slab.c 106.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
A
Andrew Morton 已提交
195 196 197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198 199 200 201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
202
			 */
L
Linus Torvalds 已提交
203 204
};

J
Joonsoo Kim 已提交
205 206 207 208 209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
227 228 229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
230 231 232 233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
235 236
};

237 238 239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_NODE (MAX_NUMNODES)
244

245
static int drain_freelist(struct kmem_cache *cache,
246
			struct kmem_cache_node *n, int tofree);
247
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 249
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251
static void cache_reap(struct work_struct *unused);
252

253 254
static int slab_early_init = 1;

255
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
256

257
static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 259 260 261 262 263
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
264
	parent->colour_next = 0;
265 266 267 268 269
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
270 271 272
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
273
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274 275
	} while (0)

A
Andrew Morton 已提交
276 277
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
278 279 280 281
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
282 283 284 285 286

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
287 288 289
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
290
 *
A
Adrian Bunk 已提交
291
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
292 293
 * which could lock up otherwise freeable slabs.
 */
294 295
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
296 297 298 299 300 301

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
302
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
303 304 305 306 307
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
308 309
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
310
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
311
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
312 313 314 315 316
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
317 318 319 320 321 322 323 324 325
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
326
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
327 328 329
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
330
#define	STATS_INC_NODEFREES(x)	do { } while (0)
331
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
332
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
341 342
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
343
 * 0		: objp
344
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
345 346
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
347
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
348
 * 		redzone word.
349
 * cachep->obj_offset: The real object.
350 351
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
352
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
353
 */
354
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
355
{
356
	return cachep->obj_offset;
L
Linus Torvalds 已提交
357 358
}

359
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
360 361
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 363
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
364 365
}

366
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
367 368 369
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
370
		return (unsigned long long *)(objp + cachep->size -
371
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
372
					      REDZONE_ALIGN);
373
	return (unsigned long long *) (objp + cachep->size -
374
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
375 376
}

377
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
378 379
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
381 382 383 384
}

#else

385
#define obj_offset(x)			0
386 387
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
388 389 390 391
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

L
Linus Torvalds 已提交
425
/*
426 427
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
428
 */
429 430 431
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
432
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
433

434 435
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
436
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
437
	return page->slab_cache;
438 439
}

440
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 442
				 unsigned int idx)
{
443
	return page->s_mem + cache->size * idx;
444 445
}

446
/*
447 448 449
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
450 451 452
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453
					const struct page *page, void *obj)
454
{
455
	u32 offset = (obj - page->s_mem);
456
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457 458
}

L
Linus Torvalds 已提交
459
/* internal cache of cache description objs */
460
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
461 462 463
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
464
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
465
	.name = "kmem_cache",
L
Linus Torvalds 已提交
466 467
};

468 469
#define BAD_ALIEN_MAGIC 0x01020304ul

470
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
471

472
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
473
{
474
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
475 476
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

491 492
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
493
{
494
	int nr_objs;
495
	size_t remained_size;
496
	size_t freelist_size;
497
	int extra_space = 0;
498

499 500
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
501 502 503 504 505 506 507 508
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
509
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510 511 512 513 514

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
515 516 517
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
518 519 520
		nr_objs--;

	return nr_objs;
521
}
L
Linus Torvalds 已提交
522

A
Andrew Morton 已提交
523 524 525
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
526 527 528 529 530 531 532
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
533

534 535 536 537 538
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
539
	 * - One unsigned int for each object
540 541 542 543 544 545 546 547 548 549 550 551 552
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
553
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
554
					sizeof(freelist_idx_t), align);
555
		mgmt_size = calculate_freelist_size(nr_objs, align);
556 557 558
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
559 560
}

561
#if DEBUG
562
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
563

A
Andrew Morton 已提交
564 565
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
566 567
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
568
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
569
	dump_stack();
570
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
571
}
572
#endif
L
Linus Torvalds 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

590 591 592 593 594 595 596 597 598 599 600
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

601 602 603 604 605 606 607
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
608
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609 610 611 612 613

static void init_reap_node(int cpu)
{
	int node;

614
	node = next_node(cpu_to_mem(cpu), node_online_map);
615
	if (node == MAX_NUMNODES)
616
		node = first_node(node_online_map);
617

618
	per_cpu(slab_reap_node, cpu) = node;
619 620 621 622
}

static void next_reap_node(void)
{
623
	int node = __this_cpu_read(slab_reap_node);
624 625 626 627

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
628
	__this_cpu_write(slab_reap_node, node);
629 630 631 632 633 634 635
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
636 637 638 639 640 641 642
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
643
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
644
{
645
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
646 647 648 649 650 651

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
652
	if (keventd_up() && reap_work->work.func == NULL) {
653
		init_reap_node(cpu);
654
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 656
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
657 658 659
	}
}

660
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
661
{
662 663
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
664
	 * However, when such objects are allocated or transferred to another
665 666 667 668
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
669 670 671 672 673 674
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
675
	}
676 677 678 679 680
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
681
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 683 684 685 686
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
687 688
}

689
static inline bool is_slab_pfmemalloc(struct page *page)
690 691 692 693 694 695 696 697
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
698
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699
	struct page *page;
700 701 702 703 704
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

705
	spin_lock_irqsave(&n->list_lock, flags);
706 707
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
708 709
			goto out;

710 711
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
712 713
			goto out;

714 715
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
716 717 718 719
			goto out;

	pfmemalloc_active = false;
out:
720
	spin_unlock_irqrestore(&n->list_lock, flags);
721 722
}

723
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 725 726 727 728 729 730
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
731
		struct kmem_cache_node *n;
732 733 734 735 736 737 738

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
739
		for (i = 0; i < ac->avail; i++) {
740 741 742 743 744 745 746 747 748 749 750 751 752
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
753
		n = get_node(cachep, numa_mem_id());
754
		if (!list_empty(&n->slabs_free) && force_refill) {
755
			struct page *page = virt_to_head_page(objp);
756
			ClearPageSlabPfmemalloc(page);
757 758 759 760 761 762 763 764 765 766 767 768 769
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

770 771 772 773 774 775 776 777 778 779 780 781 782
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

J
Joonsoo Kim 已提交
783 784
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
785 786 787
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
788
		struct page *page = virt_to_head_page(objp);
789 790 791 792
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

793 794 795 796 797 798 799 800 801
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

802 803 804
	ac->entry[ac->avail++] = objp;
}

805 806 807 808 809 810 811 812 813 814
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
815
	int nr = min3(from->avail, max, to->limit - to->avail);
816 817 818 819 820 821 822 823 824 825 826 827

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

828 829 830
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
831
#define reap_alien(cachep, n) do { } while (0)
832

J
Joonsoo Kim 已提交
833 834
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
835
{
836
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
837 838
}

J
Joonsoo Kim 已提交
839
static inline void free_alien_cache(struct alien_cache **ac_ptr)
840 841 842 843 844 845 846 847 848 849 850 851 852 853
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

854
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 856 857 858 859 860 861
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

862
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
864

J
Joonsoo Kim 已提交
865 866 867
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
868
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
869 870 871 872
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
873
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
874 875 876 877
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
878
{
J
Joonsoo Kim 已提交
879
	struct alien_cache **alc_ptr;
880
	size_t memsize = sizeof(void *) * nr_node_ids;
881 882 883 884
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
898 899
		}
	}
J
Joonsoo Kim 已提交
900
	return alc_ptr;
901 902
}

J
Joonsoo Kim 已提交
903
static void free_alien_cache(struct alien_cache **alc_ptr)
904 905 906
{
	int i;

J
Joonsoo Kim 已提交
907
	if (!alc_ptr)
908 909
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
910 911
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
912 913
}

914
static void __drain_alien_cache(struct kmem_cache *cachep,
915 916
				struct array_cache *ac, int node,
				struct list_head *list)
917
{
918
	struct kmem_cache_node *n = get_node(cachep, node);
919 920

	if (ac->avail) {
921
		spin_lock(&n->list_lock);
922 923 924 925 926
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
927 928
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
929

930
		free_block(cachep, ac->entry, ac->avail, node, list);
931
		ac->avail = 0;
932
		spin_unlock(&n->list_lock);
933 934 935
	}
}

936 937 938
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
939
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
940
{
941
	int node = __this_cpu_read(slab_reap_node);
942

943
	if (n->alien) {
J
Joonsoo Kim 已提交
944 945 946 947 948
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
949
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
950 951 952
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
953
				spin_unlock_irq(&alc->lock);
954
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
955
			}
956 957 958 959
		}
	}
}

A
Andrew Morton 已提交
960
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
961
				struct alien_cache **alien)
962
{
P
Pekka Enberg 已提交
963
	int i = 0;
J
Joonsoo Kim 已提交
964
	struct alien_cache *alc;
965 966 967 968
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
969 970
		alc = alien[i];
		if (alc) {
971 972
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
973
			ac = &alc->ac;
974
			spin_lock_irqsave(&alc->lock, flags);
975
			__drain_alien_cache(cachep, ac, i, &list);
976
			spin_unlock_irqrestore(&alc->lock, flags);
977
			slabs_destroy(cachep, &list);
978 979 980
		}
	}
}
981

982 983
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
984
{
985
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
986 987
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
988
	LIST_HEAD(list);
P
Pekka Enberg 已提交
989

990
	n = get_node(cachep, node);
991
	STATS_INC_NODEFREES(cachep);
992 993
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
994
		ac = &alien->ac;
995
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
996
		if (unlikely(ac->avail == ac->limit)) {
997
			STATS_INC_ACOVERFLOW(cachep);
998
			__drain_alien_cache(cachep, ac, page_node, &list);
999
		}
J
Joonsoo Kim 已提交
1000
		ac_put_obj(cachep, ac, objp);
1001
		spin_unlock(&alien->lock);
1002
		slabs_destroy(cachep, &list);
1003
	} else {
1004
		n = get_node(cachep, page_node);
1005
		spin_lock(&n->list_lock);
1006
		free_block(cachep, &objp, 1, page_node, &list);
1007
		spin_unlock(&n->list_lock);
1008
		slabs_destroy(cachep, &list);
1009 1010 1011
	}
	return 1;
}
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
1026 1027
#endif

1028
/*
1029
 * Allocates and initializes node for a node on each slab cache, used for
1030
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1031
 * will be allocated off-node since memory is not yet online for the new node.
1032
 * When hotplugging memory or a cpu, existing node are not replaced if
1033 1034
 * already in use.
 *
1035
 * Must hold slab_mutex.
1036
 */
1037
static int init_cache_node_node(int node)
1038 1039
{
	struct kmem_cache *cachep;
1040
	struct kmem_cache_node *n;
1041
	const size_t memsize = sizeof(struct kmem_cache_node);
1042

1043
	list_for_each_entry(cachep, &slab_caches, list) {
1044
		/*
1045
		 * Set up the kmem_cache_node for cpu before we can
1046 1047 1048
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1049 1050
		n = get_node(cachep, node);
		if (!n) {
1051 1052
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1053
				return -ENOMEM;
1054
			kmem_cache_node_init(n);
1055 1056
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1057 1058

			/*
1059 1060
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1061 1062
			 * protection here.
			 */
1063
			cachep->node[node] = n;
1064 1065
		}

1066 1067
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1068 1069
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1070
		spin_unlock_irq(&n->list_lock);
1071 1072 1073 1074
	}
	return 0;
}

1075 1076 1077 1078 1079 1080
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1081
static void cpuup_canceled(long cpu)
1082 1083
{
	struct kmem_cache *cachep;
1084
	struct kmem_cache_node *n = NULL;
1085
	int node = cpu_to_mem(cpu);
1086
	const struct cpumask *mask = cpumask_of_node(node);
1087

1088
	list_for_each_entry(cachep, &slab_caches, list) {
1089 1090
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
1091
		struct alien_cache **alien;
1092
		LIST_HEAD(list);
1093

1094
		n = get_node(cachep, node);
1095
		if (!n)
1096
			continue;
1097

1098
		spin_lock_irq(&n->list_lock);
1099

1100 1101
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1102 1103 1104 1105

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1106
			free_block(cachep, nc->entry, nc->avail, node, &list);
1107 1108
			nc->avail = 0;
		}
1109

1110
		if (!cpumask_empty(mask)) {
1111
			spin_unlock_irq(&n->list_lock);
1112
			goto free_slab;
1113 1114
		}

1115
		shared = n->shared;
1116 1117
		if (shared) {
			free_block(cachep, shared->entry,
1118
				   shared->avail, node, &list);
1119
			n->shared = NULL;
1120 1121
		}

1122 1123
		alien = n->alien;
		n->alien = NULL;
1124

1125
		spin_unlock_irq(&n->list_lock);
1126 1127 1128 1129 1130 1131

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1132 1133

free_slab:
1134
		slabs_destroy(cachep, &list);
1135 1136 1137 1138 1139 1140
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1141
	list_for_each_entry(cachep, &slab_caches, list) {
1142
		n = get_node(cachep, node);
1143
		if (!n)
1144
			continue;
1145
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146 1147 1148
	}
}

1149
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1150
{
1151
	struct kmem_cache *cachep;
1152
	struct kmem_cache_node *n = NULL;
1153
	int node = cpu_to_mem(cpu);
1154
	int err;
L
Linus Torvalds 已提交
1155

1156 1157 1158 1159
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1160
	 * kmem_cache_node and not this cpu's kmem_cache_node
1161
	 */
1162
	err = init_cache_node_node(node);
1163 1164
	if (err < 0)
		goto bad;
1165 1166 1167 1168 1169

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1170
	list_for_each_entry(cachep, &slab_caches, list) {
1171
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1172
		struct alien_cache **alien = NULL;
1173 1174 1175 1176

		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1177
				0xbaadf00d, GFP_KERNEL);
1178
			if (!shared)
L
Linus Torvalds 已提交
1179
				goto bad;
1180 1181
		}
		if (use_alien_caches) {
1182
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1183 1184
			if (!alien) {
				kfree(shared);
1185
				goto bad;
1186
			}
1187
		}
1188
		n = get_node(cachep, node);
1189
		BUG_ON(!n);
1190

1191 1192
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1193 1194 1195 1196
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1197
			n->shared = shared;
1198 1199
			shared = NULL;
		}
1200
#ifdef CONFIG_NUMA
1201 1202
		if (!n->alien) {
			n->alien = alien;
1203
			alien = NULL;
L
Linus Torvalds 已提交
1204
		}
1205
#endif
1206
		spin_unlock_irq(&n->list_lock);
1207 1208 1209
		kfree(shared);
		free_alien_cache(alien);
	}
1210

1211 1212
	return 0;
bad:
1213
	cpuup_canceled(cpu);
1214 1215 1216
	return -ENOMEM;
}

1217
static int cpuup_callback(struct notifier_block *nfb,
1218 1219 1220 1221 1222 1223 1224 1225
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1226
		mutex_lock(&slab_mutex);
1227
		err = cpuup_prepare(cpu);
1228
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1229 1230
		break;
	case CPU_ONLINE:
1231
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1232 1233 1234
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1235
  	case CPU_DOWN_PREPARE:
1236
  	case CPU_DOWN_PREPARE_FROZEN:
1237
		/*
1238
		 * Shutdown cache reaper. Note that the slab_mutex is
1239 1240 1241 1242
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1243
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1244
		/* Now the cache_reaper is guaranteed to be not running. */
1245
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1246 1247
  		break;
  	case CPU_DOWN_FAILED:
1248
  	case CPU_DOWN_FAILED_FROZEN:
1249 1250
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1251
	case CPU_DEAD:
1252
	case CPU_DEAD_FROZEN:
1253 1254
		/*
		 * Even if all the cpus of a node are down, we don't free the
1255
		 * kmem_cache_node of any cache. This to avoid a race between
1256
		 * cpu_down, and a kmalloc allocation from another cpu for
1257
		 * memory from the node of the cpu going down.  The node
1258 1259 1260
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1261
		/* fall through */
1262
#endif
L
Linus Torvalds 已提交
1263
	case CPU_UP_CANCELED:
1264
	case CPU_UP_CANCELED_FROZEN:
1265
		mutex_lock(&slab_mutex);
1266
		cpuup_canceled(cpu);
1267
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1268 1269
		break;
	}
1270
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1271 1272
}

1273
static struct notifier_block cpucache_notifier = {
1274 1275
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1276

1277 1278 1279 1280 1281 1282
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1283
 * Must hold slab_mutex.
1284
 */
1285
static int __meminit drain_cache_node_node(int node)
1286 1287 1288 1289
{
	struct kmem_cache *cachep;
	int ret = 0;

1290
	list_for_each_entry(cachep, &slab_caches, list) {
1291
		struct kmem_cache_node *n;
1292

1293
		n = get_node(cachep, node);
1294
		if (!n)
1295 1296
			continue;

1297
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1298

1299 1300
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1321
		mutex_lock(&slab_mutex);
1322
		ret = init_cache_node_node(nid);
1323
		mutex_unlock(&slab_mutex);
1324 1325
		break;
	case MEM_GOING_OFFLINE:
1326
		mutex_lock(&slab_mutex);
1327
		ret = drain_cache_node_node(nid);
1328
		mutex_unlock(&slab_mutex);
1329 1330 1331 1332 1333 1334 1335 1336
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1337
	return notifier_from_errno(ret);
1338 1339 1340
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1341
/*
1342
 * swap the static kmem_cache_node with kmalloced memory
1343
 */
1344
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1345
				int nodeid)
1346
{
1347
	struct kmem_cache_node *ptr;
1348

1349
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1350 1351
	BUG_ON(!ptr);

1352
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1353 1354 1355 1356 1357
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1358
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1359
	cachep->node[nodeid] = ptr;
1360 1361
}

1362
/*
1363 1364
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1365
 */
1366
static void __init set_up_node(struct kmem_cache *cachep, int index)
1367 1368 1369 1370
{
	int node;

	for_each_online_node(node) {
1371
		cachep->node[node] = &init_kmem_cache_node[index + node];
1372
		cachep->node[node]->next_reap = jiffies +
1373 1374
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1375 1376 1377
	}
}

A
Andrew Morton 已提交
1378 1379 1380
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1381 1382 1383
 */
void __init kmem_cache_init(void)
{
1384 1385
	int i;

1386 1387
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1388 1389
	kmem_cache = &kmem_cache_boot;

1390
	if (num_possible_nodes() == 1)
1391 1392
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1393
	for (i = 0; i < NUM_INIT_LISTS; i++)
1394
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1395

L
Linus Torvalds 已提交
1396 1397
	/*
	 * Fragmentation resistance on low memory - only use bigger
1398 1399
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1400
	 */
1401
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1403 1404 1405

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1406 1407 1408
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1409
	 *    Initially an __init data area is used for the head array and the
1410
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1411
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1412
	 * 2) Create the first kmalloc cache.
1413
	 *    The struct kmem_cache for the new cache is allocated normally.
1414 1415 1416
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1417
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1418
	 *    kmalloc cache with kmalloc allocated arrays.
1419
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1420 1421
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1422 1423
	 */

1424
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1425

E
Eric Dumazet 已提交
1426
	/*
1427
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1428
	 */
1429
	create_boot_cache(kmem_cache, "kmem_cache",
1430
		offsetof(struct kmem_cache, node) +
1431
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1432 1433
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1434
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1435

A
Andrew Morton 已提交
1436
	/*
1437 1438
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1439
	 */
1440
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1441
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1442
	slab_state = PARTIAL_NODE;
1443

1444 1445
	slab_early_init = 0;

1446
	/* 5) Replace the bootstrap kmem_cache_node */
1447
	{
P
Pekka Enberg 已提交
1448 1449
		int nid;

1450
		for_each_online_node(nid) {
1451
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1452

1453
			init_list(kmalloc_caches[INDEX_NODE],
1454
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1455 1456
		}
	}
L
Linus Torvalds 已提交
1457

1458
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1459 1460 1461 1462 1463 1464
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1465
	slab_state = UP;
P
Peter Zijlstra 已提交
1466

1467
	/* 6) resize the head arrays to their final sizes */
1468 1469
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1470 1471
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1472
	mutex_unlock(&slab_mutex);
1473

1474 1475 1476
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1477 1478 1479
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1480 1481 1482
	 */
	register_cpu_notifier(&cpucache_notifier);

1483 1484 1485
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1486
	 * node.
1487 1488 1489 1490
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1491 1492 1493
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1501 1502
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1503
	 */
1504
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1505
		start_cpu_timer(cpu);
1506 1507

	/* Done! */
1508
	slab_state = FULL;
L
Linus Torvalds 已提交
1509 1510 1511 1512
	return 0;
}
__initcall(cpucache_init);

1513 1514 1515
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1516
#if DEBUG
1517
	struct kmem_cache_node *n;
1518
	struct page *page;
1519 1520
	unsigned long flags;
	int node;
1521 1522 1523 1524 1525
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1526 1527 1528 1529 1530

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1531
		cachep->name, cachep->size, cachep->gfporder);
1532

1533
	for_each_kmem_cache_node(cachep, node, n) {
1534 1535 1536
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1537
		spin_lock_irqsave(&n->list_lock, flags);
1538
		list_for_each_entry(page, &n->slabs_full, lru) {
1539 1540 1541
			active_objs += cachep->num;
			active_slabs++;
		}
1542 1543
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1544 1545
			active_slabs++;
		}
1546
		list_for_each_entry(page, &n->slabs_free, lru)
1547 1548
			num_slabs++;

1549 1550
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1551 1552 1553 1554 1555 1556 1557 1558

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1559
#endif
1560 1561
}

L
Linus Torvalds 已提交
1562
/*
W
Wang Sheng-Hui 已提交
1563 1564
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1565 1566 1567 1568 1569
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1570 1571
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1572 1573
{
	struct page *page;
1574
	int nr_pages;
1575

1576
	flags |= cachep->allocflags;
1577 1578
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1579

1580 1581 1582
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

L
Linus Torvalds 已提交
1583
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584
	if (!page) {
1585
		memcg_uncharge_slab(cachep, cachep->gfporder);
1586
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1587
		return NULL;
1588
	}
L
Linus Torvalds 已提交
1589

1590
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1591 1592 1593
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1594
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1595
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 1597 1598 1599 1600
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 1602 1603
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
1604

1605 1606 1607 1608 1609 1610 1611 1612
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1613

1614
	return page;
L
Linus Torvalds 已提交
1615 1616 1617 1618 1619
}

/*
 * Interface to system's page release.
 */
1620
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1621
{
1622
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1623

1624
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1625

1626 1627 1628 1629 1630 1631
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1632

1633
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1634
	__ClearPageSlabPfmemalloc(page);
1635
	__ClearPageSlab(page);
1636 1637
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1638

L
Linus Torvalds 已提交
1639 1640
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1641 1642
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1643 1644 1645 1646
}

static void kmem_rcu_free(struct rcu_head *head)
{
1647 1648
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1649

1650 1651 1652 1653
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1659
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1660
			    unsigned long caller)
L
Linus Torvalds 已提交
1661
{
1662
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1663

1664
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1665

P
Pekka Enberg 已提交
1666
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1667 1668
		return;

P
Pekka Enberg 已提交
1669 1670 1671 1672
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1680
				*addr++ = svalue;
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686 1687
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1688
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1689 1690 1691
}
#endif

1692
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1693
{
1694
	int size = cachep->object_size;
1695
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1696 1697

	memset(addr, val, size);
P
Pekka Enberg 已提交
1698
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1704 1705 1706
	unsigned char error = 0;
	int bad_count = 0;

1707
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1708 1709 1710 1711 1712 1713
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1714 1715
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1730 1731 1732 1733 1734
}
#endif

#if DEBUG

1735
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1741
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1742 1743
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1744 1745 1746
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1747 1748 1749
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1750
	}
1751
	realobj = (char *)objp + obj_offset(cachep);
1752
	size = cachep->object_size;
P
Pekka Enberg 已提交
1753
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1754 1755
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1756 1757
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1758 1759 1760 1761
		dump_line(realobj, i, limit);
	}
}

1762
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767
{
	char *realobj;
	int size, i;
	int lines = 0;

1768
	realobj = (char *)objp + obj_offset(cachep);
1769
	size = cachep->object_size;
L
Linus Torvalds 已提交
1770

P
Pekka Enberg 已提交
1771
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1772
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1773
		if (i == size - 1)
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778 1779
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1780
				printk(KERN_ERR
1781 1782
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1783 1784 1785
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1786
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1787
			limit = 16;
P
Pekka Enberg 已提交
1788 1789
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1802
		struct page *page = virt_to_head_page(objp);
1803
		unsigned int objnr;
L
Linus Torvalds 已提交
1804

1805
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1806
		if (objnr) {
1807
			objp = index_to_obj(cachep, page, objnr - 1);
1808
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1809
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1810
			       realobj, size);
L
Linus Torvalds 已提交
1811 1812
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1813
		if (objnr + 1 < cachep->num) {
1814
			objp = index_to_obj(cachep, page, objnr + 1);
1815
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1816
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1817
			       realobj, size);
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1824
#if DEBUG
1825 1826
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1827 1828 1829
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1830
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1831 1832 1833

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1834
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1835
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1836
				kernel_map_pages(virt_to_page(objp),
1837
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1847
					   "was overwritten");
L
Linus Torvalds 已提交
1848 1849
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1850
					   "was overwritten");
L
Linus Torvalds 已提交
1851 1852
		}
	}
1853
}
L
Linus Torvalds 已提交
1854
#else
1855 1856
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1857 1858
{
}
L
Linus Torvalds 已提交
1859 1860
#endif

1861 1862 1863
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1864
 * @page: page pointer being destroyed
1865
 *
W
Wang Sheng-Hui 已提交
1866 1867 1868
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1869
 */
1870
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1871
{
1872
	void *freelist;
1873

1874 1875
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1876
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1887 1888

	} else {
1889
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1890
	}
1891 1892

	/*
1893
	 * From now on, we don't use freelist
1894 1895 1896
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1897
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1910
/**
1911 1912 1913 1914 1915 1916 1917
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1918 1919 1920 1921 1922
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1923
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1924
			size_t size, size_t align, unsigned long flags)
1925
{
1926
	unsigned long offslab_limit;
1927
	size_t left_over = 0;
1928
	int gfporder;
1929

1930
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931 1932 1933
		unsigned int num;
		size_t remainder;

1934
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935 1936
		if (!num)
			continue;
1937

1938 1939 1940 1941
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1942
		if (flags & CFLGS_OFF_SLAB) {
1943
			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1944 1945 1946 1947 1948
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
1949 1950
			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
				freelist_size_per_obj += sizeof(char);
1951
			offslab_limit = size;
1952
			offslab_limit /= freelist_size_per_obj;
1953 1954 1955 1956

 			if (num > offslab_limit)
				break;
		}
1957

1958
		/* Found something acceptable - save it away */
1959
		cachep->num = num;
1960
		cachep->gfporder = gfporder;
1961 1962
		left_over = remainder;

1963 1964 1965 1966 1967 1968 1969 1970
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1971 1972 1973 1974
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1975
		if (gfporder >= slab_max_order)
1976 1977
			break;

1978 1979 1980
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1981
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1982 1983 1984 1985 1986
			break;
	}
	return left_over;
}

1987 1988 1989 1990 1991 1992 1993 1994
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1995
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

2008
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2009
{
2010
	if (slab_state >= FULL)
2011
		return enable_cpucache(cachep, gfp);
2012

2013 2014 2015 2016
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

2017
	if (slab_state == DOWN) {
2018 2019
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
2020
	} else if (slab_state == PARTIAL) {
2021 2022
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
2023
	} else {
2024
		int node;
2025

2026 2027 2028 2029 2030
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
2031 2032
		}
	}
2033

2034
	cachep->node[numa_mem_id()]->next_reap =
2035 2036
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2037 2038 2039 2040 2041 2042 2043

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044
	return 0;
2045 2046
}

J
Joonsoo Kim 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

L
Linus Torvalds 已提交
2073
/**
2074
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2075
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2076 2077 2078 2079
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2080
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2094
int
2095
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2096
{
2097 2098
	size_t left_over, freelist_size;
	size_t ralign = BYTES_PER_WORD;
2099
	gfp_t gfp;
2100
	int err;
2101
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2111 2112
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2113
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2121 2122
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2123 2124 2125
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2126 2127 2128
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2129 2130
	}

D
David Woodhouse 已提交
2131 2132 2133 2134 2135 2136 2137
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2138

2139
	/* 3) caller mandated alignment */
2140 2141
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2142
	}
2143 2144
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2145
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2146
	/*
2147
	 * 4) Store it.
L
Linus Torvalds 已提交
2148
	 */
2149
	cachep->align = ralign;
L
Linus Torvalds 已提交
2150

2151 2152 2153 2154 2155
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2156 2157
#if DEBUG

2158 2159 2160 2161
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2162 2163
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2164 2165
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2166 2167
	}
	if (flags & SLAB_STORE_USER) {
2168
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2169 2170
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2171
		 */
D
David Woodhouse 已提交
2172 2173 2174 2175
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2176 2177
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2178
	if (size >= kmalloc_size(INDEX_NODE + 1)
2179 2180 2181
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2182 2183 2184 2185 2186
		size = PAGE_SIZE;
	}
#endif
#endif

2187 2188 2189
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2190 2191
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2192
	 */
2193
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2194
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2195 2196 2197 2198 2199 2200
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2201
	size = ALIGN(size, cachep->align);
2202 2203 2204 2205 2206 2207
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2208

2209
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2210

2211
	if (!cachep->num)
2212
		return -E2BIG;
L
Linus Torvalds 已提交
2213

2214
	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
L
Linus Torvalds 已提交
2215 2216 2217 2218 2219

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2220
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2221
		flags &= ~CFLGS_OFF_SLAB;
2222
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2223 2224 2225 2226
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2227
		freelist_size = calculate_freelist_size(cachep->num, 0);
2228 2229 2230 2231 2232 2233 2234 2235 2236

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2237 2238 2239 2240
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2241 2242
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2243
	cachep->colour = left_over / cachep->colour_off;
2244
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2245
	cachep->flags = flags;
2246
	cachep->allocflags = __GFP_COMP;
2247
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2248
		cachep->allocflags |= GFP_DMA;
2249
	cachep->size = size;
2250
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2251

2252
	if (flags & CFLGS_OFF_SLAB) {
2253
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2254
		/*
2255
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2256
		 * But since we go off slab only for object size greater than
2257 2258
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2259 2260
		 * But leave a BUG_ON for some lucky dude.
		 */
2261
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2262
	}
L
Linus Torvalds 已提交
2263

2264 2265
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2266
		__kmem_cache_shutdown(cachep);
2267
		return err;
2268
	}
L
Linus Torvalds 已提交
2269

2270
	return 0;
L
Linus Torvalds 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2284
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2285 2286 2287
{
#ifdef CONFIG_SMP
	check_irq_off();
2288
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2289 2290
#endif
}
2291

2292
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2293 2294 2295
{
#ifdef CONFIG_SMP
	check_irq_off();
2296
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2297 2298 2299
#endif
}

L
Linus Torvalds 已提交
2300 2301 2302 2303
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2304
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2305 2306
#endif

2307
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2308 2309 2310
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2311 2312
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2313
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2314
	struct array_cache *ac;
2315
	int node = numa_mem_id();
2316
	struct kmem_cache_node *n;
2317
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2318 2319

	check_irq_off();
2320
	ac = cpu_cache_get(cachep);
2321 2322
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2323
	free_block(cachep, ac->entry, ac->avail, node, &list);
2324
	spin_unlock(&n->list_lock);
2325
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2326 2327 2328
	ac->avail = 0;
}

2329
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2330
{
2331
	struct kmem_cache_node *n;
2332 2333
	int node;

2334
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2335
	check_irq_on();
2336 2337
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2338
			drain_alien_cache(cachep, n->alien);
2339

2340 2341
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2342 2343
}

2344 2345 2346 2347 2348 2349 2350
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2351
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2352
{
2353 2354
	struct list_head *p;
	int nr_freed;
2355
	struct page *page;
L
Linus Torvalds 已提交
2356

2357
	nr_freed = 0;
2358
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2359

2360 2361 2362 2363
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2364 2365
			goto out;
		}
L
Linus Torvalds 已提交
2366

2367
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2368
#if DEBUG
2369
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2370
#endif
2371
		list_del(&page->lru);
2372 2373 2374 2375
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2376 2377
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2378
		slab_destroy(cache, page);
2379
		nr_freed++;
L
Linus Torvalds 已提交
2380
	}
2381 2382
out:
	return nr_freed;
L
Linus Torvalds 已提交
2383 2384
}

2385
int __kmem_cache_shrink(struct kmem_cache *cachep)
2386
{
2387 2388
	int ret = 0;
	int node;
2389
	struct kmem_cache_node *n;
2390 2391 2392 2393

	drain_cpu_caches(cachep);

	check_irq_on();
2394
	for_each_kmem_cache_node(cachep, node, n) {
2395
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2396

2397 2398
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2399 2400 2401 2402
	}
	return (ret ? 1 : 0);
}

2403
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2404
{
2405
	int i;
2406
	struct kmem_cache_node *n;
2407
	int rc = __kmem_cache_shrink(cachep);
L
Linus Torvalds 已提交
2408

2409 2410
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2411

2412
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2413

2414
	/* NUMA: free the node structures */
2415 2416 2417 2418 2419
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2420 2421
	}
	return 0;
L
Linus Torvalds 已提交
2422 2423
}

2424 2425
/*
 * Get the memory for a slab management obj.
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2437
 */
2438
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2439 2440
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2441
{
2442
	void *freelist;
2443
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2444

L
Linus Torvalds 已提交
2445 2446
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2447
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2448
					      local_flags, nodeid);
2449
		if (!freelist)
L
Linus Torvalds 已提交
2450 2451
			return NULL;
	} else {
2452 2453
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2454
	}
2455 2456 2457
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2458 2459
}

2460
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2461
{
2462
	return ((freelist_idx_t *)page->freelist)[idx];
2463 2464 2465
}

static inline void set_free_obj(struct page *page,
2466
					unsigned int idx, freelist_idx_t val)
2467
{
2468
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2469 2470
}

2471
static void cache_init_objs(struct kmem_cache *cachep,
2472
			    struct page *page)
L
Linus Torvalds 已提交
2473 2474 2475 2476
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2477
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2490 2491 2492
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2493 2494
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2495
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2496 2497 2498 2499

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2500
					   " end of an object");
L
Linus Torvalds 已提交
2501 2502
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2503
					   " start of an object");
L
Linus Torvalds 已提交
2504
		}
2505
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2506
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2507
			kernel_map_pages(virt_to_page(objp),
2508
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2509 2510
#else
		if (cachep->ctor)
2511
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2512
#endif
2513
		set_obj_status(page, i, OBJECT_FREE);
2514
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2515 2516 2517
	}
}

2518
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2519
{
2520 2521
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2522
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2523
		else
2524
			BUG_ON(cachep->allocflags & GFP_DMA);
2525
	}
L
Linus Torvalds 已提交
2526 2527
}

2528
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2529
				int nodeid)
2530
{
2531
	void *objp;
2532

2533
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2534
	page->active++;
2535
#if DEBUG
J
Joonsoo Kim 已提交
2536
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2537 2538 2539 2540 2541
#endif

	return objp;
}

2542
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2543
				void *objp, int nodeid)
2544
{
2545
	unsigned int objnr = obj_to_index(cachep, page, objp);
2546
#if DEBUG
J
Joonsoo Kim 已提交
2547
	unsigned int i;
2548

2549
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2550
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2551

2552
	/* Verify double free bug */
2553
	for (i = page->active; i < cachep->num; i++) {
2554
		if (get_free_obj(page, i) == objnr) {
2555 2556 2557 2558
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2559 2560
	}
#endif
2561
	page->active--;
2562
	set_free_obj(page, page->active, objnr);
2563 2564
}

2565 2566 2567
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2568
 * virtual address for kfree, ksize, and slab debugging.
2569
 */
2570
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2571
			   void *freelist)
L
Linus Torvalds 已提交
2572
{
2573
	page->slab_cache = cache;
2574
	page->freelist = freelist;
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2581
static int cache_grow(struct kmem_cache *cachep,
2582
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2583
{
2584
	void *freelist;
P
Pekka Enberg 已提交
2585 2586
	size_t offset;
	gfp_t local_flags;
2587
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2588

A
Andrew Morton 已提交
2589 2590 2591
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2592
	 */
2593 2594 2595 2596
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2597
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2598

2599
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2600
	check_irq_off();
2601
	n = get_node(cachep, nodeid);
2602
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2603 2604

	/* Get colour for the slab, and cal the next value. */
2605 2606 2607 2608 2609
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2610

2611
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2624 2625 2626
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2627
	 */
2628 2629 2630
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2631 2632 2633
		goto failed;

	/* Get slab management. */
2634
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2635
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2636
	if (!freelist)
L
Linus Torvalds 已提交
2637 2638
		goto opps1;

2639
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2640

2641
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2642 2643 2644 2645

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2646
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2647 2648

	/* Make slab active. */
2649
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2650
	STATS_INC_GROWN(cachep);
2651 2652
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2653
	return 1;
A
Andrew Morton 已提交
2654
opps1:
2655
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2656
failed:
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2673 2674
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2675 2676 2677
	}
}

2678 2679
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2680
	unsigned long long redzone1, redzone2;
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2696
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2697 2698 2699
			obj, redzone1, redzone2);
}

2700
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2701
				   unsigned long caller)
L
Linus Torvalds 已提交
2702 2703
{
	unsigned int objnr;
2704
	struct page *page;
L
Linus Torvalds 已提交
2705

2706 2707
	BUG_ON(virt_to_cache(objp) != cachep);

2708
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2709
	kfree_debugcheck(objp);
2710
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2711 2712

	if (cachep->flags & SLAB_RED_ZONE) {
2713
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2714 2715 2716 2717
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2718
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2719

2720
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2721 2722

	BUG_ON(objnr >= cachep->num);
2723
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2724

2725
	set_obj_status(page, objnr, OBJECT_FREE);
L
Linus Torvalds 已提交
2726 2727
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2728
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2729
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2730
			kernel_map_pages(virt_to_page(objp),
2731
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2747 2748
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2749 2750
{
	int batchcount;
2751
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2752
	struct array_cache *ac;
P
Pekka Enberg 已提交
2753 2754
	int node;

L
Linus Torvalds 已提交
2755
	check_irq_off();
2756
	node = numa_mem_id();
2757 2758 2759
	if (unlikely(force_refill))
		goto force_grow;
retry:
2760
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2761 2762
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2763 2764 2765 2766
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2767 2768 2769
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2770
	n = get_node(cachep, node);
2771

2772 2773
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2774

2775
	/* See if we can refill from the shared array */
2776 2777
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2778
		goto alloc_done;
2779
	}
2780

L
Linus Torvalds 已提交
2781 2782
	while (batchcount > 0) {
		struct list_head *entry;
2783
		struct page *page;
L
Linus Torvalds 已提交
2784
		/* Get slab alloc is to come from. */
2785 2786 2787 2788 2789
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2790 2791 2792
				goto must_grow;
		}

2793
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2794
		check_spinlock_acquired(cachep);
2795 2796 2797 2798 2799 2800

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2801
		BUG_ON(page->active >= cachep->num);
2802

2803
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2804 2805 2806 2807
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2808
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2809
									node));
L
Linus Torvalds 已提交
2810 2811 2812
		}

		/* move slabp to correct slabp list: */
2813 2814
		list_del(&page->lru);
		if (page->active == cachep->num)
2815
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2816
		else
2817
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2818 2819
	}

A
Andrew Morton 已提交
2820
must_grow:
2821
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2822
alloc_done:
2823
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2824 2825 2826

	if (unlikely(!ac->avail)) {
		int x;
2827
force_grow:
2828
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2829

A
Andrew Morton 已提交
2830
		/* cache_grow can reenable interrupts, then ac could change. */
2831
		ac = cpu_cache_get(cachep);
2832
		node = numa_mem_id();
2833 2834 2835

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2836 2837
			return NULL;

A
Andrew Morton 已提交
2838
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2839 2840 2841
			goto retry;
	}
	ac->touched = 1;
2842 2843

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2844 2845
}

A
Andrew Morton 已提交
2846 2847
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852 2853 2854 2855
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2856
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2857
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2858
{
2859 2860
	struct page *page;

P
Pekka Enberg 已提交
2861
	if (!objp)
L
Linus Torvalds 已提交
2862
		return objp;
P
Pekka Enberg 已提交
2863
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2864
#ifdef CONFIG_DEBUG_PAGEALLOC
2865
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2866
			kernel_map_pages(virt_to_page(objp),
2867
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872 2873 2874 2875
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2876
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2877 2878

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2879 2880 2881 2882
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2883
			printk(KERN_ERR
2884
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2885 2886
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2887 2888 2889 2890
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2891 2892 2893

	page = virt_to_head_page(objp);
	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2894
	objp += obj_offset(cachep);
2895
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2896
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2897 2898
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2899
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2900
		       objp, (int)ARCH_SLAB_MINALIGN);
2901
	}
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906 2907
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
2908
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2909
{
2910
	if (unlikely(cachep == kmem_cache))
A
Akinobu Mita 已提交
2911
		return false;
2912

2913
	return should_failslab(cachep->object_size, flags, cachep->flags);
2914 2915
}

2916
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2917
{
P
Pekka Enberg 已提交
2918
	void *objp;
L
Linus Torvalds 已提交
2919
	struct array_cache *ac;
2920
	bool force_refill = false;
L
Linus Torvalds 已提交
2921

2922
	check_irq_off();
2923

2924
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2925 2926
	if (likely(ac->avail)) {
		ac->touched = 1;
2927 2928
		objp = ac_get_obj(cachep, ac, flags, false);

2929
		/*
2930 2931
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
2932
		 */
2933 2934 2935 2936 2937
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
2938
	}
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2949 2950 2951 2952 2953
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2954 2955
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2956 2957 2958
	return objp;
}

2959
#ifdef CONFIG_NUMA
2960
/*
2961
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2962 2963 2964 2965 2966 2967 2968 2969
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

2970
	if (in_interrupt() || (flags & __GFP_THISNODE))
2971
		return NULL;
2972
	nid_alloc = nid_here = numa_mem_id();
2973
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2974
		nid_alloc = cpuset_slab_spread_node();
2975
	else if (current->mempolicy)
2976
		nid_alloc = mempolicy_slab_node();
2977
	if (nid_alloc != nid_here)
2978
		return ____cache_alloc_node(cachep, flags, nid_alloc);
2979 2980 2981
	return NULL;
}

2982 2983
/*
 * Fallback function if there was no memory available and no objects on a
2984
 * certain node and fall back is permitted. First we scan all the
2985
 * available node for available objects. If that fails then we
2986 2987 2988
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
2989
 */
2990
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2991
{
2992 2993
	struct zonelist *zonelist;
	gfp_t local_flags;
2994
	struct zoneref *z;
2995 2996
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
2997
	void *obj = NULL;
2998
	int nid;
2999
	unsigned int cpuset_mems_cookie;
3000 3001 3002 3003

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3004
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3005

3006
retry_cpuset:
3007
	cpuset_mems_cookie = read_mems_allowed_begin();
3008
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3009

3010 3011 3012 3013 3014
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3015 3016
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3017

3018
		if (cpuset_zone_allowed(zone, flags | __GFP_HARDWALL) &&
3019 3020
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3021 3022
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3023 3024 3025
				if (obj)
					break;
		}
3026 3027
	}

3028
	if (!obj) {
3029 3030 3031 3032 3033 3034
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3035 3036
		struct page *page;

3037 3038 3039
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3040
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3041 3042
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3043
		if (page) {
3044 3045 3046
			/*
			 * Insert into the appropriate per node queues
			 */
3047 3048
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3059
				/* cache_grow already freed obj */
3060 3061 3062
				obj = NULL;
			}
		}
3063
	}
3064

3065
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3066
		goto retry_cpuset;
3067 3068 3069
	return obj;
}

3070 3071
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3072
 */
3073
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3074
				int nodeid)
3075 3076
{
	struct list_head *entry;
3077
	struct page *page;
3078
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3079 3080 3081
	void *obj;
	int x;

3082
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3083
	n = get_node(cachep, nodeid);
3084
	BUG_ON(!n);
P
Pekka Enberg 已提交
3085

A
Andrew Morton 已提交
3086
retry:
3087
	check_irq_off();
3088 3089 3090 3091 3092 3093
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3094 3095 3096
			goto must_grow;
	}

3097
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3098 3099 3100 3101 3102 3103
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3104
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3105

3106
	obj = slab_get_obj(cachep, page, nodeid);
3107
	n->free_objects--;
P
Pekka Enberg 已提交
3108
	/* move slabp to correct slabp list: */
3109
	list_del(&page->lru);
P
Pekka Enberg 已提交
3110

3111 3112
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3113
	else
3114
		list_add(&page->lru, &n->slabs_partial);
3115

3116
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3117
	goto done;
3118

A
Andrew Morton 已提交
3119
must_grow:
3120
	spin_unlock(&n->list_lock);
3121
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3122 3123
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3124

3125
	return fallback_alloc(cachep, flags);
3126

A
Andrew Morton 已提交
3127
done:
P
Pekka Enberg 已提交
3128
	return obj;
3129
}
3130 3131

static __always_inline void *
3132
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3133
		   unsigned long caller)
3134 3135 3136
{
	unsigned long save_flags;
	void *ptr;
3137
	int slab_node = numa_mem_id();
3138

3139
	flags &= gfp_allowed_mask;
3140

3141 3142
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3143
	if (slab_should_failslab(cachep, flags))
3144 3145
		return NULL;

3146 3147
	cachep = memcg_kmem_get_cache(cachep, flags);

3148 3149 3150
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3151
	if (nodeid == NUMA_NO_NODE)
3152
		nodeid = slab_node;
3153

3154
	if (unlikely(!get_node(cachep, nodeid))) {
3155 3156 3157 3158 3159
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3160
	if (nodeid == slab_node) {
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3176
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3177
				 flags);
3178

3179
	if (likely(ptr)) {
3180
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3181 3182 3183
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3184

3185 3186 3187 3188 3189 3190 3191 3192
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3193
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3204 3205
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3221
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3222 3223 3224 3225
{
	unsigned long save_flags;
	void *objp;

3226
	flags &= gfp_allowed_mask;
3227

3228 3229
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3230
	if (slab_should_failslab(cachep, flags))
3231 3232
		return NULL;

3233 3234
	cachep = memcg_kmem_get_cache(cachep, flags);

3235 3236 3237 3238 3239
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3240
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3241
				 flags);
3242 3243
	prefetchw(objp);

3244
	if (likely(objp)) {
3245
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3246 3247 3248
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3249

3250 3251
	return objp;
}
3252 3253

/*
3254
 * Caller needs to acquire correct kmem_cache_node's list_lock
3255
 * @list: List of detached free slabs should be freed by caller
3256
 */
3257 3258
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3259 3260
{
	int i;
3261
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3262 3263

	for (i = 0; i < nr_objects; i++) {
3264
		void *objp;
3265
		struct page *page;
L
Linus Torvalds 已提交
3266

3267 3268 3269
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3270 3271
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3272
		check_spinlock_acquired_node(cachep, node);
3273
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3274
		STATS_DEC_ACTIVE(cachep);
3275
		n->free_objects++;
L
Linus Torvalds 已提交
3276 3277

		/* fixup slab chains */
3278
		if (page->active == 0) {
3279 3280
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3281
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3282
			} else {
3283
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3284 3285 3286 3287 3288 3289
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3290
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3291 3292 3293 3294
		}
	}
}

3295
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3296 3297
{
	int batchcount;
3298
	struct kmem_cache_node *n;
3299
	int node = numa_mem_id();
3300
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3301 3302 3303 3304 3305 3306

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3307
	n = get_node(cachep, node);
3308 3309 3310
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3311
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3312 3313 3314
		if (max) {
			if (batchcount > max)
				batchcount = max;
3315
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3316
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3322
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3323
free_done:
L
Linus Torvalds 已提交
3324 3325 3326 3327 3328
#if STATS
	{
		int i = 0;
		struct list_head *p;

3329 3330
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3331
			struct page *page;
L
Linus Torvalds 已提交
3332

3333 3334
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339 3340 3341

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3342
	spin_unlock(&n->list_lock);
3343
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3344
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3345
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3346 3347 3348
}

/*
A
Andrew Morton 已提交
3349 3350
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3351
 */
3352
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3353
				unsigned long caller)
L
Linus Torvalds 已提交
3354
{
3355
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3356 3357

	check_irq_off();
3358
	kmemleak_free_recursive(objp, cachep->flags);
3359
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3360

3361
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3362

3363 3364 3365 3366 3367 3368 3369
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3370
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3371 3372
		return;

3373
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3374 3375 3376 3377 3378
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3379

3380
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3391
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3392
{
3393
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3394

3395
	trace_kmem_cache_alloc(_RET_IP_, ret,
3396
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3397 3398

	return ret;
L
Linus Torvalds 已提交
3399 3400 3401
}
EXPORT_SYMBOL(kmem_cache_alloc);

3402
#ifdef CONFIG_TRACING
3403
void *
3404
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3405
{
3406 3407
	void *ret;

3408
	ret = slab_alloc(cachep, flags, _RET_IP_);
3409 3410

	trace_kmalloc(_RET_IP_, ret,
3411
		      size, cachep->size, flags);
3412
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3413
}
3414
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3415 3416
#endif

L
Linus Torvalds 已提交
3417
#ifdef CONFIG_NUMA
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3429 3430
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3431
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3432

3433
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3434
				    cachep->object_size, cachep->size,
3435
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3436 3437

	return ret;
3438
}
L
Linus Torvalds 已提交
3439 3440
EXPORT_SYMBOL(kmem_cache_alloc_node);

3441
#ifdef CONFIG_TRACING
3442
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3443
				  gfp_t flags,
3444 3445
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3446
{
3447 3448
	void *ret;

3449
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3450

3451
	trace_kmalloc_node(_RET_IP_, ret,
3452
			   size, cachep->size,
3453 3454
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3455
}
3456
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3457 3458
#endif

3459
static __always_inline void *
3460
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3461
{
3462
	struct kmem_cache *cachep;
3463

3464
	cachep = kmalloc_slab(size, flags);
3465 3466
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3467
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3468
}
3469 3470 3471

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3472
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3473
}
3474
EXPORT_SYMBOL(__kmalloc_node);
3475 3476

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3477
		int node, unsigned long caller)
3478
{
3479
	return __do_kmalloc_node(size, flags, node, caller);
3480 3481 3482
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3483 3484

/**
3485
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3486
 * @size: how many bytes of memory are required.
3487
 * @flags: the type of memory to allocate (see kmalloc).
3488
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3489
 */
3490
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3491
					  unsigned long caller)
L
Linus Torvalds 已提交
3492
{
3493
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3494
	void *ret;
L
Linus Torvalds 已提交
3495

3496
	cachep = kmalloc_slab(size, flags);
3497 3498
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3499
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3500

3501
	trace_kmalloc(caller, ret,
3502
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3503 3504

	return ret;
3505 3506 3507 3508
}

void *__kmalloc(size_t size, gfp_t flags)
{
3509
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3510 3511 3512
}
EXPORT_SYMBOL(__kmalloc);

3513
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3514
{
3515
	return __do_kmalloc(size, flags, caller);
3516 3517
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3518

L
Linus Torvalds 已提交
3519 3520 3521 3522 3523 3524 3525 3526
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3527
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3528 3529
{
	unsigned long flags;
3530 3531 3532
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3533 3534

	local_irq_save(flags);
3535
	debug_check_no_locks_freed(objp, cachep->object_size);
3536
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3537
		debug_check_no_obj_freed(objp, cachep->object_size);
3538
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3539
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3540

3541
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546 3547 3548
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3549 3550
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3551 3552 3553 3554 3555
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3556
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3557 3558
	unsigned long flags;

3559 3560
	trace_kfree(_RET_IP_, objp);

3561
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3562 3563 3564
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3565
	c = virt_to_cache(objp);
3566 3567 3568
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3569
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3570 3571 3572 3573
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3574
/*
3575
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3576
 */
3577
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3578 3579
{
	int node;
3580
	struct kmem_cache_node *n;
3581
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3582
	struct alien_cache **new_alien = NULL;
3583

3584
	for_each_online_node(node) {
3585

3586 3587 3588 3589 3590
		if (use_alien_caches) {
			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
			if (!new_alien)
				goto fail;
		}
3591

3592 3593 3594
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3595
				cachep->shared*cachep->batchcount,
3596
					0xbaadf00d, gfp);
3597 3598 3599 3600
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3601
		}
3602

3603
		n = get_node(cachep, node);
3604 3605
		if (n) {
			struct array_cache *shared = n->shared;
3606
			LIST_HEAD(list);
3607

3608
			spin_lock_irq(&n->list_lock);
3609

3610
			if (shared)
3611
				free_block(cachep, shared->entry,
3612
						shared->avail, node, &list);
3613

3614 3615 3616
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3617 3618
				new_alien = NULL;
			}
3619
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3620
					cachep->batchcount + cachep->num;
3621
			spin_unlock_irq(&n->list_lock);
3622
			slabs_destroy(cachep, &list);
3623
			kfree(shared);
3624 3625 3626
			free_alien_cache(new_alien);
			continue;
		}
3627 3628
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3629 3630
			free_alien_cache(new_alien);
			kfree(new_shared);
3631
			goto fail;
3632
		}
3633

3634
		kmem_cache_node_init(n);
3635 3636
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3637 3638 3639
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3640
					cachep->batchcount + cachep->num;
3641
		cachep->node[node] = n;
3642
	}
3643
	return 0;
3644

A
Andrew Morton 已提交
3645
fail:
3646
	if (!cachep->list.next) {
3647 3648 3649
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3650 3651
			n = get_node(cachep, node);
			if (n) {
3652 3653 3654
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3655
				cachep->node[node] = NULL;
3656 3657 3658 3659
			}
			node--;
		}
	}
3660
	return -ENOMEM;
3661 3662
}

3663
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3664
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3665
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3666
{
3667 3668
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3669

3670 3671
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3672 3673
		return -ENOMEM;

3674 3675 3676
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3677

L
Linus Torvalds 已提交
3678 3679 3680
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3681
	cachep->shared = shared;
L
Linus Torvalds 已提交
3682

3683 3684 3685 3686
	if (!prev)
		goto alloc_node;

	for_each_online_cpu(cpu) {
3687
		LIST_HEAD(list);
3688 3689
		int node;
		struct kmem_cache_node *n;
3690
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3691

3692
		node = cpu_to_mem(cpu);
3693 3694
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3695
		free_block(cachep, ac->entry, ac->avail, node, &list);
3696
		spin_unlock_irq(&n->list_lock);
3697
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3698
	}
3699 3700 3701
	free_percpu(prev);

alloc_node:
3702
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3703 3704
}

G
Glauber Costa 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3720
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3721
	for_each_memcg_cache_index(i) {
3722
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3723 3724 3725 3726 3727 3728 3729 3730
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3731
/* Called with slab_mutex held always */
3732
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3733 3734
{
	int err;
G
Glauber Costa 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3745

G
Glauber Costa 已提交
3746 3747
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3748 3749
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3750 3751
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3752
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3753 3754 3755 3756
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3757
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3758
		limit = 1;
3759
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3760
		limit = 8;
3761
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3762
		limit = 24;
3763
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3764 3765 3766 3767
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3768 3769
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3770 3771 3772 3773 3774 3775 3776 3777
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3778
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3779 3780 3781
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3782 3783 3784
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3785 3786 3787 3788
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3789 3790 3791
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3792 3793
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3794
		       cachep->name, -err);
3795
	return err;
L
Linus Torvalds 已提交
3796 3797
}

3798
/*
3799 3800
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3801
 * if drain_array() is used on the shared array.
3802
 */
3803
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3804
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3805
{
3806
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3807 3808
	int tofree;

3809 3810
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3811 3812
	if (ac->touched && !force) {
		ac->touched = 0;
3813
	} else {
3814
		spin_lock_irq(&n->list_lock);
3815 3816 3817 3818
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
3819
			free_block(cachep, ac->entry, tofree, node, &list);
3820 3821 3822 3823
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3824
		spin_unlock_irq(&n->list_lock);
3825
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3826 3827 3828 3829 3830
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3831
 * @w: work descriptor
L
Linus Torvalds 已提交
3832 3833 3834 3835 3836 3837
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3838 3839
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3840
 */
3841
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3842
{
3843
	struct kmem_cache *searchp;
3844
	struct kmem_cache_node *n;
3845
	int node = numa_mem_id();
3846
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3847

3848
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3849
		/* Give up. Setup the next iteration. */
3850
		goto out;
L
Linus Torvalds 已提交
3851

3852
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3853 3854
		check_irq_on();

3855
		/*
3856
		 * We only take the node lock if absolutely necessary and we
3857 3858 3859
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3860
		n = get_node(searchp, node);
3861

3862
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3863

3864
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3865

3866 3867 3868 3869
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3870
		if (time_after(n->next_reap, jiffies))
3871
			goto next;
L
Linus Torvalds 已提交
3872

3873
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3874

3875
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3876

3877 3878
		if (n->free_touched)
			n->free_touched = 0;
3879 3880
		else {
			int freed;
L
Linus Torvalds 已提交
3881

3882
			freed = drain_freelist(searchp, n, (n->free_limit +
3883 3884 3885
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3886
next:
L
Linus Torvalds 已提交
3887 3888 3889
		cond_resched();
	}
	check_irq_on();
3890
	mutex_unlock(&slab_mutex);
3891
	next_reap_node();
3892
out:
A
Andrew Morton 已提交
3893
	/* Set up the next iteration */
3894
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3895 3896
}

3897
#ifdef CONFIG_SLABINFO
3898
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3899
{
3900
	struct page *page;
P
Pekka Enberg 已提交
3901 3902 3903 3904
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3905
	const char *name;
L
Linus Torvalds 已提交
3906
	char *error = NULL;
3907
	int node;
3908
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3909 3910 3911

	active_objs = 0;
	num_slabs = 0;
3912
	for_each_kmem_cache_node(cachep, node, n) {
3913

3914
		check_irq_on();
3915
		spin_lock_irq(&n->list_lock);
3916

3917 3918
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3919 3920 3921 3922
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3923 3924
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
3925
				error = "slabs_partial accounting error";
3926
			if (!page->active && !error)
3927
				error = "slabs_partial accounting error";
3928
			active_objs += page->active;
3929 3930
			active_slabs++;
		}
3931 3932
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
3933
				error = "slabs_free accounting error";
3934 3935
			num_slabs++;
		}
3936 3937 3938
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
3939

3940
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3941
	}
P
Pekka Enberg 已提交
3942 3943
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3944
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3945 3946
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3947
	name = cachep->name;
L
Linus Torvalds 已提交
3948 3949 3950
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
3965
#if STATS
3966
	{			/* node stats */
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3974
		unsigned long node_frees = cachep->node_frees;
3975
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3976

J
Joe Perches 已提交
3977 3978 3979 3980 3981
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3991
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4004
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4005
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4006
{
P
Pekka Enberg 已提交
4007
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4008
	int limit, batchcount, shared, res;
4009
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4010

L
Linus Torvalds 已提交
4011 4012 4013 4014
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4015
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4026
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4027
	res = -EINVAL;
4028
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4029
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4030 4031
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4032
				res = 0;
L
Linus Torvalds 已提交
4033
			} else {
4034
				res = do_tune_cpucache(cachep, limit,
4035 4036
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4037 4038 4039 4040
			}
			break;
		}
	}
4041
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4042 4043 4044 4045
	if (res >= 0)
		res = count;
	return res;
}
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4079 4080
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4081 4082
{
	void *p;
4083
	int i;
4084

4085 4086
	if (n[0] == n[1])
		return;
4087
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4088
		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4089
			continue;
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4100
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4101

4102
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4103
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4104
		if (modname[0])
4105 4106 4107 4108 4109 4110 4111 4112 4113
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4114
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4115
	struct page *page;
4116
	struct kmem_cache_node *n;
4117
	const char *name;
4118
	unsigned long *x = m->private;
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4129
	x[1] = 0;
4130

4131
	for_each_kmem_cache_node(cachep, node, n) {
4132 4133

		check_irq_on();
4134
		spin_lock_irq(&n->list_lock);
4135

4136 4137 4138 4139
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4140
		spin_unlock_irq(&n->list_lock);
4141 4142
	}
	name = cachep->name;
4143
	if (x[0] == x[1]) {
4144
		/* Increase the buffer size */
4145
		mutex_unlock(&slab_mutex);
4146
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4147 4148
		if (!m->private) {
			/* Too bad, we are really out */
4149
			m->private = x;
4150
			mutex_lock(&slab_mutex);
4151 4152
			return -ENOMEM;
		}
4153 4154
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4155
		mutex_lock(&slab_mutex);
4156 4157 4158 4159
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4160 4161 4162
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4163 4164
		seq_putc(m, '\n');
	}
4165

4166 4167 4168
	return 0;
}

4169
static const struct seq_operations slabstats_op = {
4170
	.start = slab_start,
4171 4172
	.next = slab_next,
	.stop = slab_stop,
4173 4174
	.show = leaks_show,
};
4175 4176 4177

static int slabstats_open(struct inode *inode, struct file *file)
{
4178 4179 4180 4181 4182 4183 4184 4185 4186
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4201
#endif
4202 4203 4204
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4205 4206
#endif

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4219
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4220
{
4221 4222
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4223
		return 0;
L
Linus Torvalds 已提交
4224

4225
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4226
}
K
Kirill A. Shutemov 已提交
4227
EXPORT_SYMBOL(ksize);