perf_event.c 18.7 KB
Newer Older
1
/* Performance event support for sparc64.
2 3 4
 *
 * Copyright (C) 2009 David S. Miller <davem@davemloft.net>
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <linux/kprobes.h>
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

#include <asm/cpudata.h>
#include <asm/atomic.h>
#include <asm/nmi.h>
#include <asm/pcr.h>

/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

49
#define MAX_HWEVENTS			2
50 51 52 53 54
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1

55 56 57 58
struct cpu_hw_events {
	struct perf_event	*events[MAX_HWEVENTS];
	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
59 60
	int enabled;
};
61
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
62 63 64 65 66 67 68 69 70

struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

71 72 73 74 75 76 77 78 79 80
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

81 82
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
83
	const cache_map_t		*cache_map;
84 85 86 87
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
88
	int				hv_bit;
89
	int				irq_bit;
90 91
	int				upper_nop;
	int				lower_nop;
92 93
};

94
static const struct perf_event_map ultra3_perfmon_event_map[] = {
95 96 97 98 99 100
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

101
static const struct perf_event_map *ultra3_event_map(int event_id)
102
{
103
	return &ultra3_perfmon_event_map[event_id];
104 105
}

106
static const cache_map_t ultra3_cache_map = {
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

193 194 195 196
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
197 198 199
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
200 201
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
202 203
};

204 205 206 207 208 209 210 211 212
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

213
static const struct perf_event_map *niagara2_event_map(int event_id)
214
{
215
	return &niagara2_perfmon_event_map[event_id];
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

305 306
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
307
	.cache_map	= &niagara2_cache_map,
308 309 310 311 312 313 314 315 316 317
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
	.irq_bit	= 0x03,
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
};

318 319
static const struct sparc_pmu *sparc_pmu __read_mostly;

320
static u64 event_encoding(u64 event_id, int idx)
321 322
{
	if (idx == PIC_UPPER_INDEX)
323
		event_id <<= sparc_pmu->upper_shift;
324
	else
325 326
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
327 328 329 330 331 332 333 334 335 336
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
337 338
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
339 340
}

341
static inline void sparc_pmu_enable_event(struct hw_perf_event *hwc,
342 343 344 345 346 347 348 349
					    int idx)
{
	u64 val, mask = mask_for_index(idx);

	val = pcr_ops->read();
	pcr_ops->write((val & ~mask) | hwc->config);
}

350
static inline void sparc_pmu_disable_event(struct hw_perf_event *hwc,
351 352 353 354 355 356 357 358 359 360 361
					     int idx)
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
	u64 val = pcr_ops->read();

	pcr_ops->write((val & ~mask) | nop);
}

void hw_perf_enable(void)
{
362
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
363 364 365 366 367 368 369 370 371 372 373
	u64 val;
	int i;

	if (cpuc->enabled)
		return;

	cpuc->enabled = 1;
	barrier();

	val = pcr_ops->read();

374 375 376
	for (i = 0; i < MAX_HWEVENTS; i++) {
		struct perf_event *cp = cpuc->events[i];
		struct hw_perf_event *hwc;
377 378 379 380 381 382 383 384 385 386 387 388

		if (!cp)
			continue;
		hwc = &cp->hw;
		val |= hwc->config_base;
	}

	pcr_ops->write(val);
}

void hw_perf_disable(void)
{
389
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
390 391 392 393 394 395 396 397
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;

	val = pcr_ops->read();
398 399
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	pcr_ops->write(val);
}

static u32 read_pmc(int idx)
{
	u64 val;

	read_pic(val);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	read_pic(pic);
	pic &= ~mask;
	pic |= val;
	write_pic(pic);
}

431 432
static int sparc_perf_event_set_period(struct perf_event *event,
					 struct hw_perf_event *hwc, int idx)
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
{
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

	atomic64_set(&hwc->prev_count, (u64)-left);

	write_pmc(idx, (u64)(-left) & 0xffffffff);

458
	perf_event_update_userpage(event);
459 460 461 462

	return ret;
}

463
static int sparc_pmu_enable(struct perf_event *event)
464
{
465 466
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
467 468 469 470 471
	int idx = hwc->idx;

	if (test_and_set_bit(idx, cpuc->used_mask))
		return -EAGAIN;

472
	sparc_pmu_disable_event(hwc, idx);
473

474
	cpuc->events[idx] = event;
475 476
	set_bit(idx, cpuc->active_mask);

477 478 479
	sparc_perf_event_set_period(event, hwc, idx);
	sparc_pmu_enable_event(hwc, idx);
	perf_event_update_userpage(event);
480 481 482
	return 0;
}

483 484
static u64 sparc_perf_event_update(struct perf_event *event,
				     struct hw_perf_event *hwc, int idx)
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
	prev_raw_count = atomic64_read(&hwc->prev_count);
	new_raw_count = read_pmc(idx);

	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

501
	atomic64_add(delta, &event->count);
502 503 504 505 506
	atomic64_sub(delta, &hwc->period_left);

	return new_raw_count;
}

507
static void sparc_pmu_disable(struct perf_event *event)
508
{
509 510
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
511 512 513
	int idx = hwc->idx;

	clear_bit(idx, cpuc->active_mask);
514
	sparc_pmu_disable_event(hwc, idx);
515 516 517

	barrier();

518 519
	sparc_perf_event_update(event, hwc, idx);
	cpuc->events[idx] = NULL;
520 521
	clear_bit(idx, cpuc->used_mask);

522
	perf_event_update_userpage(event);
523 524
}

525
static void sparc_pmu_read(struct perf_event *event)
526
{
527 528
	struct hw_perf_event *hwc = &event->hw;
	sparc_perf_event_update(event, hwc, hwc->idx);
529 530
}

531
static void sparc_pmu_unthrottle(struct perf_event *event)
532
{
533 534
	struct hw_perf_event *hwc = &event->hw;
	sparc_pmu_enable_event(hwc, hwc->idx);
535 536
}

537
static atomic_t active_events = ATOMIC_INIT(0);
538 539
static DEFINE_MUTEX(pmc_grab_mutex);

540
void perf_event_grab_pmc(void)
541
{
542
	if (atomic_inc_not_zero(&active_events))
543 544 545
		return;

	mutex_lock(&pmc_grab_mutex);
546
	if (atomic_read(&active_events) == 0) {
547 548 549 550
		if (atomic_read(&nmi_active) > 0) {
			on_each_cpu(stop_nmi_watchdog, NULL, 1);
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
551
		atomic_inc(&active_events);
552 553 554 555
	}
	mutex_unlock(&pmc_grab_mutex);
}

556
void perf_event_release_pmc(void)
557
{
558
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
559 560 561 562 563 564
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

596
static void hw_perf_event_destroy(struct perf_event *event)
597
{
598
	perf_event_release_pmc();
599 600
}

601
static int __hw_perf_event_init(struct perf_event *event)
602
{
603 604
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
605 606 607 608 609 610
	const struct perf_event_map *pmap;
	u64 enc;

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

611 612 613 614 615 616 617 618 619
	if (attr->type == PERF_TYPE_HARDWARE) {
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
	} else if (attr->type == PERF_TYPE_HW_CACHE) {
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
	} else
620 621
		return -EOPNOTSUPP;

622 623
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;
624 625 626 627 628

	/* We save the enable bits in the config_base.  So to
	 * turn off sampling just write 'config', and to enable
	 * things write 'config | config_base'.
	 */
629
	hwc->config_base = sparc_pmu->irq_bit;
630 631 632 633
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
634 635
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
		atomic64_set(&hwc->period_left, hwc->sample_period);
	}

	enc = pmap->encoding;
	if (pmap->pic_mask & PIC_UPPER) {
		hwc->idx = PIC_UPPER_INDEX;
		enc <<= sparc_pmu->upper_shift;
	} else {
		hwc->idx = PIC_LOWER_INDEX;
		enc <<= sparc_pmu->lower_shift;
	}

	hwc->config |= enc;
	return 0;
}

static const struct pmu pmu = {
	.enable		= sparc_pmu_enable,
	.disable	= sparc_pmu_disable,
	.read		= sparc_pmu_read,
	.unthrottle	= sparc_pmu_unthrottle,
};

663
const struct pmu *hw_perf_event_init(struct perf_event *event)
664
{
665
	int err = __hw_perf_event_init(event);
666 667 668 669 670 671

	if (err)
		return ERR_PTR(err);
	return &pmu;
}

672
void perf_event_print_debug(void)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pcr = pcr_ops->read();
	read_pic(pic);

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

695
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
696 697 698 699
					      unsigned long cmd, void *__args)
{
	struct die_args *args = __args;
	struct perf_sample_data data;
700
	struct cpu_hw_events *cpuc;
701 702 703
	struct pt_regs *regs;
	int idx;

704
	if (!atomic_read(&active_events))
705 706 707 708 709 710 711 712 713 714 715 716 717 718
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

	data.addr = 0;

719 720 721 722
	cpuc = &__get_cpu_var(cpu_hw_events);
	for (idx = 0; idx < MAX_HWEVENTS; idx++) {
		struct perf_event *event = cpuc->events[idx];
		struct hw_perf_event *hwc;
723 724 725 726
		u64 val;

		if (!test_bit(idx, cpuc->active_mask))
			continue;
727 728
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
729 730 731
		if (val & (1ULL << 31))
			continue;

732 733
		data.period = event->hw.last_period;
		if (!sparc_perf_event_set_period(event, hwc, idx))
734 735
			continue;

736 737
		if (perf_event_overflow(event, 1, &data, regs))
			sparc_pmu_disable_event(hwc, idx);
738 739 740 741 742
	}

	return NOTIFY_STOP;
}

743 744
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
745 746 747 748
};

static bool __init supported_pmu(void)
{
749 750 751 752 753
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
754 755
		return true;
	}
756 757 758 759
	if (!strcmp(sparc_pmu_type, "niagara2")) {
		sparc_pmu = &niagara2_pmu;
		return true;
	}
760 761 762
	return false;
}

763
void __init init_hw_perf_events(void)
764
{
765
	pr_info("Performance events: ");
766 767 768 769 770 771 772 773

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
		return;
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

774 775
	/* All sparc64 PMUs currently have 2 events.  But this simple
	 * driver only supports one active event at a time.
776
	 */
777
	perf_max_events = 1;
778

779
	register_die_notifier(&perf_event_nmi_notifier);
780
}