perf_event.c 12.7 KB
Newer Older
1
/* Performance event support for sparc64.
2 3 4
 *
 * Copyright (C) 2009 David S. Miller <davem@davemloft.net>
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <linux/kprobes.h>
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

#include <asm/cpudata.h>
#include <asm/atomic.h>
#include <asm/nmi.h>
#include <asm/pcr.h>

/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

49
#define MAX_HWEVENTS			2
50 51 52 53 54
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1

55 56 57 58
struct cpu_hw_events {
	struct perf_event	*events[MAX_HWEVENTS];
	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
59 60
	int enabled;
};
61
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
77
	int				hv_bit;
78
	int				irq_bit;
79 80
	int				upper_nop;
	int				lower_nop;
81 82 83 84 85 86 87 88 89
};

static const struct perf_event_map ultra3i_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

90
static const struct perf_event_map *ultra3i_event_map(int event_id)
91
{
92
	return &ultra3i_perfmon_event_map[event_id];
93 94 95 96 97 98 99 100
}

static const struct sparc_pmu ultra3i_pmu = {
	.event_map	= ultra3i_event_map,
	.max_events	= ARRAY_SIZE(ultra3i_perfmon_event_map),
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
101 102
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
103 104
};

105 106 107 108 109 110 111 112 113
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

114
static const struct perf_event_map *niagara2_event_map(int event_id)
115
{
116
	return &niagara2_perfmon_event_map[event_id];
117 118 119 120 121 122 123 124 125 126 127 128 129 130
}

static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
	.irq_bit	= 0x03,
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
};

131 132
static const struct sparc_pmu *sparc_pmu __read_mostly;

133
static u64 event_encoding(u64 event_id, int idx)
134 135
{
	if (idx == PIC_UPPER_INDEX)
136
		event_id <<= sparc_pmu->upper_shift;
137
	else
138 139
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
140 141 142 143 144 145 146 147 148 149
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
150 151
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
152 153
}

154
static inline void sparc_pmu_enable_event(struct hw_perf_event *hwc,
155 156 157 158 159 160 161 162
					    int idx)
{
	u64 val, mask = mask_for_index(idx);

	val = pcr_ops->read();
	pcr_ops->write((val & ~mask) | hwc->config);
}

163
static inline void sparc_pmu_disable_event(struct hw_perf_event *hwc,
164 165 166 167 168 169 170 171 172 173 174
					     int idx)
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
	u64 val = pcr_ops->read();

	pcr_ops->write((val & ~mask) | nop);
}

void hw_perf_enable(void)
{
175
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
176 177 178 179 180 181 182 183 184 185 186
	u64 val;
	int i;

	if (cpuc->enabled)
		return;

	cpuc->enabled = 1;
	barrier();

	val = pcr_ops->read();

187 188 189
	for (i = 0; i < MAX_HWEVENTS; i++) {
		struct perf_event *cp = cpuc->events[i];
		struct hw_perf_event *hwc;
190 191 192 193 194 195 196 197 198 199 200 201

		if (!cp)
			continue;
		hwc = &cp->hw;
		val |= hwc->config_base;
	}

	pcr_ops->write(val);
}

void hw_perf_disable(void)
{
202
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
203 204 205 206 207 208 209 210
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;

	val = pcr_ops->read();
211 212
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	pcr_ops->write(val);
}

static u32 read_pmc(int idx)
{
	u64 val;

	read_pic(val);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	read_pic(pic);
	pic &= ~mask;
	pic |= val;
	write_pic(pic);
}

244 245
static int sparc_perf_event_set_period(struct perf_event *event,
					 struct hw_perf_event *hwc, int idx)
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
{
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

	atomic64_set(&hwc->prev_count, (u64)-left);

	write_pmc(idx, (u64)(-left) & 0xffffffff);

271
	perf_event_update_userpage(event);
272 273 274 275

	return ret;
}

276
static int sparc_pmu_enable(struct perf_event *event)
277
{
278 279
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
280 281 282 283 284
	int idx = hwc->idx;

	if (test_and_set_bit(idx, cpuc->used_mask))
		return -EAGAIN;

285
	sparc_pmu_disable_event(hwc, idx);
286

287
	cpuc->events[idx] = event;
288 289
	set_bit(idx, cpuc->active_mask);

290 291 292
	sparc_perf_event_set_period(event, hwc, idx);
	sparc_pmu_enable_event(hwc, idx);
	perf_event_update_userpage(event);
293 294 295
	return 0;
}

296 297
static u64 sparc_perf_event_update(struct perf_event *event,
				     struct hw_perf_event *hwc, int idx)
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
	prev_raw_count = atomic64_read(&hwc->prev_count);
	new_raw_count = read_pmc(idx);

	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

314
	atomic64_add(delta, &event->count);
315 316 317 318 319
	atomic64_sub(delta, &hwc->period_left);

	return new_raw_count;
}

320
static void sparc_pmu_disable(struct perf_event *event)
321
{
322 323
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
324 325 326
	int idx = hwc->idx;

	clear_bit(idx, cpuc->active_mask);
327
	sparc_pmu_disable_event(hwc, idx);
328 329 330

	barrier();

331 332
	sparc_perf_event_update(event, hwc, idx);
	cpuc->events[idx] = NULL;
333 334
	clear_bit(idx, cpuc->used_mask);

335
	perf_event_update_userpage(event);
336 337
}

338
static void sparc_pmu_read(struct perf_event *event)
339
{
340 341
	struct hw_perf_event *hwc = &event->hw;
	sparc_perf_event_update(event, hwc, hwc->idx);
342 343
}

344
static void sparc_pmu_unthrottle(struct perf_event *event)
345
{
346 347
	struct hw_perf_event *hwc = &event->hw;
	sparc_pmu_enable_event(hwc, hwc->idx);
348 349
}

350
static atomic_t active_events = ATOMIC_INIT(0);
351 352
static DEFINE_MUTEX(pmc_grab_mutex);

353
void perf_event_grab_pmc(void)
354
{
355
	if (atomic_inc_not_zero(&active_events))
356 357 358
		return;

	mutex_lock(&pmc_grab_mutex);
359
	if (atomic_read(&active_events) == 0) {
360 361 362 363
		if (atomic_read(&nmi_active) > 0) {
			on_each_cpu(stop_nmi_watchdog, NULL, 1);
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
364
		atomic_inc(&active_events);
365 366 367 368
	}
	mutex_unlock(&pmc_grab_mutex);
}

369
void perf_event_release_pmc(void)
370
{
371
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
372 373 374 375 376 377
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

378
static void hw_perf_event_destroy(struct perf_event *event)
379
{
380
	perf_event_release_pmc();
381 382
}

383
static int __hw_perf_event_init(struct perf_event *event)
384
{
385 386
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
387 388 389 390 391 392 393 394 395 396 397 398
	const struct perf_event_map *pmap;
	u64 enc;

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

	if (attr->type != PERF_TYPE_HARDWARE)
		return -EOPNOTSUPP;

	if (attr->config >= sparc_pmu->max_events)
		return -EINVAL;

399 400
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;
401 402 403 404 405

	/* We save the enable bits in the config_base.  So to
	 * turn off sampling just write 'config', and to enable
	 * things write 'config | config_base'.
	 */
406
	hwc->config_base = sparc_pmu->irq_bit;
407 408 409 410
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
411 412
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
		atomic64_set(&hwc->period_left, hwc->sample_period);
	}

	pmap = sparc_pmu->event_map(attr->config);

	enc = pmap->encoding;
	if (pmap->pic_mask & PIC_UPPER) {
		hwc->idx = PIC_UPPER_INDEX;
		enc <<= sparc_pmu->upper_shift;
	} else {
		hwc->idx = PIC_LOWER_INDEX;
		enc <<= sparc_pmu->lower_shift;
	}

	hwc->config |= enc;
	return 0;
}

static const struct pmu pmu = {
	.enable		= sparc_pmu_enable,
	.disable	= sparc_pmu_disable,
	.read		= sparc_pmu_read,
	.unthrottle	= sparc_pmu_unthrottle,
};

442
const struct pmu *hw_perf_event_init(struct perf_event *event)
443
{
444
	int err = __hw_perf_event_init(event);
445 446 447 448 449 450

	if (err)
		return ERR_PTR(err);
	return &pmu;
}

451
void perf_event_print_debug(void)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pcr = pcr_ops->read();
	read_pic(pic);

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

474
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
475 476 477 478
					      unsigned long cmd, void *__args)
{
	struct die_args *args = __args;
	struct perf_sample_data data;
479
	struct cpu_hw_events *cpuc;
480 481 482
	struct pt_regs *regs;
	int idx;

483
	if (!atomic_read(&active_events))
484 485 486 487 488 489 490 491 492 493 494 495 496 497
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

	data.addr = 0;

498 499 500 501
	cpuc = &__get_cpu_var(cpu_hw_events);
	for (idx = 0; idx < MAX_HWEVENTS; idx++) {
		struct perf_event *event = cpuc->events[idx];
		struct hw_perf_event *hwc;
502 503 504 505
		u64 val;

		if (!test_bit(idx, cpuc->active_mask))
			continue;
506 507
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
508 509 510
		if (val & (1ULL << 31))
			continue;

511 512
		data.period = event->hw.last_period;
		if (!sparc_perf_event_set_period(event, hwc, idx))
513 514
			continue;

515 516
		if (perf_event_overflow(event, 1, &data, regs))
			sparc_pmu_disable_event(hwc, idx);
517 518 519 520 521
	}

	return NOTIFY_STOP;
}

522 523
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
524 525 526 527 528 529 530 531
};

static bool __init supported_pmu(void)
{
	if (!strcmp(sparc_pmu_type, "ultra3i")) {
		sparc_pmu = &ultra3i_pmu;
		return true;
	}
532 533 534 535
	if (!strcmp(sparc_pmu_type, "niagara2")) {
		sparc_pmu = &niagara2_pmu;
		return true;
	}
536 537 538
	return false;
}

539
void __init init_hw_perf_events(void)
540
{
541
	pr_info("Performance events: ");
542 543 544 545 546 547 548 549

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
		return;
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

550 551
	/* All sparc64 PMUs currently have 2 events.  But this simple
	 * driver only supports one active event at a time.
552
	 */
553
	perf_max_events = 1;
554

555
	register_die_notifier(&perf_event_nmi_notifier);
556
}