omap2.c 58.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
12
#include <linux/dmaengine.h>
13 14
#include <linux/dma-mapping.h>
#include <linux/delay.h>
15
#include <linux/module.h>
16
#include <linux/interrupt.h>
17 18
#include <linux/jiffies.h>
#include <linux/sched.h>
19 20 21
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
22
#include <linux/omap-dma.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25 26
#include <linux/of.h>
#include <linux/of_device.h>
27

28
#include <linux/mtd/nand_bch.h>
29
#include <linux/platform_data/elm.h>
30

31
#include <linux/platform_data/mtd-nand-omap2.h>
32 33

#define	DRIVER_NAME	"omap2-nand"
34
#define	OMAP_NAND_TIMEOUT_MS	5000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

103 104 105 106 107
#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
108
#define	ECCSIZE0_SHIFT			12
109 110 111 112
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
113 114 115 116 117
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001
118

119 120
#define OMAP24XX_DMA_GPMC		4

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

137
#define BADBLOCK_MARKER_LENGTH		2
138

139
#ifdef CONFIG_MTD_NAND_OMAP_BCH
140 141 142 143
static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
				0x07, 0x0e};
144 145 146 147 148
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
#endif

149 150
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
151

152 153 154 155 156 157 158 159 160
struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
161
	enum omap_ecc			ecc_opt;
162
	struct completion		comp;
163
	struct dma_chan			*dma;
164 165
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
166 167 168 169 170 171
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
172
	struct gpmc_nand_regs		reg;
173
	/* fields specific for BCHx_HW ECC scheme */
174 175
	struct device			*elm_dev;
	struct device_node		*of_node;
176 177
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

251 252
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
253
			writeb(cmd, info->reg.gpmc_nand_command);
254 255

		else if (ctrl & NAND_ALE)
256
			writeb(cmd, info->reg.gpmc_nand_address);
257 258

		else /* NAND_NCE */
259
			writeb(cmd, info->reg.gpmc_nand_data);
260
	}
261 262
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
287
	u32	status = 0;
288 289 290

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
291 292
		/* wait until buffer is available for write */
		do {
293
			status = readl(info->reg.gpmc_status) &
294
					STATUS_BUFF_EMPTY;
295
		} while (!status);
296 297 298
	}
}

299 300 301 302 303 304 305 306 307 308
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

309
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
310 311 312 313 314 315 316 317 318 319 320 321 322
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
323
	u32	status = 0;
324 325 326 327
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
328
		iowrite16(*p++, info->nand.IO_ADDR_W);
329 330
		/* wait until buffer is available for write */
		do {
331
			status = readl(info->reg.gpmc_status) &
332
					STATUS_BUFF_EMPTY;
333
		} while (!status);
334 335
	}
}
336 337 338 339 340 341 342 343 344 345 346

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
347
	uint32_t r_count = 0;
348 349 350 351
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
352 353 354 355 356 357 358
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
359 360 361
	}

	/* configure and start prefetch transfer */
362 363
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
364 365 366
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
367
			omap_read_buf16(mtd, (u_char *)p, len);
368
		else
369
			omap_read_buf8(mtd, (u_char *)p, len);
370 371
	} else {
		do {
372
			r_count = readl(info->reg.gpmc_prefetch_status);
373
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
374 375
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
376 377 378 379
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
380
		omap_prefetch_reset(info->gpmc_cs, info);
381 382 383 384 385 386 387 388 389 390 391 392 393 394
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
395
	uint32_t w_count = 0;
396
	int i = 0, ret = 0;
397
	u16 *p = (u16 *)buf;
398
	unsigned long tim, limit;
399
	u32 val;
400 401 402

	/* take care of subpage writes */
	if (len % 2 != 0) {
403
		writeb(*buf, info->nand.IO_ADDR_W);
404 405 406 407 408
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
409 410
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
411 412 413
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
414
			omap_write_buf16(mtd, (u_char *)p, len);
415
		else
416
			omap_write_buf8(mtd, (u_char *)p, len);
417
	} else {
418
		while (len) {
419
			w_count = readl(info->reg.gpmc_prefetch_status);
420
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
421
			w_count = w_count >> 1;
422
			for (i = 0; (i < w_count) && len; i++, len -= 2)
423
				iowrite16(*p++, info->nand.IO_ADDR_W);
424
		}
425
		/* wait for data to flushed-out before reset the prefetch */
426 427 428
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
429
		do {
430
			cpu_relax();
431
			val = readl(info->reg.gpmc_prefetch_status);
432
			val = PREFETCH_STATUS_COUNT(val);
433
		} while (val && (tim++ < limit));
434

435
		/* disable and stop the PFPW engine */
436
		omap_prefetch_reset(info->gpmc_cs, info);
437 438 439
	}
}

440
/*
441
 * omap_nand_dma_callback: callback on the completion of dma transfer
442 443
 * @data: pointer to completion data structure
 */
444 445 446 447
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}
448 449

/*
450
 * omap_nand_dma_transfer: configure and start dma transfer
451 452 453 454 455 456 457 458 459 460
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
461
	struct dma_async_tx_descriptor *tx;
462 463
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
464
	struct scatterlist sg;
465
	unsigned long tim, limit;
466 467
	unsigned n;
	int ret;
468
	u32 val;
469 470 471 472 473 474 475 476 477 478 479 480 481

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

482 483 484
	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
485 486 487 488 489
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

490 491 492 493 494 495 496 497 498 499
	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

500 501 502
	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
503
	if (ret)
504
		/* PFPW engine is busy, use cpu copy method */
505
		goto out_copy_unmap;
506 507

	init_completion(&info->comp);
508
	dma_async_issue_pending(info->dma);
509 510 511

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
512 513
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
514 515

	do {
516
		cpu_relax();
517
		val = readl(info->reg.gpmc_prefetch_status);
518
		val = PREFETCH_STATUS_COUNT(val);
519
	} while (val && (tim++ < limit));
520 521

	/* disable and stop the PFPW engine */
522
	omap_prefetch_reset(info->gpmc_cs, info);
523

524
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
525 526
	return 0;

527
out_copy_unmap:
528
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
567
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
568 569
}

570
/*
571
 * omap_nand_irq - GPMC irq handler
572 573 574 575 576 577 578 579
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

580
	bytes = readl(info->reg.gpmc_prefetch_status);
581
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
582 583
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
584
		if (this_irq == info->gpmc_irq_count)
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

601
		if (this_irq == info->gpmc_irq_count)
602 603 604 605 606 607 608 609
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

610 611
	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
638 639
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
640 641 642 643 644
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
645 646 647

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
648 649 650 651 652

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
653
	omap_prefetch_reset(info->gpmc_cs, info);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;
676
	u32 val;
677 678 679 680 681 682 683 684 685 686

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

687
	/* configure and start prefetch transfer : size=24 */
688 689
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
690 691 692 693 694
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
695 696 697

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
698 699 700

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
701

702 703 704
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
705 706
	do {
		val = readl(info->reg.gpmc_prefetch_status);
707
		val = PREFETCH_STATUS_COUNT(val);
708
		cpu_relax();
709
	} while (val && (tim++ < limit));
710 711

	/* disable and stop the PFPW engine */
712
	omap_prefetch_reset(info->gpmc_cs, info);
713 714 715 716 717 718 719 720 721
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
750 751
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
830
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
831 832 833 834
		return -1;

	case 11:
		/* UN-Correctable error */
835
		pr_debug("ECC UNCORRECTED_ERROR B\n");
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

852 853
		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);
854 855 856

		page_data[find_byte] ^= (1 << find_bit);

857
		return 1;
858 859 860 861 862 863 864
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
865
		pr_debug("UNCORRECTED_ERROR default\n");
866 867 868 869 870 871 872 873 874 875 876 877
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
878 879 880 881 882
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
883 884 885 886 887 888 889
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
890
	int stat = 0;
891 892 893 894 895 896 897 898 899 900 901 902 903

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
904 905
			/* keep track of the number of corrected errors */
			stat += ret;
906 907 908 909 910
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
911
	return stat;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
931 932 933 934 935 936 937 938 939 940 941 942 943 944
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
	if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
945 946 947 948 949 950 951 952 953 954 955 956 957
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
958 959 960 961 962
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}
982

983 984 985
	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
986
}
987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
1006
	int status, state = this->state;
1007 1008

	if (state == FL_ERASING)
T
Toan Pham 已提交
1009
		timeo += msecs_to_jiffies(400);
1010
	else
T
Toan Pham 已提交
1011
		timeo += msecs_to_jiffies(20);
1012

1013
	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1014
	while (time_before(jiffies, timeo)) {
1015
		status = readb(info->reg.gpmc_nand_data);
1016
		if (status & NAND_STATUS_READY)
1017
			break;
1018
		cond_resched();
1019
	}
1020

1021
	status = readb(info->reg.gpmc_nand_data);
1022 1023 1024 1025 1026 1027 1028 1029 1030
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
1031
	unsigned int val = 0;
1032 1033 1034
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

1035 1036
	val = readl(info->reg.gpmc_status);

1037
	if ((val & 0x100) == 0x100) {
1038
		return 1;
1039
	} else {
1040
		return 0;
1041 1042 1043
	}
}

1044
/**
1045
 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1046 1047
 * @mtd: MTD device structure
 * @mode: Read/Write mode
1048 1049 1050 1051 1052 1053 1054
 *
 * When using BCH, sector size is hardcoded to 512 bytes.
 * Using wrapping mode 6 both for reading and writing if ELM module not uses
 * for error correction.
 * On writing,
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1055
 */
1056
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1057
{
1058
	unsigned int bch_type;
1059
	unsigned int dev_width, nsectors;
1060 1061
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1062
	enum omap_ecc ecc_opt = info->ecc_opt;
1063
	struct nand_chip *chip = mtd->priv;
1064 1065 1066
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

1067 1068 1069
	/* GPMC configurations for calculating ECC */
	switch (ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1070 1071
		bch_type = 0;
		nsectors = 1;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH4_CODE_HW:
1083 1084
		bch_type = 0;
		nsectors = chip->ecc.steps;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH4R_ECC_SIZE0;
			ecc_size1 = BCH4R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1096 1097
		bch_type = 1;
		nsectors = 1;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW:
1109 1110
		bch_type = 1;
		nsectors = chip->ecc.steps;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH8R_ECC_SIZE0;
			ecc_size1 = BCH8R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	case OMAP_ECC_BCH16_CODE_HW:
		bch_type = 0x2;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = 0x01;
			ecc_size0 = 52; /* ECC bits in nibbles per sector */
			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
		} else {
			wr_mode	  = 0x01;
			ecc_size0 = 0;  /* extra bits in nibbles per sector */
			ecc_size1 = 52; /* OOB bits in nibbles per sector */
		}
		break;
1134 1135 1136
	default:
		return;
	}
1137 1138 1139

	writel(ECC1, info->reg.gpmc_ecc_control);

1140 1141
	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1142 1143
	writel(val, info->reg.gpmc_ecc_size_config);

1144 1145
	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

1146 1147
	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
1148
	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1149
	       (wr_mode                  <<  8) | /* wrap mode */
1150 1151 1152 1153 1154 1155 1156
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

1157
	/* Clear ecc and enable bits */
1158
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1159
}
1160

1161
static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1162 1163
static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
				0x97, 0x79, 0xe5, 0x24, 0xb5};
1164

1165
/**
1166
 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1167 1168 1169 1170 1171 1172
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8 ecc vectors for the page
 */
1173
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1174
					const u_char *dat, u_char *ecc_calc)
1175 1176 1177
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1178 1179 1180
	int eccbytes	= info->nand.ecc.bytes;
	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
	u8 *ecc_code;
1181
	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1182
	u32 val;
1183
	int i;
1184 1185 1186

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	for (i = 0; i < nsectors; i++) {
1187 1188
		ecc_code = ecc_calc;
		switch (info->ecc_opt) {
1189
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1190 1191 1192 1193 1194
		case OMAP_ECC_BCH8_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
			*ecc_code++ = (bch_val4 & 0xFF);
			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
			*ecc_code++ = (bch_val3 & 0xFF);
			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
			*ecc_code++ = (bch_val2 & 0xFF);
			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
			*ecc_code++ = (bch_val1 & 0xFF);
1208
			break;
1209
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1210 1211 1212
		case OMAP_ECC_BCH4_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1213 1214 1215 1216 1217 1218 1219 1220
			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
				((bch_val1 >> 28) & 0xF);
			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1221
			break;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		case OMAP_ECC_BCH16_CODE_HW:
			val = readl(gpmc_regs->gpmc_bch_result6[i]);
			ecc_code[0]  = ((val >>  8) & 0xFF);
			ecc_code[1]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result5[i]);
			ecc_code[2]  = ((val >> 24) & 0xFF);
			ecc_code[3]  = ((val >> 16) & 0xFF);
			ecc_code[4]  = ((val >>  8) & 0xFF);
			ecc_code[5]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result4[i]);
			ecc_code[6]  = ((val >> 24) & 0xFF);
			ecc_code[7]  = ((val >> 16) & 0xFF);
			ecc_code[8]  = ((val >>  8) & 0xFF);
			ecc_code[9]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result3[i]);
			ecc_code[10] = ((val >> 24) & 0xFF);
			ecc_code[11] = ((val >> 16) & 0xFF);
			ecc_code[12] = ((val >>  8) & 0xFF);
			ecc_code[13] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result2[i]);
			ecc_code[14] = ((val >> 24) & 0xFF);
			ecc_code[15] = ((val >> 16) & 0xFF);
			ecc_code[16] = ((val >>  8) & 0xFF);
			ecc_code[17] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result1[i]);
			ecc_code[18] = ((val >> 24) & 0xFF);
			ecc_code[19] = ((val >> 16) & 0xFF);
			ecc_code[20] = ((val >>  8) & 0xFF);
			ecc_code[21] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result0[i]);
			ecc_code[22] = ((val >> 24) & 0xFF);
			ecc_code[23] = ((val >> 16) & 0xFF);
			ecc_code[24] = ((val >>  8) & 0xFF);
			ecc_code[25] = ((val >>  0) & 0xFF);
			break;
1257 1258
		default:
			return -EINVAL;
1259
		}
1260 1261 1262

		/* ECC scheme specific syndrome customizations */
		switch (info->ecc_opt) {
1263 1264 1265 1266 1267 1268
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (i = 0; i < eccbytes; i++)
				ecc_calc[i] ^= bch4_polynomial[i];
			break;
1269 1270 1271 1272
		case OMAP_ECC_BCH4_CODE_HW:
			/* Set  8th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
1273 1274 1275 1276 1277 1278
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (i = 0; i < eccbytes; i++)
				ecc_calc[i] ^= bch8_polynomial[i];
			break;
1279 1280 1281 1282
		case OMAP_ECC_BCH8_CODE_HW:
			/* Set 14th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
1283 1284
		case OMAP_ECC_BCH16_CODE_HW:
			break;
1285 1286 1287 1288 1289
		default:
			return -EINVAL;
		}

	ecc_calc += eccbytes;
1290 1291 1292 1293 1294
	}

	return 0;
}

1295
#ifdef CONFIG_MTD_NAND_OMAP_BCH
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @mtd:	MTD device structure
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
1343 1344
 * In case of non-zero ecc vector, first filter out erased-pages, and
 * then process data via ELM to detect bit-flips.
1345 1346 1347 1348 1349 1350
 */
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
			mtd);
1351
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1352 1353
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
1354
	int eccflag, actual_eccbytes;
1355 1356 1357 1358
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
1359 1360
	u_char *buf;
	int bitflip_count;
1361
	bool is_error_reported = false;
1362
	u32 bit_pos, byte_pos, error_max, pos;
1363
	int err;
1364

1365 1366 1367 1368
	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW:
		/* omit  7th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1369
		erased_ecc_vec = bch4_vector;
1370 1371 1372 1373
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* omit 14th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1374
		erased_ecc_vec = bch8_vector;
1375
		break;
1376 1377 1378 1379
	case OMAP_ECC_BCH16_CODE_HW:
		actual_eccbytes = ecc->bytes;
		erased_ecc_vec = bch16_vector;
		break;
1380 1381 1382 1383 1384
	default:
		pr_err("invalid driver configuration\n");
		return -EINVAL;
	}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */
1395
		for (j = 0; j < actual_eccbytes; j++) {
1396 1397 1398 1399 1400 1401 1402
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
1403 1404
			if (memcmp(calc_ecc, erased_ecc_vec,
						actual_eccbytes) == 0) {
1405
				/*
1406 1407
				 * calc_ecc[] matches pattern for ECC(all 0xff)
				 * so this is definitely an erased-page
1408 1409
				 */
			} else {
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
				buf = &data[info->nand.ecc.size * i];
				/*
				 * count number of 0-bits in read_buf.
				 * This check can be removed once a similar
				 * check is introduced in generic NAND driver
				 */
				bitflip_count = erased_sector_bitflips(
						buf, read_ecc, info);
				if (bitflip_count) {
					/*
					 * number of 0-bits within ECC limits
					 * So this may be an erased-page
					 */
					stat += bitflip_count;
				} else {
					/*
					 * Too many 0-bits. It may be a
					 * - programmed-page, OR
					 * - erased-page with many bit-flips
					 * So this page requires check by ELM
					 */
					err_vec[i].error_reported = true;
					is_error_reported = true;
1433 1434 1435 1436 1437
				}
			}
		}

		/* Update the ecc vector */
1438 1439
		calc_ecc += ecc->bytes;
		read_ecc += ecc->bytes;
1440 1441 1442 1443
	}

	/* Check if any error reported */
	if (!is_error_reported)
1444
		return stat;
1445 1446 1447 1448

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

1449
	err = 0;
1450
	for (i = 0; i < eccsteps; i++) {
1451 1452 1453 1454
		if (err_vec[i].error_uncorrectable) {
			pr_err("nand: uncorrectable bit-flips found\n");
			err = -EBADMSG;
		} else if (err_vec[i].error_reported) {
1455
			for (j = 0; j < err_vec[i].error_count; j++) {
1456 1457 1458
				switch (info->ecc_opt) {
				case OMAP_ECC_BCH4_CODE_HW:
					/* Add 4 bits to take care of padding */
1459 1460
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;
1461 1462
					break;
				case OMAP_ECC_BCH8_CODE_HW:
1463
				case OMAP_ECC_BCH16_CODE_HW:
1464 1465 1466 1467 1468 1469
					pos = err_vec[i].error_loc[j];
					break;
				default:
					return -EINVAL;
				}
				error_max = (ecc->size + actual_eccbytes) * 8;
1470 1471 1472 1473 1474 1475 1476
				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
1477 1478 1479
					if (byte_pos < 512) {
						pr_debug("bitflip@dat[%d]=%x\n",
						     byte_pos, data[byte_pos]);
1480
						data[byte_pos] ^= 1 << bit_pos;
1481 1482 1483 1484
					} else {
						pr_debug("bitflip@oob[%d]=%x\n",
							(byte_pos - 512),
						     spare_ecc[byte_pos - 512]);
1485 1486
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
1487 1488 1489 1490 1491
					}
				} else {
					pr_err("invalid bit-flip @ %d:%d\n",
							 byte_pos, bit_pos);
					err = -EBADMSG;
1492 1493 1494 1495 1496 1497 1498 1499
				}
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
1500
		data += ecc->size;
1501
		spare_ecc += ecc->bytes;
1502 1503
	}

1504
	return (err) ? err : stat;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
}

/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required)
{
	int i;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(mtd, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	/* Write ecc vector to OOB area */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *oob = &chip->oob_poi[eccpos[0]];
	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
	int stat;
	unsigned int max_bitflips = 0;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(mtd, buf, mtd->writesize);

	/* Read oob bytes */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
	chip->read_buf(mtd, oob, chip->ecc.total);

	/* Calculate ecc bytes */
	chip->ecc.calculate(mtd, buf, ecc_calc);

	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);

	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

1593
/**
1594 1595 1596
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1597
 */
1598 1599
static int is_elm_present(struct omap_nand_info *info,
			struct device_node *elm_node, enum bch_ecc bch_type)
1600
{
1601
	struct platform_device *pdev;
1602 1603
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
	int err;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/* check whether elm-id is passed via DT */
	if (!elm_node) {
		pr_err("nand: error: ELM DT node not found\n");
		return -ENODEV;
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
		pr_err("nand: error: ELM device not found\n");
		return -ENODEV;
1614
	}
1615 1616
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
1617 1618 1619 1620
	err = elm_config(info->elm_dev, bch_type,
		(info->mtd.writesize / ecc->size), ecc->size, ecc->bytes);

	return err;
1621
}
1622
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1623

B
Bill Pemberton 已提交
1624
static int omap_nand_probe(struct platform_device *pdev)
1625 1626 1627
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
1628 1629
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
1630
	struct nand_ecclayout		*ecclayout;
1631
	int				err;
1632
	int				i;
1633 1634
	dma_cap_mask_t			mask;
	unsigned			sig;
1635
	unsigned			oob_index;
1636
	struct resource			*res;
1637
	struct mtd_part_parser_data	ppdata = {};
1638

J
Jingoo Han 已提交
1639
	pdata = dev_get_platdata(&pdev->dev);
1640 1641 1642 1643 1644
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

1645 1646
	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
				GFP_KERNEL);
1647 1648 1649 1650 1651 1652 1653 1654
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

1655
	info->pdev		= pdev;
1656
	info->gpmc_cs		= pdata->cs;
1657
	info->reg		= pdata->reg;
1658
	info->of_node		= pdata->of_node;
1659
	info->ecc_opt		= pdata->ecc_opt;
1660 1661 1662 1663 1664
	mtd			= &info->mtd;
	mtd->priv		= &info->nand;
	mtd->name		= dev_name(&pdev->dev);
	mtd->owner		= THIS_MODULE;
	nand_chip		= &info->nand;
1665
	nand_chip->ecc.priv	= NULL;
1666
	nand_chip->options	|= NAND_SKIP_BBTSCAN;
1667

1668
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1669 1670 1671
	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(nand_chip->IO_ADDR_R))
		return PTR_ERR(nand_chip->IO_ADDR_R);
1672

1673
	info->phys_base = res->start;
1674

1675
	nand_chip->controller = &info->controller;
1676

1677 1678
	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;
1679 1680 1681

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
1682 1683
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1684 1685 1686 1687
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
1688 1689
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
1690
	} else {
1691 1692
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
1693 1694
	}

1695 1696 1697 1698 1699
	/* scan NAND device connected to chip controller */
	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
	if (nand_scan_ident(mtd, 1, NULL)) {
		pr_err("nand device scan failed, may be bus-width mismatch\n");
		err = -ENXIO;
1700
		goto return_error;
1701 1702
	}

1703 1704 1705 1706
	/* check for small page devices */
	if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
		pr_err("small page devices are not supported\n");
		err = -EINVAL;
1707
		goto return_error;
1708 1709
	}

1710
	/* re-populate low-level callbacks based on xfer modes */
1711 1712
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
1713 1714
		nand_chip->read_buf   = omap_read_buf_pref;
		nand_chip->write_buf  = omap_write_buf_pref;
1715 1716 1717
		break;

	case NAND_OMAP_POLLED:
1718
		/* Use nand_base defaults for {read,write}_buf */
1719 1720 1721
		break;

	case NAND_OMAP_PREFETCH_DMA:
1722 1723 1724 1725 1726
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		sig = OMAP24XX_DMA_GPMC;
		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
		if (!info->dma) {
1727 1728
			dev_err(&pdev->dev, "DMA engine request failed\n");
			err = -ENXIO;
1729
			goto return_error;
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
1740 1741
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
1742
				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1743
					err);
1744
				goto return_error;
1745
			}
1746 1747
			nand_chip->read_buf   = omap_read_buf_dma_pref;
			nand_chip->write_buf  = omap_write_buf_dma_pref;
1748 1749 1750
		}
		break;

1751
	case NAND_OMAP_PREFETCH_IRQ:
1752 1753 1754 1755
		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(&pdev->dev, "error getting fifo irq\n");
			err = -ENODEV;
1756
			goto return_error;
1757
		}
1758 1759 1760
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-fifo", info);
1761 1762
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1763 1764
						info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
1765
			goto return_error;
1766 1767 1768 1769 1770 1771
		}

		info->gpmc_irq_count = platform_get_irq(pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(&pdev->dev, "error getting count irq\n");
			err = -ENODEV;
1772
			goto return_error;
1773
		}
1774 1775 1776
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-count", info);
1777 1778 1779 1780
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
1781
			goto return_error;
1782
		}
1783

1784 1785
		nand_chip->read_buf  = omap_read_buf_irq_pref;
		nand_chip->write_buf = omap_write_buf_irq_pref;
1786

1787 1788
		break;

1789 1790 1791 1792
	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
1793
		goto return_error;
1794 1795
	}

1796
	/* populate MTD interface based on ECC scheme */
1797 1798
	nand_chip->ecc.layout	= &omap_oobinfo;
	ecclayout		= &omap_oobinfo;
1799
	switch (info->ecc_opt) {
1800 1801 1802
	case OMAP_ECC_HAM1_CODE_HW:
		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
		nand_chip->ecc.mode             = NAND_ECC_HW;
1803 1804 1805 1806 1807 1808
		nand_chip->ecc.bytes            = 3;
		nand_chip->ecc.size             = 512;
		nand_chip->ecc.strength         = 1;
		nand_chip->ecc.calculate        = omap_calculate_ecc;
		nand_chip->ecc.hwctl            = omap_enable_hwecc;
		nand_chip->ecc.correct          = omap_correct_data;
1809 1810 1811 1812 1813
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		if (nand_chip->options & NAND_BUSWIDTH_16)
1814
			oob_index		= BADBLOCK_MARKER_LENGTH;
1815
		else
1816 1817 1818
			oob_index		= 1;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1819 1820 1821
		/* no reserved-marker in ecclayout for this ecc-scheme */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1822 1823 1824 1825 1826 1827 1828 1829 1830
		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 7;
		nand_chip->ecc.strength		= 4;
1831
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1832
		nand_chip->ecc.correct		= nand_bch_correct_data;
1833
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1834 1835 1836 1837
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1838 1839 1840 1841 1842 1843
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1844 1845 1846
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1847
		/* software bch library is used for locating errors */
1848 1849 1850 1851 1852
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1853
			pr_err("nand: error: unable to use s/w BCH library\n");
1854
			err = -EINVAL;
1855 1856 1857 1858 1859
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1860
		goto return_error;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
#endif

	case OMAP_ECC_BCH4_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 7 + 1;
		nand_chip->ecc.strength		= 4;
1871
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1872
		nand_chip->ecc.correct		= omap_elm_correct_data;
1873
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1874 1875
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
1876 1877 1878 1879
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1880 1881 1882
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1883 1884 1885
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1886 1887 1888 1889
		/* This ECC scheme requires ELM H/W block */
		if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
			pr_err("nand: error: could not initialize ELM\n");
			err = -ENODEV;
1890
			goto return_error;
1891
		}
1892 1893 1894 1895
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1896
		goto return_error;
1897 1898 1899 1900 1901 1902 1903 1904 1905
#endif

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 13;
		nand_chip->ecc.strength		= 8;
1906
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1907
		nand_chip->ecc.correct		= nand_bch_correct_data;
1908
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1909 1910 1911 1912
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1913 1914 1915 1916 1917 1918
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1919 1920 1921
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1922
		/* software bch library is used for locating errors */
1923 1924 1925 1926 1927
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1928 1929
			pr_err("nand: error: unable to use s/w BCH library\n");
			err = -EINVAL;
1930
			goto return_error;
1931 1932 1933 1934 1935
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1936
		goto return_error;
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
#endif

	case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 13 + 1;
		nand_chip->ecc.strength		= 8;
1947
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1948
		nand_chip->ecc.correct		= omap_elm_correct_data;
1949
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1950 1951 1952
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* This ECC scheme requires ELM H/W block */
1953 1954
		err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
		if (err < 0) {
1955
			pr_err("nand: error: could not initialize ELM\n");
1956
			goto return_error;
1957
		}
1958 1959 1960 1961
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1962 1963 1964
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1965 1966 1967
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1968 1969 1970 1971
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1972
		goto return_error;
1973 1974
#endif

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	case OMAP_ECC_BCH16_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 26;
		nand_chip->ecc.strength		= 16;
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* This ECC scheme requires ELM H/W block */
		err = is_elm_present(info, pdata->elm_of_node, BCH16_ECC);
		if (err < 0) {
			pr_err("ELM is required for this ECC scheme\n");
			goto return_error;
		}
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
		goto return_error;
#endif
2009 2010 2011
	default:
		pr_err("nand: error: invalid or unsupported ECC scheme\n");
		err = -EINVAL;
2012
		goto return_error;
2013
	}
2014

2015 2016
	/* all OOB bytes from oobfree->offset till end off OOB are free */
	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2017 2018 2019 2020 2021
	/* check if NAND device's OOB is enough to store ECC signatures */
	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
		pr_err("not enough OOB bytes required = %d, available=%d\n",
					   ecclayout->eccbytes, mtd->oobsize);
		err = -EINVAL;
2022
		goto return_error;
2023
	}
2024

2025
	/* second phase scan */
2026
	if (nand_scan_tail(mtd)) {
2027
		err = -ENXIO;
2028
		goto return_error;
2029 2030
	}

2031
	ppdata.of_node = pdata->of_node;
2032
	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2033
				  pdata->nr_parts);
2034

2035
	platform_set_drvdata(pdev, mtd);
2036 2037 2038

	return 0;

2039
return_error:
2040 2041
	if (info->dma)
		dma_release_channel(info->dma);
2042 2043 2044 2045
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
2046 2047 2048 2049 2050 2051
	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
2052
	struct nand_chip *nand_chip = mtd->priv;
2053 2054
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
2055 2056 2057 2058
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
2059 2060
	if (info->dma)
		dma_release_channel(info->dma);
2061
	nand_release(mtd);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

2074
module_platform_driver(omap_nand_driver);
2075

2076
MODULE_ALIAS("platform:" DRIVER_NAME);
2077 2078
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");