
	unsigned long ufp;

1382
	perf_callchain_store(entry, regs->tpc);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
	do {
		struct sparc_stackf *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1395
		perf_callchain_store(entry, pc);
1396 1397 1398
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1399 1400
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1401 1402 1403
{
	unsigned long ufp;

1404
	perf_callchain_store(entry, regs->tpc);
1405

1406
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	do {
		struct sparc_stackf32 *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf32 *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp;
1417
		perf_callchain_store(entry, pc);
1418 1419 1420
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1421 1422
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1423
{
1424 1425 1426 1427 1428
	flushw_user();
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1429
}