cpufeature.c 60.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21
#include <linux/bsearch.h>
22
#include <linux/cpumask.h>
23
#include <linux/sort.h>
24
#include <linux/stop_machine.h>
25
#include <linux/types.h>
26
#include <linux/mm.h>
27
#include <linux/cpu.h>
28 29
#include <asm/cpu.h>
#include <asm/cpufeature.h>
30
#include <asm/cpu_ops.h>
31
#include <asm/fpsimd.h>
32
#include <asm/mmu_context.h>
33
#include <asm/processor.h>
34
#include <asm/sysreg.h>
35
#include <asm/traps.h>
36
#include <asm/virt.h>
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54
EXPORT_SYMBOL(cpu_hwcaps);
55
static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
{
	/* file-wide pr_fmt adds "CPU features: " prefix */
	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
	return 0;
}

static struct notifier_block cpu_hwcaps_notifier = {
	.notifier_call = dump_cpu_hwcaps
};

static int __init register_cpu_hwcaps_dumper(void)
{
	atomic_notifier_chain_register(&panic_notifier_list,
				       &cpu_hwcaps_notifier);
	return 0;
}
__initcall(register_cpu_hwcaps_dumper);

91 92 93
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

94
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
95
	{						\
96
		.sign = SIGNED,				\
97
		.visible = VISIBLE,			\
98 99 100 101 102 103 104
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

105
/* Define a feature with unsigned values */
106 107
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
108

109
/* Define a feature with a signed value */
110 111
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
112

113 114 115 116 117
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

118 119
/* meta feature for alternatives */
static bool __maybe_unused
120 121
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

122

123 124 125 126
/*
 * NOTE: Any changes to the visibility of features should be kept in
 * sync with the documentation of the CPU feature register ABI.
 */
127
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
128
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
129
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
130 131 132 133 134
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
135 136 137 138 139
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
140 141 142
	ARM64_FTR_END,
};

143
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
144 145 146 147
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
148 149 150
	ARM64_FTR_END,
};

151
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
152
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
153
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
154
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
155 156
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
157
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
158
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
159 160
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
161
	/* Linux doesn't care about the EL3 */
162 163 164 165
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
166 167 168
	ARM64_FTR_END,
};

169 170 171 172 173
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
	ARM64_FTR_END,
};

174
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
175 176 177 178 179 180 181 182 183 184 185
	/*
	 * We already refuse to boot CPUs that don't support our configured
	 * page size, so we can only detect mismatches for a page size other
	 * than the one we're currently using. Unfortunately, SoCs like this
	 * exist in the wild so, even though we don't like it, we'll have to go
	 * along with it and treat them as non-strict.
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),

186
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
187
	/* Linux shouldn't care about secure memory */
188 189 190
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
191 192 193 194
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
195
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
196 197 198
	ARM64_FTR_END,
};

199
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
200
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
201 202 203 204 205
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
206 207 208
	ARM64_FTR_END,
};

209
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
210
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
211
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
212 213 214 215 216
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
217 218 219
	ARM64_FTR_END,
};

220
static const struct arm64_ftr_bits ftr_ctr[] = {
221 222 223
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
224 225
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
226
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
227 228
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
229
	 * make use of *minLine.
230
	 * If we have differing I-cache policies, report it as the weakest - VIPT.
231
	 */
232
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
233
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
234 235 236
	ARM64_FTR_END,
};

237 238 239 240 241
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

242
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
243 244
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
245
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
246 247 248 249 250
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
251 252 253
	ARM64_FTR_END,
};

254
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
255 256 257 258 259
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
260 261 262
	/*
	 * We can instantiate multiple PMU instances with different levels
	 * of support.
263 264 265 266
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
267 268 269
	ARM64_FTR_END,
};

270
static const struct arm64_ftr_bits ftr_mvfr2[] = {
271 272
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
273 274 275
	ARM64_FTR_END,
};

276
static const struct arm64_ftr_bits ftr_dczid[] = {
277 278
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
279 280 281 282
	ARM64_FTR_END,
};


283
static const struct arm64_ftr_bits ftr_id_isar5[] = {
284 285 286 287 288 289
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
290 291 292
	ARM64_FTR_END,
};

293
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
294
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
295 296 297
	ARM64_FTR_END,
};

298
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
299 300 301 302
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
303 304 305
	ARM64_FTR_END,
};

306
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
307 308 309 310 311 312 313 314
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
315 316 317
	ARM64_FTR_END,
};

318 319 320 321 322 323
static const struct arm64_ftr_bits ftr_zcr[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
	ARM64_FTR_END,
};

324 325 326 327 328 329
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
330
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
331 332 333 334 335 336 337 338
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
339 340 341
	ARM64_FTR_END,
};

342 343
/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
344
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
345 346 347
	ARM64_FTR_END,
};

348
static const struct arm64_ftr_bits ftr_raz[] = {
349 350 351
	ARM64_FTR_END,
};

352 353 354
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
355 356
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
357
	}}
358

359 360 361 362
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
363 364 365 366

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
367
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
389
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
390
	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
391 392 393

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
394
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
395 396 397

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
398
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
399 400 401 402

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
403
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
404

405 406 407
	/* Op1 = 0, CRn = 1, CRm = 2 */
	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),

408
	/* Op1 = 3, CRn = 0, CRm = 0 */
409
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
410 411 412
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
413
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
414 415 416 417
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
418
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
419 420 421 422 423 424 425 426 427 428 429 430 431 432
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
433 434 435
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
436 437 438 439
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
440 441 442
	if (ret)
		return ret->reg;
	return NULL;
443 444
}

445 446
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
447 448 449 450 451 452 453 454
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

455 456
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
457 458 459 460 461 462 463 464 465 466
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
467 468 469 470
	case FTR_HIGHER_OR_ZERO_SAFE:
		if (!cur || !new)
			break;
		/* Fallthrough */
471 472 473 474 475 476 477 478 479 480 481 482
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
483 484 485 486 487
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
488 489 490 491 492
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
493 494
 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 * RES0 for the system-wide value, and must strictly match.
495 496 497 498 499
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
500
	u64 user_mask = 0;
501 502
	u64 valid_mask = 0;

503
	const struct arm64_ftr_bits *ftrp;
504 505 506 507 508
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
509
		u64 ftr_mask = arm64_ftr_mask(ftrp);
510 511 512
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
513 514

		valid_mask |= ftr_mask;
515
		if (!ftrp->strict)
516
			strict_mask &= ~ftr_mask;
517 518 519 520 521 522
		if (ftrp->visible)
			user_mask |= ftr_mask;
		else
			reg->user_val = arm64_ftr_set_value(ftrp,
							    reg->user_val,
							    ftrp->safe_val);
523
	}
524 525 526

	val &= valid_mask;

527 528
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
529
	reg->user_mask = user_mask;
530 531
}

532
extern const struct arm64_cpu_capabilities arm64_errata[];
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static const struct arm64_cpu_capabilities arm64_features[];

static void __init
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
		if (WARN(caps->capability >= ARM64_NCAPS,
			"Invalid capability %d\n", caps->capability))
			continue;
		if (WARN(cpu_hwcaps_ptrs[caps->capability],
			"Duplicate entry for capability %d\n",
			caps->capability))
			continue;
		cpu_hwcaps_ptrs[caps->capability] = caps;
	}
}

static void __init init_cpu_hwcaps_indirect_list(void)
{
	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
}

556
static void __init setup_boot_cpu_capabilities(void);
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571
void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
572
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
573 574
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
575
	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

596 597 598 599
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
		sve_init_vq_map();
	}
600

601 602 603 604 605 606
	/*
	 * Initialize the indirect array of CPU hwcaps capabilities pointers
	 * before we handle the boot CPU below.
	 */
	init_cpu_hwcaps_indirect_list();

607
	/*
608 609
	 * Detect and enable early CPU capabilities based on the boot CPU,
	 * after we have initialised the CPU feature infrastructure.
610
	 */
611
	setup_boot_cpu_capabilities();
612 613
}

614
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
615
{
616
	const struct arm64_ftr_bits *ftrp;
617 618 619 620 621 622 623 624 625 626 627 628 629 630

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

631
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
632
{
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
703 704
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
705 706 707 708 709 710 711 712 713

	/*
	 * EL3 is not our concern.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

714 715 716
	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);

717
	/*
718 719
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
720
	 */
721
	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
722 723 724
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
725
					info->reg_id_dfr0, boot->reg_id_dfr0);
726
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
727
					info->reg_id_isar0, boot->reg_id_isar0);
728
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
729
					info->reg_id_isar1, boot->reg_id_isar1);
730
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
731
					info->reg_id_isar2, boot->reg_id_isar2);
732
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
733
					info->reg_id_isar3, boot->reg_id_isar3);
734
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
735
					info->reg_id_isar4, boot->reg_id_isar4);
736
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
737 738
					info->reg_id_isar5, boot->reg_id_isar5);

739 740 741 742 743 744
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
745
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
746
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
747
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
748
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
749
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
750
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
751
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
752
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
753
					info->reg_id_pfr0, boot->reg_id_pfr0);
754
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
755
					info->reg_id_pfr1, boot->reg_id_pfr1);
756
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
757
					info->reg_mvfr0, boot->reg_mvfr0);
758
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
759
					info->reg_mvfr1, boot->reg_mvfr1);
760
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
761
					info->reg_mvfr2, boot->reg_mvfr2);
762
	}
763

764 765 766 767 768 769 770 771 772 773
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
					info->reg_zcr, boot->reg_zcr);

		/* Probe vector lengths, unless we already gave up on SVE */
		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
		    !sys_caps_initialised)
			sve_update_vq_map();
	}

774 775 776 777
	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
778 779 780 781
	if (taint) {
		pr_warn_once("Unsupported CPU feature variation detected.\n");
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
	}
782 783
}

784
u64 read_sanitised_ftr_reg(u32 id)
785 786 787 788 789 790 791
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
792

793 794 795
#define read_sysreg_case(r)	\
	case r:		return read_sysreg_s(r)

796
/*
797
 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
798 799
 * Read the system register on the current CPU
 */
800
static u64 __read_sysreg_by_encoding(u32 sys_id)
801 802
{
	switch (sys_id) {
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	read_sysreg_case(SYS_ID_PFR0_EL1);
	read_sysreg_case(SYS_ID_PFR1_EL1);
	read_sysreg_case(SYS_ID_DFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR2_EL1);
	read_sysreg_case(SYS_ID_MMFR3_EL1);
	read_sysreg_case(SYS_ID_ISAR0_EL1);
	read_sysreg_case(SYS_ID_ISAR1_EL1);
	read_sysreg_case(SYS_ID_ISAR2_EL1);
	read_sysreg_case(SYS_ID_ISAR3_EL1);
	read_sysreg_case(SYS_ID_ISAR4_EL1);
	read_sysreg_case(SYS_ID_ISAR5_EL1);
	read_sysreg_case(SYS_MVFR0_EL1);
	read_sysreg_case(SYS_MVFR1_EL1);
	read_sysreg_case(SYS_MVFR2_EL1);

	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);

	read_sysreg_case(SYS_CNTFRQ_EL0);
	read_sysreg_case(SYS_CTR_EL0);
	read_sysreg_case(SYS_DCZID_EL0);

834 835 836 837 838 839
	default:
		BUG();
		return 0;
	}
}

840 841
#include <linux/irqchip/arm-gic-v3.h>

842 843 844
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
845
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
846 847 848 849

	return val >= entry->min_field_value;
}

850
static bool
851
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
852 853
{
	u64 val;
854

855 856
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
857
		val = read_sanitised_ftr_reg(entry->sys_reg);
858
	else
859
		val = __read_sysreg_by_encoding(entry->sys_reg);
860

861 862
	return feature_matches(val, entry);
}
863

864
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
865 866 867
{
	bool has_sre;

868
	if (!has_cpuid_feature(entry, scope))
869 870 871 872 873 874 875 876 877 878
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

879
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
880 881 882 883
{
	u32 midr = read_cpuid_id();

	/* Cavium ThunderX pass 1.x and 2.x */
884
	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
885 886
		MIDR_CPU_VAR_REV(0, 0),
		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
887 888
}

889 890
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
891
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
892 893 894 895 896

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

897
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
898
			  int scope)
899
{
900 901 902 903 904 905 906 907
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_cachetype();

	return ctr & BIT(CTR_IDC_SHIFT);
908 909 910
}

static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
911
			  int scope)
912
{
913 914 915 916 917 918 919 920
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_cachetype();

	return ctr & BIT(CTR_DIC_SHIFT);
921 922
}

923
static bool __meltdown_safe = true;
924 925 926
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */

static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
927
				int scope)
928
{
929 930 931 932
	/* List of CPUs that are not vulnerable and don't need KPTI */
	static const struct midr_range kpti_safe_list[] = {
		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
933 934 935 936 937 938
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
939
		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
940
		{ /* sentinel */ }
941
	};
942
	char const *str = "kpti command line option";
943 944 945 946 947 948 949 950 951 952
	bool meltdown_safe;

	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);

	/* Defer to CPU feature registers */
	if (has_cpuid_feature(entry, scope))
		meltdown_safe = true;

	if (!meltdown_safe)
		__meltdown_safe = false;
953

954 955 956 957 958 959 960 961 962 963
	/*
	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
	 * ThunderX leads to apparent I-cache corruption of kernel text, which
	 * ends as well as you might imagine. Don't even try.
	 */
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
		str = "ARM64_WORKAROUND_CAVIUM_27456";
		__kpti_forced = -1;
	}

964 965 966 967 968 969 970 971
	/* Useful for KASLR robustness */
	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
		if (!__kpti_forced) {
			str = "KASLR";
			__kpti_forced = 1;
		}
	}

972 973 974 975 976
	if (cpu_mitigations_off() && !__kpti_forced) {
		str = "mitigations=off";
		__kpti_forced = -1;
	}

977 978 979 980 981
	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
		return false;
	}

982
	/* Forced? */
983
	if (__kpti_forced) {
984 985
		pr_info_once("kernel page table isolation forced %s by %s\n",
			     __kpti_forced > 0 ? "ON" : "OFF", str);
986 987 988
		return __kpti_forced > 0;
	}

989
	return !meltdown_safe;
990 991
}

992
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
993 994
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
995 996 997 998 999 1000 1001 1002 1003
{
	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
	kpti_remap_fn *remap_fn;

	static bool kpti_applied = false;
	int cpu = smp_processor_id();

	if (kpti_applied)
1004
		return;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);

	cpu_install_idmap();
	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
	cpu_uninstall_idmap();

	if (!cpu)
		kpti_applied = true;

1015
	return;
1016
}
1017 1018 1019 1020 1021 1022
#else
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
}
#endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static int __init parse_kpti(char *str)
{
	bool enabled;
	int ret = strtobool(str, &enabled);

	if (ret)
		return ret;

	__kpti_forced = enabled ? 1 : -1;
	return 0;
}
1035
early_param("kpti", parse_kpti);
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045
#ifdef CONFIG_ARM64_HW_AFDBM
static inline void __cpu_enable_hw_dbm(void)
{
	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;

	write_sysreg(tcr, tcr_el1);
	isb();
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static bool cpu_has_broken_dbm(void)
{
	/* List of CPUs which have broken DBM support. */
	static const struct midr_range cpus[] = {
#ifdef CONFIG_ARM64_ERRATUM_1024718
		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
#endif
		{},
	};

	return is_midr_in_range_list(read_cpuid_id(), cpus);
}

1059 1060
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
{
1061 1062
	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
	       !cpu_has_broken_dbm();
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}

static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
{
	if (cpu_can_use_dbm(cap))
		__cpu_enable_hw_dbm();
}

static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
		       int __unused)
{
	static bool detected = false;
	/*
	 * DBM is a non-conflicting feature. i.e, the kernel can safely
	 * run a mix of CPUs with and without the feature. So, we
	 * unconditionally enable the capability to allow any late CPU
	 * to use the feature. We only enable the control bits on the
	 * CPU, if it actually supports.
	 *
	 * We have to make sure we print the "feature" detection only
	 * when at least one CPU actually uses it. So check if this CPU
	 * can actually use it and print the message exactly once.
	 *
	 * This is safe as all CPUs (including secondary CPUs - due to the
	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
	 * goes through the "matches" check exactly once. Also if a CPU
	 * matches the criteria, it is guaranteed that the CPU will turn
	 * the DBM on, as the capability is unconditionally enabled.
	 */
	if (!detected && cpu_can_use_dbm(cap)) {
		detected = true;
		pr_info("detected: Hardware dirty bit management\n");
	}

	return true;
}

#endif

1102 1103 1104 1105 1106 1107
#ifdef CONFIG_ARM64_VHE
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
{
	return is_kernel_in_hyp_mode();
}

1108
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
{
	/*
	 * Copy register values that aren't redirected by hardware.
	 *
	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
	 * this value to tpidr_el2 before we patch the code. Once we've done
	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
	 * do anything here.
	 */
	if (!alternatives_applied)
		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
}
1121
#endif
1122

1123 1124 1125 1126 1127 1128 1129 1130
static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
{
	u64 val = read_sysreg_s(SYS_CLIDR_EL1);

	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
	WARN_ON(val & (7 << 27 | 7 << 21));
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
#ifdef CONFIG_ARM64_SSBD
static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
{
	if (user_mode(regs))
		return 1;

	if (instr & BIT(CRm_shift))
		regs->pstate |= PSR_SSBS_BIT;
	else
		regs->pstate &= ~PSR_SSBS_BIT;

	arm64_skip_faulting_instruction(regs, 4);
	return 0;
}

static struct undef_hook ssbs_emulation_hook = {
	.instr_mask	= ~(1U << CRm_shift),
	.instr_val	= 0xd500001f | REG_PSTATE_SSBS_IMM,
	.fn		= ssbs_emulation_handler,
};

static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
{
	static bool undef_hook_registered = false;
	static DEFINE_SPINLOCK(hook_lock);

	spin_lock(&hook_lock);
	if (!undef_hook_registered) {
		register_undef_hook(&ssbs_emulation_hook);
		undef_hook_registered = true;
	}
	spin_unlock(&hook_lock);

	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
		arm64_set_ssbd_mitigation(false);
	} else {
		arm64_set_ssbd_mitigation(true);
	}
}
#endif /* CONFIG_ARM64_SSBD */

1173 1174 1175 1176 1177 1178 1179 1180
#ifdef CONFIG_ARM64_PSEUDO_NMI
static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
				   int scope)
{
	return false;
}
#endif

1181
static const struct arm64_cpu_capabilities arm64_features[] = {
1182 1183 1184
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1185
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1186
		.matches = has_useable_gicv3_cpuif,
1187 1188
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1189
		.sign = FTR_UNSIGNED,
1190
		.min_field_value = 1,
1191
	},
1192 1193 1194 1195
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
1196
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1197 1198 1199
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1200
		.sign = FTR_UNSIGNED,
1201
		.min_field_value = 1,
1202
		.cpu_enable = cpu_enable_pan,
1203 1204
	},
#endif /* CONFIG_ARM64_PAN */
1205 1206 1207 1208
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
1209
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1210 1211 1212
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1213
		.sign = FTR_UNSIGNED,
1214 1215 1216
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1217 1218 1219
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
1220
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1221 1222
		.matches = has_no_hw_prefetch,
	},
1223 1224 1225 1226
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
1227
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1228 1229 1230 1231
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
1232 1233 1234 1235
		/*
		 * We rely on stop_machine() calling uao_thread_switch() to set
		 * UAO immediately after patching.
		 */
1236 1237
	},
#endif /* CONFIG_ARM64_UAO */
1238 1239 1240
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
1241
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1242 1243 1244
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
1245
#ifdef CONFIG_ARM64_VHE
1246 1247 1248
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1249
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1250
		.matches = runs_at_el2,
1251
		.cpu_enable = cpu_copy_el2regs,
1252
	},
1253
#endif	/* CONFIG_ARM64_VHE */
1254 1255 1256
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
1257
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1258 1259 1260 1261 1262 1263
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
1264
	{
1265
		.desc = "Kernel page table isolation (KPTI)",
1266
		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1267 1268 1269 1270 1271 1272 1273 1274 1275
		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
		/*
		 * The ID feature fields below are used to indicate that
		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
		 * more details.
		 */
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
		.min_field_value = 1,
1276
		.matches = unmap_kernel_at_el0,
1277
		.cpu_enable = kpti_install_ng_mappings,
1278
	},
1279 1280 1281
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
1282
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1283 1284 1285
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
R
Robin Murphy 已提交
1286 1287 1288 1289
#ifdef CONFIG_ARM64_PMEM
	{
		.desc = "Data cache clean to Point of Persistence",
		.capability = ARM64_HAS_DCPOP,
1290
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
R
Robin Murphy 已提交
1291 1292 1293 1294 1295 1296
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
		.min_field_value = 1,
	},
#endif
1297 1298 1299
#ifdef CONFIG_ARM64_SVE
	{
		.desc = "Scalable Vector Extension",
1300
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1301 1302 1303 1304 1305 1306
		.capability = ARM64_SVE,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_SVE_SHIFT,
		.min_field_value = ID_AA64PFR0_SVE,
		.matches = has_cpuid_feature,
1307
		.cpu_enable = sve_kernel_enable,
1308 1309
	},
#endif /* CONFIG_ARM64_SVE */
1310 1311 1312 1313
#ifdef CONFIG_ARM64_RAS_EXTN
	{
		.desc = "RAS Extension Support",
		.capability = ARM64_HAS_RAS_EXTN,
1314
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1315 1316 1317 1318 1319
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_RAS_SHIFT,
		.min_field_value = ID_AA64PFR0_RAS_V1,
1320
		.cpu_enable = cpu_clear_disr,
1321 1322
	},
#endif /* CONFIG_ARM64_RAS_EXTN */
1323 1324 1325
	{
		.desc = "Data cache clean to the PoU not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_IDC,
1326
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1327 1328 1329 1330 1331
		.matches = has_cache_idc,
	},
	{
		.desc = "Instruction cache invalidation not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_DIC,
1332
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1333 1334
		.matches = has_cache_dic,
	},
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	{
		.desc = "Stage-2 Force Write-Back",
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.capability = ARM64_HAS_STAGE2_FWB,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
		.min_field_value = 1,
		.matches = has_cpuid_feature,
		.cpu_enable = cpu_has_fwb,
	},
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#ifdef CONFIG_ARM64_HW_AFDBM
	{
		/*
		 * Since we turn this on always, we don't want the user to
		 * think that the feature is available when it may not be.
		 * So hide the description.
		 *
		 * .desc = "Hardware pagetable Dirty Bit Management",
		 *
		 */
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.capability = ARM64_HW_DBM,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
		.min_field_value = 2,
		.matches = has_hw_dbm,
		.cpu_enable = cpu_enable_hw_dbm,
	},
#endif
1366
#ifdef CONFIG_ARM64_SSBD
1367 1368 1369 1370 1371 1372 1373 1374 1375
	{
		.desc = "Speculative Store Bypassing Safe (SSBS)",
		.capability = ARM64_SSBS,
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR1_EL1,
		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1376
		.cpu_enable = cpu_enable_ssbs,
1377
	},
1378
#endif
1379 1380 1381 1382 1383 1384 1385 1386 1387
	{
		.desc = "CRC32 instructions",
		.capability = ARM64_HAS_CRC32,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
		.min_field_value = 1,
	},
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
#ifdef CONFIG_ARM64_PSEUDO_NMI
	{
		/*
		 * Depends on having GICv3
		 */
		.desc = "IRQ priority masking",
		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
		.matches = can_use_gic_priorities,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
	},
#endif
1403 1404 1405
	{},
};

1406
#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
1407 1408
	{							\
		.desc = #cap,					\
1409
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
1410 1411 1412
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
1413
		.sign = s,					\
1414
		.min_field_value = min_value,			\
1415
		.hwcap_type = cap_type,				\
1416 1417 1418
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
1419
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1420 1421 1422 1423
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1424
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1425 1426
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1427
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1428 1429 1430 1431
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1432
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1433
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1434
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1435
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1436
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1437
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1438
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1439
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1440
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1441
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1442
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1443 1444
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1445 1446 1447
#ifdef CONFIG_ARM64_SVE
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
#endif
1448
	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1449 1450 1451 1452
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1453
#ifdef CONFIG_COMPAT
1454 1455 1456 1457 1458
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1459 1460 1461 1462
#endif
	{},
};

S
Suzuki K Poulose 已提交
1463
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
1484
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

1508
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1509
{
1510 1511
	/* We support emulation of accesses to CPU ID feature registers */
	elf_hwcap |= HWCAP_CPUID;
1512
	for (; hwcaps->matches; hwcaps++)
1513
		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1514
			cap_set_elf_hwcap(hwcaps);
1515 1516
}

1517
static void update_cpu_capabilities(u16 scope_mask)
1518
{
1519 1520 1521
	int i;
	const struct arm64_cpu_capabilities *caps;

1522
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1523 1524 1525 1526
	for (i = 0; i < ARM64_NCAPS; i++) {
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask) ||
		    cpus_have_cap(caps->capability) ||
1527
		    !caps->matches(caps, cpucap_default_scope(caps)))
1528 1529
			continue;

1530 1531
		if (caps->desc)
			pr_info("detected: %s\n", caps->desc);
1532
		cpus_set_cap(caps->capability);
1533
	}
1534 1535
}

1536 1537 1538 1539 1540
/*
 * Enable all the available capabilities on this CPU. The capabilities
 * with BOOT_CPU scope are handled separately and hence skipped here.
 */
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1541
{
1542 1543 1544 1545 1546
	int i;
	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;

	for_each_available_cap(i) {
		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556
		if (WARN_ON(!cap))
			continue;

		if (!(cap->type & non_boot_scope))
			continue;

		if (cap->cpu_enable)
			cap->cpu_enable(cap);
	}
1557 1558 1559
	return 0;
}

1560
/*
1561 1562
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
1563
 */
1564
static void __init enable_cpu_capabilities(u16 scope_mask)
1565
{
1566 1567 1568 1569
	int i;
	const struct arm64_cpu_capabilities *caps;
	bool boot_scope;

1570
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1571 1572 1573 1574
	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);

	for (i = 0; i < ARM64_NCAPS; i++) {
		unsigned int num;
1575

1576 1577 1578 1579 1580
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask))
			continue;
		num = caps->capability;
		if (!cpus_have_cap(num))
1581 1582 1583 1584 1585
			continue;

		/* Ensure cpus_have_const_cap(num) works */
		static_branch_enable(&cpu_hwcap_keys[num]);

1586
		if (boot_scope && caps->cpu_enable)
1587
			/*
1588 1589 1590 1591 1592 1593 1594
			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
			 * before any secondary CPU boots. Thus, each secondary
			 * will enable the capability as appropriate via
			 * check_local_cpu_capabilities(). The only exception is
			 * the boot CPU, for which the capability must be
			 * enabled here. This approach avoids costly
			 * stop_machine() calls for this case.
1595
			 */
1596
			caps->cpu_enable(caps);
1597
	}
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607
	/*
	 * For all non-boot scope capabilities, use stop_machine()
	 * as it schedules the work allowing us to modify PSTATE,
	 * instead of on_each_cpu() which uses an IPI, giving us a
	 * PSTATE that disappears when we return.
	 */
	if (!boot_scope)
		stop_machine(cpu_enable_non_boot_scope_capabilities,
			     NULL, cpu_online_mask);
1608 1609
}

1610 1611 1612 1613 1614 1615 1616
/*
 * Run through the list of capabilities to check for conflicts.
 * If the system has already detected a capability, take necessary
 * action on this CPU.
 *
 * Returns "false" on conflicts.
 */
1617
static bool verify_local_cpu_caps(u16 scope_mask)
1618
{
1619
	int i;
1620
	bool cpu_has_cap, system_has_cap;
1621
	const struct arm64_cpu_capabilities *caps;
1622

1623 1624
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;

1625 1626 1627
	for (i = 0; i < ARM64_NCAPS; i++) {
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask))
1628 1629
			continue;

1630
		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		system_has_cap = cpus_have_cap(caps->capability);

		if (system_has_cap) {
			/*
			 * Check if the new CPU misses an advertised feature,
			 * which is not safe to miss.
			 */
			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
				break;
			/*
			 * We have to issue cpu_enable() irrespective of
			 * whether the CPU has it or not, as it is enabeld
			 * system wide. It is upto the call back to take
			 * appropriate action on this CPU.
			 */
			if (caps->cpu_enable)
				caps->cpu_enable(caps);
		} else {
			/*
			 * Check if the CPU has this capability if it isn't
			 * safe to have when the system doesn't.
			 */
			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
				break;
		}
	}

1658
	if (i < ARM64_NCAPS) {
1659 1660 1661 1662 1663 1664 1665 1666 1667
		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
			smp_processor_id(), caps->capability,
			caps->desc, system_has_cap, cpu_has_cap);
		return false;
	}

	return true;
}

1668
/*
1669 1670
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
1671
 */
1672
static void check_early_cpu_features(void)
1673
{
1674
	verify_cpu_asid_bits();
1675 1676 1677 1678 1679 1680
	/*
	 * Early features are used by the kernel already. If there
	 * is a conflict, we cannot proceed further.
	 */
	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
		cpu_panic_kernel();
1681
}
1682

1683 1684 1685 1686
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

1687 1688
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1689 1690 1691 1692 1693 1694
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static void verify_sve_features(void)
{
	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
	u64 zcr = read_zcr_features();

	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
	unsigned int len = zcr & ZCR_ELx_LEN_MASK;

	if (len < safe_len || sve_verify_vq_map()) {
		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
			smp_processor_id());
		cpu_die_early();
	}

	/* Add checks on other ZCR bits here if necessary */
}

1712

1713 1714 1715 1716 1717 1718 1719 1720
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
1721
static void verify_local_cpu_capabilities(void)
1722
{
1723 1724 1725 1726 1727 1728
	/*
	 * The capabilities with SCOPE_BOOT_CPU are checked from
	 * check_early_cpu_features(), as they need to be verified
	 * on all secondary CPUs.
	 */
	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1729
		cpu_die_early();
1730

1731
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1732

1733 1734
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
1735 1736 1737

	if (system_supports_sve())
		verify_sve_features();
1738
}
1739

1740 1741 1742 1743 1744 1745
void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
1746 1747
	check_early_cpu_features();

1748
	/*
1749
	 * If we haven't finalised the system capabilities, this CPU gets
1750
	 * a chance to update the errata work arounds and local features.
1751 1752
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
1753
	 */
1754 1755 1756
	if (!sys_caps_initialised)
		update_cpu_capabilities(SCOPE_LOCAL_CPU);
	else
1757
		verify_local_cpu_capabilities();
1758 1759
}

1760 1761 1762 1763 1764 1765 1766 1767
static void __init setup_boot_cpu_capabilities(void)
{
	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
	enable_cpu_capabilities(SCOPE_BOOT_CPU);
}

1768 1769 1770 1771 1772 1773 1774 1775
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);

static void __init mark_const_caps_ready(void)
{
	static_branch_enable(&arm64_const_caps_ready);
}

1776
bool this_cpu_has_cap(unsigned int n)
1777
{
1778 1779 1780 1781 1782 1783 1784 1785
	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];

		if (cap)
			return cap->matches(cap, SCOPE_LOCAL_CPU);
	}

	return false;
1786 1787
}

1788 1789 1790 1791 1792
static void __init setup_system_capabilities(void)
{
	/*
	 * We have finalised the system-wide safe feature
	 * registers, finalise the capabilities that depend
1793 1794
	 * on it. Also enable all the available capabilities,
	 * that are not enabled already.
1795 1796
	 */
	update_cpu_capabilities(SCOPE_SYSTEM);
1797
	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1798 1799
}

1800
void __init setup_cpu_features(void)
1801
{
1802 1803
	u32 cwg;

1804
	setup_system_capabilities();
1805
	mark_const_caps_ready();
1806
	setup_elf_hwcaps(arm64_elf_hwcaps);
1807 1808 1809

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1810

1811 1812 1813
	if (system_uses_ttbr0_pan())
		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");

1814
	sve_setup();
1815
	minsigstksz_setup();
1816

1817 1818 1819
	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1820 1821 1822 1823 1824
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	if (!cwg)
1825 1826
		pr_warn("No Cache Writeback Granule information, assuming %d\n",
			ARCH_DMA_MINALIGN);
1827
}
1828 1829

static bool __maybe_unused
1830
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1831
{
1832
	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1833
}
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

/*
 * We emulate only the following system register space.
 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
 * See Table C5-6 System instruction encodings for System register accesses,
 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
 */
static inline bool __attribute_const__ is_emulated(u32 id)
{
	return (sys_reg_Op0(id) == 0x3 &&
		sys_reg_CRn(id) == 0x0 &&
		sys_reg_Op1(id) == 0x0 &&
		(sys_reg_CRm(id) == 0 ||
		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}

/*
 * With CRm == 0, reg should be one of :
 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
 */
static inline int emulate_id_reg(u32 id, u64 *valp)
{
	switch (id) {
	case SYS_MIDR_EL1:
		*valp = read_cpuid_id();
		break;
	case SYS_MPIDR_EL1:
		*valp = SYS_MPIDR_SAFE_VAL;
		break;
	case SYS_REVIDR_EL1:
		/* IMPLEMENTATION DEFINED values are emulated with 0 */
		*valp = 0;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int emulate_sys_reg(u32 id, u64 *valp)
{
	struct arm64_ftr_reg *regp;

	if (!is_emulated(id))
		return -EINVAL;

	if (sys_reg_CRm(id) == 0)
		return emulate_id_reg(id, valp);

	regp = get_arm64_ftr_reg(id);
	if (regp)
		*valp = arm64_ftr_reg_user_value(regp);
	else
		/*
		 * The untracked registers are either IMPLEMENTATION DEFINED
		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
		 */
		*valp = 0;
	return 0;
}

static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
	int rc;
	u32 sys_reg, dst;
	u64 val;

	/*
	 * sys_reg values are defined as used in mrs/msr instruction.
	 * shift the imm value to get the encoding.
	 */
	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
	rc = emulate_sys_reg(sys_reg, &val);
	if (!rc) {
		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1910
		pt_regs_write_reg(regs, dst, val);
1911
		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1912 1913 1914 1915 1916 1917 1918 1919
	}

	return rc;
}

static struct undef_hook mrs_hook = {
	.instr_mask = 0xfff00000,
	.instr_val  = 0xd5300000,
M
Mark Rutland 已提交
1920
	.pstate_mask = PSR_AA32_MODE_MASK,
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	.pstate_val = PSR_MODE_EL0t,
	.fn = emulate_mrs,
};

static int __init enable_mrs_emulation(void)
{
	register_undef_hook(&mrs_hook);
	return 0;
}

1931
core_initcall(enable_mrs_emulation);
1932

1933
void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1934 1935 1936 1937
{
	/* Firmware may have left a deferred SError in this register. */
	write_sysreg_s(0, SYS_DISR_EL1);
}
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	if (__meltdown_safe)
		return sprintf(buf, "Not affected\n");

	if (arm64_kernel_unmapped_at_el0())
		return sprintf(buf, "Mitigation: PTI\n");

	return sprintf(buf, "Vulnerable\n");
}