omap2.c 56.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
12
#include <linux/dmaengine.h>
13 14
#include <linux/dma-mapping.h>
#include <linux/delay.h>
15
#include <linux/module.h>
16
#include <linux/interrupt.h>
17 18
#include <linux/jiffies.h>
#include <linux/sched.h>
19 20 21
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
22
#include <linux/omap-dma.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25 26
#include <linux/of.h>
#include <linux/of_device.h>
27

28
#include <linux/mtd/nand_bch.h>
29
#include <linux/platform_data/elm.h>
30

31
#include <linux/platform_data/mtd-nand-omap2.h>
32 33

#define	DRIVER_NAME	"omap2-nand"
34
#define	OMAP_NAND_TIMEOUT_MS	5000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

103 104 105 106 107
#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
108
#define	ECCSIZE0_SHIFT			12
109 110 111 112
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
113 114 115 116 117
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001
118

119 120
#define OMAP24XX_DMA_GPMC		4

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

137
#define BADBLOCK_MARKER_LENGTH		2
138

139 140 141 142 143 144
#ifdef CONFIG_MTD_NAND_OMAP_BCH
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
#endif

145 146
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
147

148 149 150 151 152 153 154 155 156
struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
157
	unsigned long			mem_size;
158
	enum omap_ecc			ecc_opt;
159
	struct completion		comp;
160
	struct dma_chan			*dma;
161 162
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
163 164 165 166 167 168
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
169
	struct gpmc_nand_regs		reg;
170
	/* fields specific for BCHx_HW ECC scheme */
171 172 173
	bool				is_elm_used;
	struct device			*elm_dev;
	struct device_node		*of_node;
174 175
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

249 250
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
251
			writeb(cmd, info->reg.gpmc_nand_command);
252 253

		else if (ctrl & NAND_ALE)
254
			writeb(cmd, info->reg.gpmc_nand_address);
255 256

		else /* NAND_NCE */
257
			writeb(cmd, info->reg.gpmc_nand_data);
258
	}
259 260
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
285
	u32	status = 0;
286 287 288

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
289 290
		/* wait until buffer is available for write */
		do {
291
			status = readl(info->reg.gpmc_status) &
292
					STATUS_BUFF_EMPTY;
293
		} while (!status);
294 295 296
	}
}

297 298 299 300 301 302 303 304 305 306
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

307
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
308 309 310 311 312 313 314 315 316 317 318 319 320
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
321
	u32	status = 0;
322 323 324 325
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
326
		iowrite16(*p++, info->nand.IO_ADDR_W);
327 328
		/* wait until buffer is available for write */
		do {
329
			status = readl(info->reg.gpmc_status) &
330
					STATUS_BUFF_EMPTY;
331
		} while (!status);
332 333
	}
}
334 335 336 337 338 339 340 341 342 343 344

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
345
	uint32_t r_count = 0;
346 347 348 349
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
350 351 352 353 354 355 356
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
357 358 359
	}

	/* configure and start prefetch transfer */
360 361
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
362 363 364
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
365
			omap_read_buf16(mtd, (u_char *)p, len);
366
		else
367
			omap_read_buf8(mtd, (u_char *)p, len);
368 369
	} else {
		do {
370
			r_count = readl(info->reg.gpmc_prefetch_status);
371
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
372 373
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
374 375 376 377
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
378
		omap_prefetch_reset(info->gpmc_cs, info);
379 380 381 382 383 384 385 386 387 388 389 390 391 392
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
393
	uint32_t w_count = 0;
394
	int i = 0, ret = 0;
395
	u16 *p = (u16 *)buf;
396
	unsigned long tim, limit;
397
	u32 val;
398 399 400

	/* take care of subpage writes */
	if (len % 2 != 0) {
401
		writeb(*buf, info->nand.IO_ADDR_W);
402 403 404 405 406
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
407 408
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
409 410 411
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
412
			omap_write_buf16(mtd, (u_char *)p, len);
413
		else
414
			omap_write_buf8(mtd, (u_char *)p, len);
415
	} else {
416
		while (len) {
417
			w_count = readl(info->reg.gpmc_prefetch_status);
418
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
419
			w_count = w_count >> 1;
420
			for (i = 0; (i < w_count) && len; i++, len -= 2)
421
				iowrite16(*p++, info->nand.IO_ADDR_W);
422
		}
423
		/* wait for data to flushed-out before reset the prefetch */
424 425 426
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
427
		do {
428
			cpu_relax();
429
			val = readl(info->reg.gpmc_prefetch_status);
430
			val = PREFETCH_STATUS_COUNT(val);
431
		} while (val && (tim++ < limit));
432

433
		/* disable and stop the PFPW engine */
434
		omap_prefetch_reset(info->gpmc_cs, info);
435 436 437
	}
}

438
/*
439
 * omap_nand_dma_callback: callback on the completion of dma transfer
440 441
 * @data: pointer to completion data structure
 */
442 443 444 445
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}
446 447

/*
448
 * omap_nand_dma_transfer: configure and start dma transfer
449 450 451 452 453 454 455 456 457 458
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
459
	struct dma_async_tx_descriptor *tx;
460 461
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
462
	struct scatterlist sg;
463
	unsigned long tim, limit;
464 465
	unsigned n;
	int ret;
466
	u32 val;
467 468 469 470 471 472 473 474 475 476 477 478 479

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

480 481 482
	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
483 484 485 486 487
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

488 489 490 491 492 493 494 495 496 497
	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

498 499 500
	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
501
	if (ret)
502
		/* PFPW engine is busy, use cpu copy method */
503
		goto out_copy_unmap;
504 505

	init_completion(&info->comp);
506
	dma_async_issue_pending(info->dma);
507 508 509

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
510 511
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
512 513

	do {
514
		cpu_relax();
515
		val = readl(info->reg.gpmc_prefetch_status);
516
		val = PREFETCH_STATUS_COUNT(val);
517
	} while (val && (tim++ < limit));
518 519

	/* disable and stop the PFPW engine */
520
	omap_prefetch_reset(info->gpmc_cs, info);
521

522
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
523 524
	return 0;

525
out_copy_unmap:
526
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
565
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
566 567
}

568
/*
569
 * omap_nand_irq - GPMC irq handler
570 571 572 573 574 575 576 577
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

578
	bytes = readl(info->reg.gpmc_prefetch_status);
579
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
580 581
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
582
		if (this_irq == info->gpmc_irq_count)
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

599
		if (this_irq == info->gpmc_irq_count)
600 601 602 603 604 605 606 607
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

608 609
	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
636 637
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
638 639 640 641 642
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
643 644 645

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
646 647 648 649 650

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
651
	omap_prefetch_reset(info->gpmc_cs, info);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;
674
	u32 val;
675 676 677 678 679 680 681 682 683 684

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

685
	/* configure and start prefetch transfer : size=24 */
686 687
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
688 689 690 691 692
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
693 694 695

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
696 697 698

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
699

700 701 702
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
703 704
	do {
		val = readl(info->reg.gpmc_prefetch_status);
705
		val = PREFETCH_STATUS_COUNT(val);
706
		cpu_relax();
707
	} while (val && (tim++ < limit));
708 709

	/* disable and stop the PFPW engine */
710
	omap_prefetch_reset(info->gpmc_cs, info);
711 712 713 714 715 716 717 718 719
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
748 749
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
828
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
829 830 831 832
		return -1;

	case 11:
		/* UN-Correctable error */
833
		pr_debug("ECC UNCORRECTED_ERROR B\n");
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

850 851
		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);
852 853 854

		page_data[find_byte] ^= (1 << find_bit);

855
		return 1;
856 857 858 859 860 861 862
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
863
		pr_debug("UNCORRECTED_ERROR default\n");
864 865 866 867 868 869 870 871 872 873 874 875
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
876 877 878 879 880
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
881 882 883 884 885 886 887
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
888
	int stat = 0;
889 890 891 892 893 894 895 896 897 898 899 900 901

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
902 903
			/* keep track of the number of corrected errors */
			stat += ret;
904 905 906 907 908
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
909
	return stat;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
929 930 931 932 933 934 935 936 937 938 939 940 941 942
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
	if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
943 944 945 946 947 948 949 950 951 952 953 954 955
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
956 957 958 959 960
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}
980

981 982 983
	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
984
}
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
1004
	int status, state = this->state;
1005 1006

	if (state == FL_ERASING)
T
Toan Pham 已提交
1007
		timeo += msecs_to_jiffies(400);
1008
	else
T
Toan Pham 已提交
1009
		timeo += msecs_to_jiffies(20);
1010

1011
	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1012
	while (time_before(jiffies, timeo)) {
1013
		status = readb(info->reg.gpmc_nand_data);
1014
		if (status & NAND_STATUS_READY)
1015
			break;
1016
		cond_resched();
1017
	}
1018

1019
	status = readb(info->reg.gpmc_nand_data);
1020 1021 1022 1023 1024 1025 1026 1027 1028
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
1029
	unsigned int val = 0;
1030 1031 1032
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

1033 1034
	val = readl(info->reg.gpmc_status);

1035
	if ((val & 0x100) == 0x100) {
1036
		return 1;
1037
	} else {
1038
		return 0;
1039 1040 1041
	}
}

1042
#if defined(CONFIG_MTD_NAND_ECC_BCH) || defined(CONFIG_MTD_NAND_OMAP_BCH)
1043 1044 1045 1046
/**
 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
 * @mtd: MTD device structure
 * @mode: Read/Write mode
1047 1048 1049 1050 1051 1052 1053
 *
 * When using BCH, sector size is hardcoded to 512 bytes.
 * Using wrapping mode 6 both for reading and writing if ELM module not uses
 * for error correction.
 * On writing,
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1054 1055 1056 1057
 */
static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
{
	int nerrors;
1058
	unsigned int dev_width, nsectors;
1059 1060 1061
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	struct nand_chip *chip = mtd->priv;
1062 1063 1064 1065 1066
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

	/* Using wrapping mode 6 for writing */
	wr_mode = BCH_WRAPMODE_6;
1067 1068

	/*
1069 1070
	 * ECC engine enabled for valid ecc_size0 nibbles
	 * and disabled for ecc_size1 nibbles.
1071
	 */
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	ecc_size0 = BCH_ECC_SIZE0;
	ecc_size1 = BCH_ECC_SIZE1;

	/* Perform ecc calculation on 512-byte sector */
	nsectors = 1;

	/* Update number of error correction */
	nerrors = info->nand.ecc.strength;

	/* Multi sector reading/writing for NAND flash with page size < 4096 */
	if (info->is_elm_used && (mtd->writesize <= 4096)) {
		if (mode == NAND_ECC_READ) {
			/* Using wrapping mode 1 for reading */
			wr_mode = BCH_WRAPMODE_1;

			/*
			 * ECC engine enabled for ecc_size0 nibbles
			 * and disabled for ecc_size1 nibbles.
			 */
			ecc_size0 = (nerrors == 8) ?
				BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
			ecc_size1 = (nerrors == 8) ?
				BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
		}

		/* Perform ecc calculation for one page (< 4096) */
		nsectors = info->nand.ecc.steps;
	}
1100 1101 1102

	writel(ECC1, info->reg.gpmc_ecc_control);

1103 1104
	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1105 1106
	writel(val, info->reg.gpmc_ecc_size_config);

1107 1108
	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

1109 1110 1111
	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
	       (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1112
	       (wr_mode                  <<  8) | /* wrap mode */
1113 1114 1115 1116 1117 1118 1119
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

1120
	/* Clear ecc and enable bits */
1121
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1122
}
1123
#endif
1124

1125
#ifdef CONFIG_MTD_NAND_ECC_BCH
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/**
 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 */
static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
				    u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	unsigned long nsectors, val1, val2;
	int i;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;

	for (i = 0; i < nsectors; i++) {

		/* Read hw-computed remainder */
		val1 = readl(info->reg.gpmc_bch_result0[i]);
		val2 = readl(info->reg.gpmc_bch_result1[i]);

		/*
		 * Add constant polynomial to remainder, in order to get an ecc
		 * sequence of 0xFFs for a buffer filled with 0xFFs; and
		 * left-justify the resulting polynomial.
		 */
		*ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
		*ecc_code++ = 0x13 ^ ((val2 >>  4) & 0xFF);
		*ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
		*ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
		*ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
		*ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
		*ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
	}

	return 0;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

/**
 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 */
static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
				    u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	unsigned long nsectors, val1, val2, val3, val4;
	int i;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;

	for (i = 0; i < nsectors; i++) {

		/* Read hw-computed remainder */
		val1 = readl(info->reg.gpmc_bch_result0[i]);
		val2 = readl(info->reg.gpmc_bch_result1[i]);
		val3 = readl(info->reg.gpmc_bch_result2[i]);
		val4 = readl(info->reg.gpmc_bch_result3[i]);

		/*
		 * Add constant polynomial to remainder, in order to get an ecc
		 * sequence of 0xFFs for a buffer filled with 0xFFs.
		 */
		*ecc_code++ = 0xef ^ (val4 & 0xFF);
		*ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
		*ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
		*ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
		*ecc_code++ = 0xed ^ (val3 & 0xFF);
		*ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
		*ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
		*ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
		*ecc_code++ = 0x97 ^ (val2 & 0xFF);
		*ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
		*ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
		*ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
		*ecc_code++ = 0xb5 ^ (val1 & 0xFF);
	}

	return 0;
1209
}
1210
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1211

1212
#ifdef CONFIG_MTD_NAND_OMAP_BCH
1213
/**
1214
 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1215 1216 1217 1218 1219 1220
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8 ecc vectors for the page
 */
1221 1222
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
					const u_char *dat, u_char *ecc_code)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
	int i, eccbchtsel;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	/*
	 * find BCH scheme used
	 * 0 -> BCH4
	 * 1 -> BCH8
	 */
	eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);

	for (i = 0; i < nsectors; i++) {

		/* Read hw-computed remainder */
		bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
		bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
		if (eccbchtsel) {
			bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
			bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
		}

		if (eccbchtsel) {
			/* BCH8 ecc scheme */
			*ecc_code++ = (bch_val4 & 0xFF);
			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
			*ecc_code++ = (bch_val3 & 0xFF);
			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
			*ecc_code++ = (bch_val2 & 0xFF);
			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
			*ecc_code++ = (bch_val1 & 0xFF);
			/*
			 * Setting 14th byte to zero to handle
			 * erased page & maintain compatibility
			 * with RBL
			 */
			*ecc_code++ = 0x0;
		} else {
			/* BCH4 ecc scheme */
			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
				((bch_val1 >> 28) & 0xF);
			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val1 & 0xF) << 4);
			/*
			 * Setting 8th byte to zero to handle
			 * erased page
			 */
			*ecc_code++ = 0x0;
		}
	}

	return 0;
}

/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @mtd:	MTD device structure
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
1336 1337
 * In case of non-zero ecc vector, first filter out erased-pages, and
 * then process data via ELM to detect bit-flips.
1338 1339 1340 1341 1342 1343
 */
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
			mtd);
1344
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1345 1346
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
1347
	int eccflag, actual_eccbytes;
1348 1349 1350 1351
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
1352 1353
	u_char *buf;
	int bitflip_count;
1354
	bool is_error_reported = false;
1355
	u32 bit_pos, byte_pos, error_max, pos;
1356
	int err;
1357

1358 1359 1360 1361
	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW:
		/* omit  7th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1362
		erased_ecc_vec = bch4_vector;
1363 1364 1365 1366
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* omit 14th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1367
		erased_ecc_vec = bch8_vector;
1368 1369 1370 1371 1372 1373
		break;
	default:
		pr_err("invalid driver configuration\n");
		return -EINVAL;
	}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */
1384
		for (j = 0; j < actual_eccbytes; j++) {
1385 1386 1387 1388 1389 1390 1391
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
1392 1393
			if (memcmp(calc_ecc, erased_ecc_vec,
						actual_eccbytes) == 0) {
1394
				/*
1395 1396
				 * calc_ecc[] matches pattern for ECC(all 0xff)
				 * so this is definitely an erased-page
1397 1398
				 */
			} else {
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
				buf = &data[info->nand.ecc.size * i];
				/*
				 * count number of 0-bits in read_buf.
				 * This check can be removed once a similar
				 * check is introduced in generic NAND driver
				 */
				bitflip_count = erased_sector_bitflips(
						buf, read_ecc, info);
				if (bitflip_count) {
					/*
					 * number of 0-bits within ECC limits
					 * So this may be an erased-page
					 */
					stat += bitflip_count;
				} else {
					/*
					 * Too many 0-bits. It may be a
					 * - programmed-page, OR
					 * - erased-page with many bit-flips
					 * So this page requires check by ELM
					 */
					err_vec[i].error_reported = true;
					is_error_reported = true;
1422 1423 1424 1425 1426
				}
			}
		}

		/* Update the ecc vector */
1427 1428
		calc_ecc += ecc->bytes;
		read_ecc += ecc->bytes;
1429 1430 1431 1432 1433 1434 1435 1436 1437
	}

	/* Check if any error reported */
	if (!is_error_reported)
		return 0;

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

1438
	err = 0;
1439
	for (i = 0; i < eccsteps; i++) {
1440 1441 1442 1443
		if (err_vec[i].error_uncorrectable) {
			pr_err("nand: uncorrectable bit-flips found\n");
			err = -EBADMSG;
		} else if (err_vec[i].error_reported) {
1444
			for (j = 0; j < err_vec[i].error_count; j++) {
1445 1446 1447
				switch (info->ecc_opt) {
				case OMAP_ECC_BCH4_CODE_HW:
					/* Add 4 bits to take care of padding */
1448 1449
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;
1450 1451 1452 1453 1454 1455 1456 1457
					break;
				case OMAP_ECC_BCH8_CODE_HW:
					pos = err_vec[i].error_loc[j];
					break;
				default:
					return -EINVAL;
				}
				error_max = (ecc->size + actual_eccbytes) * 8;
1458 1459 1460 1461 1462 1463 1464
				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
1465 1466 1467
					if (byte_pos < 512) {
						pr_debug("bitflip@dat[%d]=%x\n",
						     byte_pos, data[byte_pos]);
1468
						data[byte_pos] ^= 1 << bit_pos;
1469 1470 1471 1472
					} else {
						pr_debug("bitflip@oob[%d]=%x\n",
							(byte_pos - 512),
						     spare_ecc[byte_pos - 512]);
1473 1474
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
1475 1476 1477 1478 1479
					}
				} else {
					pr_err("invalid bit-flip @ %d:%d\n",
							 byte_pos, bit_pos);
					err = -EBADMSG;
1480 1481 1482 1483 1484 1485 1486 1487
				}
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
1488
		data += ecc->size;
1489
		spare_ecc += ecc->bytes;
1490 1491
	}

1492
	return (err) ? err : stat;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
}

/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required)
{
	int i;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(mtd, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	/* Write ecc vector to OOB area */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *oob = &chip->oob_poi[eccpos[0]];
	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
	int stat;
	unsigned int max_bitflips = 0;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(mtd, buf, mtd->writesize);

	/* Read oob bytes */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
	chip->read_buf(mtd, oob, chip->ecc.total);

	/* Calculate ecc bytes */
	chip->ecc.calculate(mtd, buf, ecc_calc);

	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);

	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

1581
/**
1582 1583 1584
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1585
 */
1586 1587
static int is_elm_present(struct omap_nand_info *info,
			struct device_node *elm_node, enum bch_ecc bch_type)
1588
{
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	struct platform_device *pdev;
	info->is_elm_used = false;
	/* check whether elm-id is passed via DT */
	if (!elm_node) {
		pr_err("nand: error: ELM DT node not found\n");
		return -ENODEV;
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
		pr_err("nand: error: ELM device not found\n");
		return -ENODEV;
1601
	}
1602 1603 1604 1605 1606 1607
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
	if (elm_config(info->elm_dev, bch_type))
		return -ENODEV;
	info->is_elm_used = true;
	return 0;
1608
}
1609
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1610

B
Bill Pemberton 已提交
1611
static int omap_nand_probe(struct platform_device *pdev)
1612 1613 1614
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
1615 1616
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
1617
	struct nand_ecclayout		*ecclayout;
1618
	int				err;
1619
	int				i;
1620 1621
	dma_cap_mask_t			mask;
	unsigned			sig;
1622
	unsigned			oob_index;
1623
	struct resource			*res;
1624
	struct mtd_part_parser_data	ppdata = {};
1625

J
Jingoo Han 已提交
1626
	pdata = dev_get_platdata(&pdev->dev);
1627 1628 1629 1630 1631
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

1632 1633
	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
				GFP_KERNEL);
1634 1635 1636 1637 1638 1639 1640 1641
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

1642
	info->pdev		= pdev;
1643
	info->gpmc_cs		= pdata->cs;
1644
	info->reg		= pdata->reg;
1645
	info->of_node		= pdata->of_node;
1646
	info->ecc_opt		= pdata->ecc_opt;
1647 1648 1649 1650 1651
	mtd			= &info->mtd;
	mtd->priv		= &info->nand;
	mtd->name		= dev_name(&pdev->dev);
	mtd->owner		= THIS_MODULE;
	nand_chip		= &info->nand;
1652
	nand_chip->ecc.priv	= NULL;
1653
	nand_chip->options	|= NAND_SKIP_BBTSCAN;
1654

1655 1656 1657 1658
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res == NULL) {
		err = -EINVAL;
		dev_err(&pdev->dev, "error getting memory resource\n");
1659
		goto return_error;
1660
	}
1661

1662 1663 1664
	info->phys_base = res->start;
	info->mem_size = resource_size(res);

1665 1666
	if (!devm_request_mem_region(&pdev->dev, info->phys_base,
				info->mem_size,	pdev->dev.driver->name)) {
1667
		err = -EBUSY;
1668
		goto return_error;
1669 1670
	}

1671 1672
	nand_chip->IO_ADDR_R = devm_ioremap(&pdev->dev, info->phys_base,
						info->mem_size);
1673
	if (!nand_chip->IO_ADDR_R) {
1674
		err = -ENOMEM;
1675
		goto return_error;
1676
	}
1677

1678
	nand_chip->controller = &info->controller;
1679

1680 1681
	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;
1682 1683 1684

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
1685 1686
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1687 1688 1689 1690
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
1691 1692
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
1693
	} else {
1694 1695
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
1696 1697
	}

1698 1699 1700 1701 1702
	/* scan NAND device connected to chip controller */
	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
	if (nand_scan_ident(mtd, 1, NULL)) {
		pr_err("nand device scan failed, may be bus-width mismatch\n");
		err = -ENXIO;
1703
		goto return_error;
1704 1705
	}

1706 1707 1708 1709
	/* check for small page devices */
	if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
		pr_err("small page devices are not supported\n");
		err = -EINVAL;
1710
		goto return_error;
1711 1712
	}

1713
	/* re-populate low-level callbacks based on xfer modes */
1714 1715
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
1716 1717
		nand_chip->read_buf   = omap_read_buf_pref;
		nand_chip->write_buf  = omap_write_buf_pref;
1718 1719 1720
		break;

	case NAND_OMAP_POLLED:
1721
		/* Use nand_base defaults for {read,write}_buf */
1722 1723 1724
		break;

	case NAND_OMAP_PREFETCH_DMA:
1725 1726 1727 1728 1729
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		sig = OMAP24XX_DMA_GPMC;
		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
		if (!info->dma) {
1730 1731
			dev_err(&pdev->dev, "DMA engine request failed\n");
			err = -ENXIO;
1732
			goto return_error;
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
1743 1744
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
1745
				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1746
					err);
1747
				goto return_error;
1748
			}
1749 1750
			nand_chip->read_buf   = omap_read_buf_dma_pref;
			nand_chip->write_buf  = omap_write_buf_dma_pref;
1751 1752 1753
		}
		break;

1754
	case NAND_OMAP_PREFETCH_IRQ:
1755 1756 1757 1758
		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(&pdev->dev, "error getting fifo irq\n");
			err = -ENODEV;
1759
			goto return_error;
1760
		}
1761 1762 1763
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-fifo", info);
1764 1765
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1766 1767
						info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
1768
			goto return_error;
1769 1770 1771 1772 1773 1774
		}

		info->gpmc_irq_count = platform_get_irq(pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(&pdev->dev, "error getting count irq\n");
			err = -ENODEV;
1775
			goto return_error;
1776
		}
1777 1778 1779
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-count", info);
1780 1781 1782 1783
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
1784
			goto return_error;
1785
		}
1786

1787 1788
		nand_chip->read_buf  = omap_read_buf_irq_pref;
		nand_chip->write_buf = omap_write_buf_irq_pref;
1789

1790 1791
		break;

1792 1793 1794 1795
	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
1796
		goto return_error;
1797 1798
	}

1799
	/* populate MTD interface based on ECC scheme */
1800 1801
	nand_chip->ecc.layout	= &omap_oobinfo;
	ecclayout		= &omap_oobinfo;
1802
	switch (info->ecc_opt) {
1803 1804 1805
	case OMAP_ECC_HAM1_CODE_HW:
		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
		nand_chip->ecc.mode             = NAND_ECC_HW;
1806 1807 1808 1809 1810 1811
		nand_chip->ecc.bytes            = 3;
		nand_chip->ecc.size             = 512;
		nand_chip->ecc.strength         = 1;
		nand_chip->ecc.calculate        = omap_calculate_ecc;
		nand_chip->ecc.hwctl            = omap_enable_hwecc;
		nand_chip->ecc.correct          = omap_correct_data;
1812 1813 1814 1815 1816
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		if (nand_chip->options & NAND_BUSWIDTH_16)
1817
			oob_index		= BADBLOCK_MARKER_LENGTH;
1818
		else
1819 1820 1821
			oob_index		= 1;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1822 1823 1824
		/* no reserved-marker in ecclayout for this ecc-scheme */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 7;
		nand_chip->ecc.strength		= 4;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
1835
		nand_chip->ecc.correct		= nand_bch_correct_data;
1836
		nand_chip->ecc.calculate	= omap3_calculate_ecc_bch4;
1837 1838 1839 1840
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1841 1842 1843 1844 1845 1846
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1847 1848 1849
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1850
		/* software bch library is used for locating errors */
1851 1852 1853 1854 1855
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1856
			pr_err("nand: error: unable to use s/w BCH library\n");
1857
			err = -EINVAL;
1858 1859 1860 1861 1862
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1863
		goto return_error;
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
#endif

	case OMAP_ECC_BCH4_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 7 + 1;
		nand_chip->ecc.strength		= 4;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
1876
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1877 1878
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
1879 1880 1881 1882
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1883 1884 1885
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1886 1887 1888
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1889 1890 1891 1892
		/* This ECC scheme requires ELM H/W block */
		if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
			pr_err("nand: error: could not initialize ELM\n");
			err = -ENODEV;
1893
			goto return_error;
1894
		}
1895 1896 1897 1898
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1899
		goto return_error;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
#endif

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 13;
		nand_chip->ecc.strength		= 8;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
1910
		nand_chip->ecc.correct		= nand_bch_correct_data;
1911
		nand_chip->ecc.calculate	= omap3_calculate_ecc_bch8;
1912 1913 1914 1915
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1916 1917 1918 1919 1920 1921
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1922 1923 1924
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1925
		/* software bch library is used for locating errors */
1926 1927 1928 1929 1930
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1931 1932
			pr_err("nand: error: unable to use s/w BCH library\n");
			err = -EINVAL;
1933
			goto return_error;
1934 1935 1936 1937 1938
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1939
		goto return_error;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
#endif

	case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 13 + 1;
		nand_chip->ecc.strength		= 8;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
1952
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1953 1954 1955
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* This ECC scheme requires ELM H/W block */
1956 1957
		err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
		if (err < 0) {
1958
			pr_err("nand: error: could not initialize ELM\n");
1959
			goto return_error;
1960
		}
1961 1962 1963 1964
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1965 1966 1967
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1968 1969 1970
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1971 1972 1973 1974
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1975
		goto return_error;
1976 1977 1978 1979 1980
#endif

	default:
		pr_err("nand: error: invalid or unsupported ECC scheme\n");
		err = -EINVAL;
1981
		goto return_error;
1982
	}
1983

1984 1985
	/* all OOB bytes from oobfree->offset till end off OOB are free */
	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1986 1987 1988 1989 1990
	/* check if NAND device's OOB is enough to store ECC signatures */
	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
		pr_err("not enough OOB bytes required = %d, available=%d\n",
					   ecclayout->eccbytes, mtd->oobsize);
		err = -EINVAL;
1991
		goto return_error;
1992
	}
1993

1994
	/* second phase scan */
1995
	if (nand_scan_tail(mtd)) {
1996
		err = -ENXIO;
1997
		goto return_error;
1998 1999
	}

2000
	ppdata.of_node = pdata->of_node;
2001
	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2002
				  pdata->nr_parts);
2003

2004
	platform_set_drvdata(pdev, mtd);
2005 2006 2007

	return 0;

2008
return_error:
2009 2010
	if (info->dma)
		dma_release_channel(info->dma);
2011 2012 2013 2014
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
2015 2016 2017 2018 2019 2020
	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
2021
	struct nand_chip *nand_chip = mtd->priv;
2022 2023
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
2024 2025 2026 2027
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
2028 2029
	if (info->dma)
		dma_release_channel(info->dma);
2030
	nand_release(mtd);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

2043
module_platform_driver(omap_nand_driver);
2044

2045
MODULE_ALIAS("platform:" DRIVER_NAME);
2046 2047
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");