cpufeature.c 60.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21
#include <linux/bsearch.h>
22
#include <linux/cpumask.h>
23
#include <linux/sort.h>
24
#include <linux/stop_machine.h>
25
#include <linux/types.h>
26
#include <linux/mm.h>
27
#include <linux/cpu.h>
28 29
#include <asm/cpu.h>
#include <asm/cpufeature.h>
30
#include <asm/cpu_ops.h>
31
#include <asm/fpsimd.h>
32
#include <asm/mmu_context.h>
33
#include <asm/processor.h>
34
#include <asm/sysreg.h>
35
#include <asm/traps.h>
36
#include <asm/virt.h>
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54
EXPORT_SYMBOL(cpu_hwcaps);
55
static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
56

57 58 59
/* Need also bit for ARM64_CB_PATCH */
DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
{
	/* file-wide pr_fmt adds "CPU features: " prefix */
	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
	return 0;
}

static struct notifier_block cpu_hwcaps_notifier = {
	.notifier_call = dump_cpu_hwcaps
};

static int __init register_cpu_hwcaps_dumper(void)
{
	atomic_notifier_chain_register(&panic_notifier_list,
				       &cpu_hwcaps_notifier);
	return 0;
}
__initcall(register_cpu_hwcaps_dumper);

94 95 96
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

97
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
98
	{						\
99
		.sign = SIGNED,				\
100
		.visible = VISIBLE,			\
101 102 103 104 105 106 107
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

108
/* Define a feature with unsigned values */
109 110
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
111

112
/* Define a feature with a signed value */
113 114
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
115

116 117 118 119 120
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

121 122
/* meta feature for alternatives */
static bool __maybe_unused
123 124
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

125

126 127 128 129
/*
 * NOTE: Any changes to the visibility of features should be kept in
 * sync with the documentation of the CPU feature register ABI.
 */
130
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
131
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
132
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
133 134 135 136 137
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
138 139 140 141 142
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
143 144 145
	ARM64_FTR_END,
};

146
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
147 148 149 150
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
151 152 153
	ARM64_FTR_END,
};

154
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
155
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
156
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
157
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
158 159
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
160
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
161
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
162 163
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
164
	/* Linux doesn't care about the EL3 */
165 166 167 168
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
169 170 171
	ARM64_FTR_END,
};

172 173 174 175 176
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
	ARM64_FTR_END,
};

177
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
178 179 180 181 182 183 184 185 186 187 188
	/*
	 * We already refuse to boot CPUs that don't support our configured
	 * page size, so we can only detect mismatches for a page size other
	 * than the one we're currently using. Unfortunately, SoCs like this
	 * exist in the wild so, even though we don't like it, we'll have to go
	 * along with it and treat them as non-strict.
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),

189
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
190
	/* Linux shouldn't care about secure memory */
191 192 193
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
194 195 196 197
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
198
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
199 200 201
	ARM64_FTR_END,
};

202
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
203
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
204 205 206 207 208
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
209 210 211
	ARM64_FTR_END,
};

212
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
213
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
214
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
215 216 217 218 219
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
220 221 222
	ARM64_FTR_END,
};

223
static const struct arm64_ftr_bits ftr_ctr[] = {
224 225 226
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
227 228
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
229
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
230 231
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
232
	 * make use of *minLine.
233
	 * If we have differing I-cache policies, report it as the weakest - VIPT.
234
	 */
235
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
236
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
237 238 239
	ARM64_FTR_END,
};

240 241 242 243 244
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

245
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
246 247
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
248
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
249 250 251 252 253
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
254 255 256
	ARM64_FTR_END,
};

257
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
258 259 260 261 262
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
263 264 265
	/*
	 * We can instantiate multiple PMU instances with different levels
	 * of support.
266 267 268 269
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
270 271 272
	ARM64_FTR_END,
};

273
static const struct arm64_ftr_bits ftr_mvfr2[] = {
274 275
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
276 277 278
	ARM64_FTR_END,
};

279
static const struct arm64_ftr_bits ftr_dczid[] = {
280 281
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
282 283 284 285
	ARM64_FTR_END,
};


286
static const struct arm64_ftr_bits ftr_id_isar5[] = {
287 288 289 290 291 292
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
293 294 295
	ARM64_FTR_END,
};

296
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
297
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
298 299 300
	ARM64_FTR_END,
};

301
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
302 303 304 305
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
306 307 308
	ARM64_FTR_END,
};

309
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
310 311 312 313 314 315 316 317
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
318 319 320
	ARM64_FTR_END,
};

321 322 323 324 325 326
static const struct arm64_ftr_bits ftr_zcr[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
	ARM64_FTR_END,
};

327 328 329 330 331 332
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
333
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
334 335 336 337 338 339 340 341
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
342 343 344
	ARM64_FTR_END,
};

345 346
/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
347
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
348 349 350
	ARM64_FTR_END,
};

351
static const struct arm64_ftr_bits ftr_raz[] = {
352 353 354
	ARM64_FTR_END,
};

355 356 357
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
358 359
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
360
	}}
361

362 363 364 365
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
366 367 368 369

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
370
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
392
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
393
	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
394 395 396

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
397
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
398 399 400

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
401
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
402 403 404 405

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
406
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
407

408 409 410
	/* Op1 = 0, CRn = 1, CRm = 2 */
	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),

411
	/* Op1 = 3, CRn = 0, CRm = 0 */
412
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
413 414 415
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
416
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
417 418 419 420
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
421
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
422 423 424 425 426 427 428 429 430 431 432 433 434 435
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
436 437 438
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
439 440 441 442
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
443 444 445
	if (ret)
		return ret->reg;
	return NULL;
446 447
}

448 449
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
450 451 452 453 454 455 456 457
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

458 459
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
460 461 462 463 464 465 466 467 468 469
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
470 471 472 473
	case FTR_HIGHER_OR_ZERO_SAFE:
		if (!cur || !new)
			break;
		/* Fallthrough */
474 475 476 477 478 479 480 481 482 483 484 485
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
486 487 488 489 490
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
491 492 493 494 495
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
496 497
 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 * RES0 for the system-wide value, and must strictly match.
498 499 500 501 502
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
503
	u64 user_mask = 0;
504 505
	u64 valid_mask = 0;

506
	const struct arm64_ftr_bits *ftrp;
507 508 509 510 511
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
512
		u64 ftr_mask = arm64_ftr_mask(ftrp);
513 514 515
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
516 517

		valid_mask |= ftr_mask;
518
		if (!ftrp->strict)
519
			strict_mask &= ~ftr_mask;
520 521 522 523 524 525
		if (ftrp->visible)
			user_mask |= ftr_mask;
		else
			reg->user_val = arm64_ftr_set_value(ftrp,
							    reg->user_val,
							    ftrp->safe_val);
526
	}
527 528 529

	val &= valid_mask;

530 531
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
532
	reg->user_mask = user_mask;
533 534
}

535
extern const struct arm64_cpu_capabilities arm64_errata[];
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static const struct arm64_cpu_capabilities arm64_features[];

static void __init
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
		if (WARN(caps->capability >= ARM64_NCAPS,
			"Invalid capability %d\n", caps->capability))
			continue;
		if (WARN(cpu_hwcaps_ptrs[caps->capability],
			"Duplicate entry for capability %d\n",
			caps->capability))
			continue;
		cpu_hwcaps_ptrs[caps->capability] = caps;
	}
}

static void __init init_cpu_hwcaps_indirect_list(void)
{
	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
}

559
static void __init setup_boot_cpu_capabilities(void);
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574
void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
575
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
576 577
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
578
	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

599 600 601 602
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
		sve_init_vq_map();
	}
603

604 605 606 607 608 609
	/*
	 * Initialize the indirect array of CPU hwcaps capabilities pointers
	 * before we handle the boot CPU below.
	 */
	init_cpu_hwcaps_indirect_list();

610
	/*
611 612
	 * Detect and enable early CPU capabilities based on the boot CPU,
	 * after we have initialised the CPU feature infrastructure.
613
	 */
614
	setup_boot_cpu_capabilities();
615 616
}

617
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
618
{
619
	const struct arm64_ftr_bits *ftrp;
620 621 622 623 624 625 626 627 628 629 630 631 632 633

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

634
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
635
{
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
706 707
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
708 709 710 711 712 713 714 715 716

	/*
	 * EL3 is not our concern.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

717 718 719
	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);

720
	/*
721 722
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
723
	 */
724
	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
725 726 727
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
728
					info->reg_id_dfr0, boot->reg_id_dfr0);
729
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
730
					info->reg_id_isar0, boot->reg_id_isar0);
731
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
732
					info->reg_id_isar1, boot->reg_id_isar1);
733
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
734
					info->reg_id_isar2, boot->reg_id_isar2);
735
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
736
					info->reg_id_isar3, boot->reg_id_isar3);
737
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
738
					info->reg_id_isar4, boot->reg_id_isar4);
739
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
740 741
					info->reg_id_isar5, boot->reg_id_isar5);

742 743 744 745 746 747
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
748
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
749
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
750
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
751
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
752
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
753
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
754
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
755
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
756
					info->reg_id_pfr0, boot->reg_id_pfr0);
757
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
758
					info->reg_id_pfr1, boot->reg_id_pfr1);
759
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
760
					info->reg_mvfr0, boot->reg_mvfr0);
761
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
762
					info->reg_mvfr1, boot->reg_mvfr1);
763
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
764
					info->reg_mvfr2, boot->reg_mvfr2);
765
	}
766

767 768 769 770 771 772 773 774 775 776
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
					info->reg_zcr, boot->reg_zcr);

		/* Probe vector lengths, unless we already gave up on SVE */
		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
		    !sys_caps_initialised)
			sve_update_vq_map();
	}

777 778 779 780
	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
781 782 783 784
	if (taint) {
		pr_warn_once("Unsupported CPU feature variation detected.\n");
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
	}
785 786
}

787
u64 read_sanitised_ftr_reg(u32 id)
788 789 790 791 792 793 794
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
795

796 797 798
#define read_sysreg_case(r)	\
	case r:		return read_sysreg_s(r)

799
/*
800
 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
801 802
 * Read the system register on the current CPU
 */
803
static u64 __read_sysreg_by_encoding(u32 sys_id)
804 805
{
	switch (sys_id) {
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	read_sysreg_case(SYS_ID_PFR0_EL1);
	read_sysreg_case(SYS_ID_PFR1_EL1);
	read_sysreg_case(SYS_ID_DFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR2_EL1);
	read_sysreg_case(SYS_ID_MMFR3_EL1);
	read_sysreg_case(SYS_ID_ISAR0_EL1);
	read_sysreg_case(SYS_ID_ISAR1_EL1);
	read_sysreg_case(SYS_ID_ISAR2_EL1);
	read_sysreg_case(SYS_ID_ISAR3_EL1);
	read_sysreg_case(SYS_ID_ISAR4_EL1);
	read_sysreg_case(SYS_ID_ISAR5_EL1);
	read_sysreg_case(SYS_MVFR0_EL1);
	read_sysreg_case(SYS_MVFR1_EL1);
	read_sysreg_case(SYS_MVFR2_EL1);

	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);

	read_sysreg_case(SYS_CNTFRQ_EL0);
	read_sysreg_case(SYS_CTR_EL0);
	read_sysreg_case(SYS_DCZID_EL0);

837 838 839 840 841 842
	default:
		BUG();
		return 0;
	}
}

843 844
#include <linux/irqchip/arm-gic-v3.h>

845 846 847
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
848
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
849 850 851 852

	return val >= entry->min_field_value;
}

853
static bool
854
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
855 856
{
	u64 val;
857

858 859
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
860
		val = read_sanitised_ftr_reg(entry->sys_reg);
861
	else
862
		val = __read_sysreg_by_encoding(entry->sys_reg);
863

864 865
	return feature_matches(val, entry);
}
866

867
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
868 869 870
{
	bool has_sre;

871
	if (!has_cpuid_feature(entry, scope))
872 873 874 875 876 877 878 879 880 881
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

882
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
883 884 885 886
{
	u32 midr = read_cpuid_id();

	/* Cavium ThunderX pass 1.x and 2.x */
887
	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
888 889
		MIDR_CPU_VAR_REV(0, 0),
		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
890 891
}

892 893
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
894
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
895 896 897 898 899

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

900
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
901
			  int scope)
902
{
903 904 905 906 907 908 909 910
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_cachetype();

	return ctr & BIT(CTR_IDC_SHIFT);
911 912 913
}

static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
914
			  int scope)
915
{
916 917 918 919 920 921 922 923
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_cachetype();

	return ctr & BIT(CTR_DIC_SHIFT);
924 925
}

926
static bool __meltdown_safe = true;
927 928 929
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */

static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
930
				int scope)
931
{
932 933 934 935
	/* List of CPUs that are not vulnerable and don't need KPTI */
	static const struct midr_range kpti_safe_list[] = {
		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
936 937 938 939 940 941
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
942
		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
943
		{ /* sentinel */ }
944
	};
945
	char const *str = "kpti command line option";
946 947 948 949 950 951 952 953 954 955
	bool meltdown_safe;

	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);

	/* Defer to CPU feature registers */
	if (has_cpuid_feature(entry, scope))
		meltdown_safe = true;

	if (!meltdown_safe)
		__meltdown_safe = false;
956

957 958 959 960 961 962 963 964 965 966
	/*
	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
	 * ThunderX leads to apparent I-cache corruption of kernel text, which
	 * ends as well as you might imagine. Don't even try.
	 */
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
		str = "ARM64_WORKAROUND_CAVIUM_27456";
		__kpti_forced = -1;
	}

967 968 969 970 971 972 973 974
	/* Useful for KASLR robustness */
	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
		if (!__kpti_forced) {
			str = "KASLR";
			__kpti_forced = 1;
		}
	}

975 976 977 978 979
	if (cpu_mitigations_off() && !__kpti_forced) {
		str = "mitigations=off";
		__kpti_forced = -1;
	}

980 981 982 983 984
	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
		return false;
	}

985
	/* Forced? */
986
	if (__kpti_forced) {
987 988
		pr_info_once("kernel page table isolation forced %s by %s\n",
			     __kpti_forced > 0 ? "ON" : "OFF", str);
989 990 991
		return __kpti_forced > 0;
	}

992
	return !meltdown_safe;
993 994
}

995
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
996 997
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
998 999 1000 1001 1002 1003 1004 1005 1006
{
	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
	kpti_remap_fn *remap_fn;

	static bool kpti_applied = false;
	int cpu = smp_processor_id();

	if (kpti_applied)
1007
		return;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);

	cpu_install_idmap();
	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
	cpu_uninstall_idmap();

	if (!cpu)
		kpti_applied = true;

1018
	return;
1019
}
1020 1021 1022 1023 1024 1025
#else
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
}
#endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static int __init parse_kpti(char *str)
{
	bool enabled;
	int ret = strtobool(str, &enabled);

	if (ret)
		return ret;

	__kpti_forced = enabled ? 1 : -1;
	return 0;
}
1038
early_param("kpti", parse_kpti);
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048
#ifdef CONFIG_ARM64_HW_AFDBM
static inline void __cpu_enable_hw_dbm(void)
{
	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;

	write_sysreg(tcr, tcr_el1);
	isb();
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static bool cpu_has_broken_dbm(void)
{
	/* List of CPUs which have broken DBM support. */
	static const struct midr_range cpus[] = {
#ifdef CONFIG_ARM64_ERRATUM_1024718
		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
#endif
		{},
	};

	return is_midr_in_range_list(read_cpuid_id(), cpus);
}

1062 1063
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
{
1064 1065
	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
	       !cpu_has_broken_dbm();
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
}

static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
{
	if (cpu_can_use_dbm(cap))
		__cpu_enable_hw_dbm();
}

static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
		       int __unused)
{
	static bool detected = false;
	/*
	 * DBM is a non-conflicting feature. i.e, the kernel can safely
	 * run a mix of CPUs with and without the feature. So, we
	 * unconditionally enable the capability to allow any late CPU
	 * to use the feature. We only enable the control bits on the
	 * CPU, if it actually supports.
	 *
	 * We have to make sure we print the "feature" detection only
	 * when at least one CPU actually uses it. So check if this CPU
	 * can actually use it and print the message exactly once.
	 *
	 * This is safe as all CPUs (including secondary CPUs - due to the
	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
	 * goes through the "matches" check exactly once. Also if a CPU
	 * matches the criteria, it is guaranteed that the CPU will turn
	 * the DBM on, as the capability is unconditionally enabled.
	 */
	if (!detected && cpu_can_use_dbm(cap)) {
		detected = true;
		pr_info("detected: Hardware dirty bit management\n");
	}

	return true;
}

#endif

1105 1106 1107 1108 1109 1110
#ifdef CONFIG_ARM64_VHE
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
{
	return is_kernel_in_hyp_mode();
}

1111
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1112 1113 1114 1115 1116 1117 1118 1119 1120
{
	/*
	 * Copy register values that aren't redirected by hardware.
	 *
	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
	 * this value to tpidr_el2 before we patch the code. Once we've done
	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
	 * do anything here.
	 */
1121
	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1122 1123
		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
}
1124
#endif
1125

1126 1127 1128 1129 1130 1131 1132 1133
static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
{
	u64 val = read_sysreg_s(SYS_CLIDR_EL1);

	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
	WARN_ON(val & (7 << 27 | 7 << 21));
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
#ifdef CONFIG_ARM64_SSBD
static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
{
	if (user_mode(regs))
		return 1;

	if (instr & BIT(CRm_shift))
		regs->pstate |= PSR_SSBS_BIT;
	else
		regs->pstate &= ~PSR_SSBS_BIT;

	arm64_skip_faulting_instruction(regs, 4);
	return 0;
}

static struct undef_hook ssbs_emulation_hook = {
	.instr_mask	= ~(1U << CRm_shift),
	.instr_val	= 0xd500001f | REG_PSTATE_SSBS_IMM,
	.fn		= ssbs_emulation_handler,
};

static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
{
	static bool undef_hook_registered = false;
	static DEFINE_SPINLOCK(hook_lock);

	spin_lock(&hook_lock);
	if (!undef_hook_registered) {
		register_undef_hook(&ssbs_emulation_hook);
		undef_hook_registered = true;
	}
	spin_unlock(&hook_lock);

	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
		arm64_set_ssbd_mitigation(false);
	} else {
		arm64_set_ssbd_mitigation(true);
	}
}
#endif /* CONFIG_ARM64_SSBD */

1176 1177 1178 1179 1180 1181 1182 1183
#ifdef CONFIG_ARM64_PSEUDO_NMI
static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
				   int scope)
{
	return false;
}
#endif

1184
static const struct arm64_cpu_capabilities arm64_features[] = {
1185 1186 1187
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1188
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1189
		.matches = has_useable_gicv3_cpuif,
1190 1191
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1192
		.sign = FTR_UNSIGNED,
1193
		.min_field_value = 1,
1194
	},
1195 1196 1197 1198
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
1199
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1200 1201 1202
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1203
		.sign = FTR_UNSIGNED,
1204
		.min_field_value = 1,
1205
		.cpu_enable = cpu_enable_pan,
1206 1207
	},
#endif /* CONFIG_ARM64_PAN */
1208 1209 1210 1211
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
1212
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1213 1214 1215
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1216
		.sign = FTR_UNSIGNED,
1217 1218 1219
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1220 1221 1222
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
1223
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1224 1225
		.matches = has_no_hw_prefetch,
	},
1226 1227 1228 1229
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
1230
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1231 1232 1233 1234
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
1235 1236 1237 1238
		/*
		 * We rely on stop_machine() calling uao_thread_switch() to set
		 * UAO immediately after patching.
		 */
1239 1240
	},
#endif /* CONFIG_ARM64_UAO */
1241 1242 1243
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
1244
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1245 1246 1247
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
1248
#ifdef CONFIG_ARM64_VHE
1249 1250 1251
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1252
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1253
		.matches = runs_at_el2,
1254
		.cpu_enable = cpu_copy_el2regs,
1255
	},
1256
#endif	/* CONFIG_ARM64_VHE */
1257 1258 1259
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
1260
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1261 1262 1263 1264 1265 1266
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
1267
	{
1268
		.desc = "Kernel page table isolation (KPTI)",
1269
		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1270 1271 1272 1273 1274 1275 1276 1277 1278
		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
		/*
		 * The ID feature fields below are used to indicate that
		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
		 * more details.
		 */
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
		.min_field_value = 1,
1279
		.matches = unmap_kernel_at_el0,
1280
		.cpu_enable = kpti_install_ng_mappings,
1281
	},
1282 1283 1284
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
1285
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1286 1287 1288
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
R
Robin Murphy 已提交
1289 1290 1291 1292
#ifdef CONFIG_ARM64_PMEM
	{
		.desc = "Data cache clean to Point of Persistence",
		.capability = ARM64_HAS_DCPOP,
1293
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
R
Robin Murphy 已提交
1294 1295 1296 1297 1298 1299
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
		.min_field_value = 1,
	},
#endif
1300 1301 1302
#ifdef CONFIG_ARM64_SVE
	{
		.desc = "Scalable Vector Extension",
1303
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1304 1305 1306 1307 1308 1309
		.capability = ARM64_SVE,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_SVE_SHIFT,
		.min_field_value = ID_AA64PFR0_SVE,
		.matches = has_cpuid_feature,
1310
		.cpu_enable = sve_kernel_enable,
1311 1312
	},
#endif /* CONFIG_ARM64_SVE */
1313 1314 1315 1316
#ifdef CONFIG_ARM64_RAS_EXTN
	{
		.desc = "RAS Extension Support",
		.capability = ARM64_HAS_RAS_EXTN,
1317
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1318 1319 1320 1321 1322
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_RAS_SHIFT,
		.min_field_value = ID_AA64PFR0_RAS_V1,
1323
		.cpu_enable = cpu_clear_disr,
1324 1325
	},
#endif /* CONFIG_ARM64_RAS_EXTN */
1326 1327 1328
	{
		.desc = "Data cache clean to the PoU not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_IDC,
1329
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1330 1331 1332 1333 1334
		.matches = has_cache_idc,
	},
	{
		.desc = "Instruction cache invalidation not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_DIC,
1335
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1336 1337
		.matches = has_cache_dic,
	},
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	{
		.desc = "Stage-2 Force Write-Back",
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.capability = ARM64_HAS_STAGE2_FWB,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
		.min_field_value = 1,
		.matches = has_cpuid_feature,
		.cpu_enable = cpu_has_fwb,
	},
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
#ifdef CONFIG_ARM64_HW_AFDBM
	{
		/*
		 * Since we turn this on always, we don't want the user to
		 * think that the feature is available when it may not be.
		 * So hide the description.
		 *
		 * .desc = "Hardware pagetable Dirty Bit Management",
		 *
		 */
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.capability = ARM64_HW_DBM,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
		.min_field_value = 2,
		.matches = has_hw_dbm,
		.cpu_enable = cpu_enable_hw_dbm,
	},
#endif
1369
#ifdef CONFIG_ARM64_SSBD
1370 1371 1372 1373 1374 1375 1376 1377 1378
	{
		.desc = "Speculative Store Bypassing Safe (SSBS)",
		.capability = ARM64_SSBS,
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR1_EL1,
		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1379
		.cpu_enable = cpu_enable_ssbs,
1380
	},
1381
#endif
1382 1383 1384 1385 1386 1387 1388 1389 1390
	{
		.desc = "CRC32 instructions",
		.capability = ARM64_HAS_CRC32,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
		.min_field_value = 1,
	},
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
#ifdef CONFIG_ARM64_PSEUDO_NMI
	{
		/*
		 * Depends on having GICv3
		 */
		.desc = "IRQ priority masking",
		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
		.matches = can_use_gic_priorities,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
	},
#endif
1406 1407 1408
	{},
};

1409
#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
1410 1411
	{							\
		.desc = #cap,					\
1412
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
1413 1414 1415
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
1416
		.sign = s,					\
1417
		.min_field_value = min_value,			\
1418
		.hwcap_type = cap_type,				\
1419 1420 1421
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
1422
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1423 1424 1425 1426
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1427
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1428 1429
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1430
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1431 1432 1433 1434
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1435
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1436
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1437
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1438
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1439
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1440
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1441
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1442
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1443
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1444
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1445
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1446 1447
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1448 1449 1450
#ifdef CONFIG_ARM64_SVE
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
#endif
1451
	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1452 1453 1454 1455
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1456
#ifdef CONFIG_COMPAT
1457 1458 1459 1460 1461
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1462 1463 1464 1465
#endif
	{},
};

S
Suzuki K Poulose 已提交
1466
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
1487
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

1511
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1512
{
1513 1514
	/* We support emulation of accesses to CPU ID feature registers */
	elf_hwcap |= HWCAP_CPUID;
1515
	for (; hwcaps->matches; hwcaps++)
1516
		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1517
			cap_set_elf_hwcap(hwcaps);
1518 1519
}

1520
static void update_cpu_capabilities(u16 scope_mask)
1521
{
1522 1523 1524
	int i;
	const struct arm64_cpu_capabilities *caps;

1525
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1526 1527 1528 1529
	for (i = 0; i < ARM64_NCAPS; i++) {
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask) ||
		    cpus_have_cap(caps->capability) ||
1530
		    !caps->matches(caps, cpucap_default_scope(caps)))
1531 1532
			continue;

1533 1534
		if (caps->desc)
			pr_info("detected: %s\n", caps->desc);
1535
		cpus_set_cap(caps->capability);
1536 1537 1538

		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
			set_bit(caps->capability, boot_capabilities);
1539
	}
1540 1541
}

1542 1543 1544 1545 1546
/*
 * Enable all the available capabilities on this CPU. The capabilities
 * with BOOT_CPU scope are handled separately and hence skipped here.
 */
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1547
{
1548 1549 1550 1551 1552
	int i;
	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;

	for_each_available_cap(i) {
		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562
		if (WARN_ON(!cap))
			continue;

		if (!(cap->type & non_boot_scope))
			continue;

		if (cap->cpu_enable)
			cap->cpu_enable(cap);
	}
1563 1564 1565
	return 0;
}

1566
/*
1567 1568
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
1569
 */
1570
static void __init enable_cpu_capabilities(u16 scope_mask)
1571
{
1572 1573 1574 1575
	int i;
	const struct arm64_cpu_capabilities *caps;
	bool boot_scope;

1576
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1577 1578 1579 1580
	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);

	for (i = 0; i < ARM64_NCAPS; i++) {
		unsigned int num;
1581

1582 1583 1584 1585 1586
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask))
			continue;
		num = caps->capability;
		if (!cpus_have_cap(num))
1587 1588 1589 1590 1591
			continue;

		/* Ensure cpus_have_const_cap(num) works */
		static_branch_enable(&cpu_hwcap_keys[num]);

1592
		if (boot_scope && caps->cpu_enable)
1593
			/*
1594 1595 1596 1597 1598 1599 1600
			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
			 * before any secondary CPU boots. Thus, each secondary
			 * will enable the capability as appropriate via
			 * check_local_cpu_capabilities(). The only exception is
			 * the boot CPU, for which the capability must be
			 * enabled here. This approach avoids costly
			 * stop_machine() calls for this case.
1601
			 */
1602
			caps->cpu_enable(caps);
1603
	}
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613
	/*
	 * For all non-boot scope capabilities, use stop_machine()
	 * as it schedules the work allowing us to modify PSTATE,
	 * instead of on_each_cpu() which uses an IPI, giving us a
	 * PSTATE that disappears when we return.
	 */
	if (!boot_scope)
		stop_machine(cpu_enable_non_boot_scope_capabilities,
			     NULL, cpu_online_mask);
1614 1615
}

1616 1617 1618 1619 1620 1621 1622
/*
 * Run through the list of capabilities to check for conflicts.
 * If the system has already detected a capability, take necessary
 * action on this CPU.
 *
 * Returns "false" on conflicts.
 */
1623
static bool verify_local_cpu_caps(u16 scope_mask)
1624
{
1625
	int i;
1626
	bool cpu_has_cap, system_has_cap;
1627
	const struct arm64_cpu_capabilities *caps;
1628

1629 1630
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;

1631 1632 1633
	for (i = 0; i < ARM64_NCAPS; i++) {
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask))
1634 1635
			continue;

1636
		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		system_has_cap = cpus_have_cap(caps->capability);

		if (system_has_cap) {
			/*
			 * Check if the new CPU misses an advertised feature,
			 * which is not safe to miss.
			 */
			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
				break;
			/*
			 * We have to issue cpu_enable() irrespective of
			 * whether the CPU has it or not, as it is enabeld
			 * system wide. It is upto the call back to take
			 * appropriate action on this CPU.
			 */
			if (caps->cpu_enable)
				caps->cpu_enable(caps);
		} else {
			/*
			 * Check if the CPU has this capability if it isn't
			 * safe to have when the system doesn't.
			 */
			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
				break;
		}
	}

1664
	if (i < ARM64_NCAPS) {
1665 1666 1667 1668 1669 1670 1671 1672 1673
		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
			smp_processor_id(), caps->capability,
			caps->desc, system_has_cap, cpu_has_cap);
		return false;
	}

	return true;
}

1674
/*
1675 1676
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
1677
 */
1678
static void check_early_cpu_features(void)
1679
{
1680
	verify_cpu_asid_bits();
1681 1682 1683 1684 1685 1686
	/*
	 * Early features are used by the kernel already. If there
	 * is a conflict, we cannot proceed further.
	 */
	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
		cpu_panic_kernel();
1687
}
1688

1689 1690 1691 1692
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

1693 1694
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1695 1696 1697 1698 1699 1700
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static void verify_sve_features(void)
{
	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
	u64 zcr = read_zcr_features();

	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
	unsigned int len = zcr & ZCR_ELx_LEN_MASK;

	if (len < safe_len || sve_verify_vq_map()) {
		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
			smp_processor_id());
		cpu_die_early();
	}

	/* Add checks on other ZCR bits here if necessary */
}

1718

1719 1720 1721 1722 1723 1724 1725 1726
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
1727
static void verify_local_cpu_capabilities(void)
1728
{
1729 1730 1731 1732 1733 1734
	/*
	 * The capabilities with SCOPE_BOOT_CPU are checked from
	 * check_early_cpu_features(), as they need to be verified
	 * on all secondary CPUs.
	 */
	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1735
		cpu_die_early();
1736

1737
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1738

1739 1740
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
1741 1742 1743

	if (system_supports_sve())
		verify_sve_features();
1744
}
1745

1746 1747 1748 1749 1750 1751
void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
1752 1753
	check_early_cpu_features();

1754
	/*
1755
	 * If we haven't finalised the system capabilities, this CPU gets
1756
	 * a chance to update the errata work arounds and local features.
1757 1758
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
1759
	 */
1760 1761 1762
	if (!sys_caps_initialised)
		update_cpu_capabilities(SCOPE_LOCAL_CPU);
	else
1763
		verify_local_cpu_capabilities();
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773
static void __init setup_boot_cpu_capabilities(void)
{
	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
	enable_cpu_capabilities(SCOPE_BOOT_CPU);
}

1774 1775 1776 1777 1778 1779 1780 1781
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);

static void __init mark_const_caps_ready(void)
{
	static_branch_enable(&arm64_const_caps_ready);
}

1782
bool this_cpu_has_cap(unsigned int n)
1783
{
1784 1785 1786 1787 1788 1789 1790 1791
	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];

		if (cap)
			return cap->matches(cap, SCOPE_LOCAL_CPU);
	}

	return false;
1792 1793
}

1794 1795 1796 1797 1798
static void __init setup_system_capabilities(void)
{
	/*
	 * We have finalised the system-wide safe feature
	 * registers, finalise the capabilities that depend
1799 1800
	 * on it. Also enable all the available capabilities,
	 * that are not enabled already.
1801 1802
	 */
	update_cpu_capabilities(SCOPE_SYSTEM);
1803
	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1804 1805
}

1806
void __init setup_cpu_features(void)
1807
{
1808 1809
	u32 cwg;

1810
	setup_system_capabilities();
1811
	mark_const_caps_ready();
1812
	setup_elf_hwcaps(arm64_elf_hwcaps);
1813 1814 1815

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1816

1817 1818 1819
	if (system_uses_ttbr0_pan())
		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");

1820
	sve_setup();
1821
	minsigstksz_setup();
1822

1823 1824 1825
	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1826 1827 1828 1829 1830
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	if (!cwg)
1831 1832
		pr_warn("No Cache Writeback Granule information, assuming %d\n",
			ARCH_DMA_MINALIGN);
1833
}
1834 1835

static bool __maybe_unused
1836
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1837
{
1838
	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1839
}
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

/*
 * We emulate only the following system register space.
 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
 * See Table C5-6 System instruction encodings for System register accesses,
 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
 */
static inline bool __attribute_const__ is_emulated(u32 id)
{
	return (sys_reg_Op0(id) == 0x3 &&
		sys_reg_CRn(id) == 0x0 &&
		sys_reg_Op1(id) == 0x0 &&
		(sys_reg_CRm(id) == 0 ||
		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}

/*
 * With CRm == 0, reg should be one of :
 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
 */
static inline int emulate_id_reg(u32 id, u64 *valp)
{
	switch (id) {
	case SYS_MIDR_EL1:
		*valp = read_cpuid_id();
		break;
	case SYS_MPIDR_EL1:
		*valp = SYS_MPIDR_SAFE_VAL;
		break;
	case SYS_REVIDR_EL1:
		/* IMPLEMENTATION DEFINED values are emulated with 0 */
		*valp = 0;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int emulate_sys_reg(u32 id, u64 *valp)
{
	struct arm64_ftr_reg *regp;

	if (!is_emulated(id))
		return -EINVAL;

	if (sys_reg_CRm(id) == 0)
		return emulate_id_reg(id, valp);

	regp = get_arm64_ftr_reg(id);
	if (regp)
		*valp = arm64_ftr_reg_user_value(regp);
	else
		/*
		 * The untracked registers are either IMPLEMENTATION DEFINED
		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
		 */
		*valp = 0;
	return 0;
}

static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
	int rc;
	u32 sys_reg, dst;
	u64 val;

	/*
	 * sys_reg values are defined as used in mrs/msr instruction.
	 * shift the imm value to get the encoding.
	 */
	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
	rc = emulate_sys_reg(sys_reg, &val);
	if (!rc) {
		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1916
		pt_regs_write_reg(regs, dst, val);
1917
		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1918 1919 1920 1921 1922 1923 1924 1925
	}

	return rc;
}

static struct undef_hook mrs_hook = {
	.instr_mask = 0xfff00000,
	.instr_val  = 0xd5300000,
M
Mark Rutland 已提交
1926
	.pstate_mask = PSR_AA32_MODE_MASK,
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	.pstate_val = PSR_MODE_EL0t,
	.fn = emulate_mrs,
};

static int __init enable_mrs_emulation(void)
{
	register_undef_hook(&mrs_hook);
	return 0;
}

1937
core_initcall(enable_mrs_emulation);
1938

1939
void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1940 1941 1942 1943
{
	/* Firmware may have left a deferred SError in this register. */
	write_sysreg_s(0, SYS_DISR_EL1);
}
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	if (__meltdown_safe)
		return sprintf(buf, "Not affected\n");

	if (arm64_kernel_unmapped_at_el0())
		return sprintf(buf, "Mitigation: PTI\n");

	return sprintf(buf, "Vulnerable\n");
}