omap2.c 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
14
#include <linux/module.h>
15
#include <linux/interrupt.h>
16 17
#include <linux/jiffies.h>
#include <linux/sched.h>
18 19 20 21
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
22
#include <linux/slab.h>
23

24 25 26 27
#ifdef CONFIG_MTD_NAND_OMAP_BCH
#include <linux/bch.h>
#endif

28 29 30
#include <plat/dma.h>
#include <plat/gpmc.h>
#include <plat/nand.h>
31 32

#define	DRIVER_NAME	"omap2-nand"
33
#define	OMAP_NAND_TIMEOUT_MS	5000
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

102 103 104 105 106 107 108 109 110 111 112 113
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
/* Define some generic bad / good block scan pattern which are used
 * while scanning a device for factory marked good / bad blocks
 */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr bb_descrip_flashbased = {
	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
	.offs = 0,
	.len = 1,
	.pattern = scan_ff_pattern,
};
114

115

116 117 118 119 120 121 122 123 124
struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
125 126
	struct completion		comp;
	int				dma_ch;
127 128 129 130 131 132 133
	int				gpmc_irq;
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
134 135 136 137 138

#ifdef CONFIG_MTD_NAND_OMAP_BCH
	struct bch_control             *bch;
	struct nand_ecclayout           ecclayout;
#endif
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
};

/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

157 158 159 160 161 162 163 164 165 166
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);

		else if (ctrl & NAND_ALE)
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);

		else /* NAND_NCE */
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
	}
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
193
	u32	status = 0;
194 195 196

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
197 198 199 200
		/* wait until buffer is available for write */
		do {
			status = gpmc_read_status(GPMC_STATUS_BUFFER);
		} while (!status);
201 202 203
	}
}

204 205 206 207 208 209 210 211 212 213
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

214
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
215 216 217 218 219 220 221 222 223 224 225 226 227
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
228
	u32	status = 0;
229 230 231 232
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
233
		iowrite16(*p++, info->nand.IO_ADDR_W);
234 235 236 237
		/* wait until buffer is available for write */
		do {
			status = gpmc_read_status(GPMC_STATUS_BUFFER);
		} while (!status);
238 239
	}
}
240 241 242 243 244 245 246 247 248 249 250

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
251
	uint32_t r_count = 0;
252 253 254 255
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
256 257 258 259 260 261 262
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
263 264 265
	}

	/* configure and start prefetch transfer */
266 267
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
268 269 270
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
271
			omap_read_buf16(mtd, (u_char *)p, len);
272
		else
273
			omap_read_buf8(mtd, (u_char *)p, len);
274 275
	} else {
		do {
276 277 278
			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
279 280 281 282
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
283
		gpmc_prefetch_reset(info->gpmc_cs);
284 285 286 287 288 289 290 291 292 293 294 295 296 297
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
298
	uint32_t w_count = 0;
299
	int i = 0, ret = 0;
300
	u16 *p = (u16 *)buf;
301
	unsigned long tim, limit;
302 303 304

	/* take care of subpage writes */
	if (len % 2 != 0) {
305
		writeb(*buf, info->nand.IO_ADDR_W);
306 307 308 309 310
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
311 312
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
313 314 315
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
316
			omap_write_buf16(mtd, (u_char *)p, len);
317
		else
318
			omap_write_buf8(mtd, (u_char *)p, len);
319
	} else {
320 321 322
		while (len) {
			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
			w_count = w_count >> 1;
323
			for (i = 0; (i < w_count) && len; i++, len -= 2)
324
				iowrite16(*p++, info->nand.IO_ADDR_W);
325
		}
326
		/* wait for data to flushed-out before reset the prefetch */
327 328 329 330 331 332
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
		while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
			cpu_relax();

333
		/* disable and stop the PFPW engine */
334
		gpmc_prefetch_reset(info->gpmc_cs);
335 336 337
	}
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/*
 * omap_nand_dma_cb: callback on the completion of dma transfer
 * @lch: logical channel
 * @ch_satuts: channel status
 * @data: pointer to completion data structure
 */
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
{
	complete((struct completion *) data);
}

/*
 * omap_nand_dma_transfer: configer and start dma transfer
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
	dma_addr_t dma_addr;
	int ret;
365
	unsigned long tim, limit;
366

367 368 369
	/* The fifo depth is 64 bytes max.
	 * But configure the FIFO-threahold to 32 to get a sync at each frame
	 * and frame length is 32 bytes.
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	 */
	int buf_len = len >> 6;

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

	if (is_write) {
	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
						info->phys_base, 0, 0);
	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
							dma_addr, 0, 0);
	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
	} else {
	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
						info->phys_base, 0, 0);
	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
							dma_addr, 0, 0);
	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
	}
	/*  configure and start prefetch transfer */
410 411
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
412
	if (ret)
413
		/* PFPW engine is busy, use cpu copy method */
414
		goto out_copy_unmap;
415 416 417 418 419 420 421

	init_completion(&info->comp);

	omap_start_dma(info->dma_ch);

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
422 423 424 425
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
		cpu_relax();
426 427

	/* disable and stop the PFPW engine */
D
Daniel J Blueman 已提交
428
	gpmc_prefetch_reset(info->gpmc_cs);
429 430 431 432

	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
	return 0;

433 434
out_copy_unmap:
	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
473
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
474 475
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/*
 * omap_nand_irq - GMPC irq handler
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;
	u32 irq_stat;

	irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
	bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
		if (irq_stat & 0x2)
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

		if (irq_stat & 0x2)
			goto done;
	}
	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);

	return IRQ_HANDLED;

done:
	complete(&info->comp);
	/* disable irq */
	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);

	/* clear status */
	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
548 549
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
	/* enable irq */
	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
		(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
	gpmc_prefetch_reset(info->gpmc_cs);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

596 597 598
	/* configure and start prefetch transfer : size=24 */
	ret = gpmc_prefetch_enable(info->gpmc_cs,
			(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
	/* enable irq */
	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
			(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
		cpu_relax();

	/* disable and stop the PFPW engine */
	gpmc_prefetch_reset(info->gpmc_cs);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
/**
 * omap_verify_buf - Verify chip data against buffer
 * @mtd: MTD device structure
 * @buf: buffer containing the data to compare
 * @len: number of bytes to compare
 */
static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	u16 *p = (u16 *) buf;

	len >>= 1;
	while (len--) {
		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
			return -EFAULT;
	}

	return 0;
}

/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
676 677
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
756
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
757 758 759 760
		return -1;

	case 11:
		/* UN-Correctable error */
761
		pr_debug("ECC UNCORRECTED_ERROR B\n");
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

778 779
		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);
780 781 782

		page_data[find_byte] ^= (1 << find_bit);

783
		return 1;
784 785 786 787 788 789 790
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
791
		pr_debug("UNCORRECTED_ERROR default\n");
792 793 794 795 796 797 798 799 800 801 802 803
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
804 805 806 807 808
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
809 810 811 812 813 814 815
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
816
	int stat = 0;
817 818 819 820 821 822 823 824 825 826 827 828 829

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
830 831
			/* keep track of the number of corrected errors */
			stat += ret;
832 833 834 835 836
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
837
	return stat;
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
857
	return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
858 859 860 861 862 863 864 865 866 867 868 869 870 871
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

872
	gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
873
}
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
893
	int status, state = this->state;
894 895 896 897 898 899

	if (state == FL_ERASING)
		timeo += (HZ * 400) / 1000;
	else
		timeo += (HZ * 20) / 1000;

900 901
	gpmc_nand_write(info->gpmc_cs,
			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
902
	while (time_before(jiffies, timeo)) {
903
		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
904
		if (status & NAND_STATUS_READY)
905
			break;
906
		cond_resched();
907
	}
908 909

	status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
910 911 912 913 914 915 916 917 918
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
919
	unsigned int val = 0;
920 921 922
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

923
	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
924 925 926 927
	if ((val & 0x100) == 0x100) {
		/* Clear IRQ Interrupt */
		val |= 0x100;
		val &= ~(0x0);
928
		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
929 930 931 932 933
	} else {
		unsigned int cnt = 0;
		while (cnt++ < 0x1FF) {
			if  ((val & 0x100) == 0x100)
				return 0;
934
			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
935 936 937 938 939 940
		}
	}

	return 1;
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
#ifdef CONFIG_MTD_NAND_OMAP_BCH

/**
 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
{
	int nerrors;
	unsigned int dev_width;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	struct nand_chip *chip = mtd->priv;

	nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
	/*
	 * Program GPMC to perform correction on one 512-byte sector at a time.
	 * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
	 * gives a slight (5%) performance gain (but requires additional code).
	 */
	(void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors);
}

/**
 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 */
static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
				    u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code);
}

/**
 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 */
static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
				    u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code);
}

/**
 * omap3_correct_data_bch - Decode received data and correct errors
 * @mtd: MTD device structure
 * @data: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 */
static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
				  u_char *read_ecc, u_char *calc_ecc)
{
	int i, count;
	/* cannot correct more than 8 errors */
	unsigned int errloc[8];
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);

	count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
			   errloc);
	if (count > 0) {
		/* correct errors */
		for (i = 0; i < count; i++) {
			/* correct data only, not ecc bytes */
			if (errloc[i] < 8*512)
				data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
			pr_debug("corrected bitflip %u\n", errloc[i]);
		}
	} else if (count < 0) {
		pr_err("ecc unrecoverable error\n");
	}
	return count;
}

/**
 * omap3_free_bch - Release BCH ecc resources
 * @mtd: MTD device structure
 */
static void omap3_free_bch(struct mtd_info *mtd)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	if (info->bch) {
		free_bch(info->bch);
		info->bch = NULL;
	}
}

/**
 * omap3_init_bch - Initialize BCH ECC
 * @mtd: MTD device structure
 * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
 */
static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
{
	int ret, max_errors;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
#ifdef CONFIG_MTD_NAND_OMAP_BCH8
	const int hw_errors = 8;
#else
	const int hw_errors = 4;
#endif
	info->bch = NULL;

	max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
	if (max_errors != hw_errors) {
		pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
		       max_errors, hw_errors);
		goto fail;
	}

	/* initialize GPMC BCH engine */
	ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors);
	if (ret)
		goto fail;

	/* software bch library is only used to detect and locate errors */
	info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
	if (!info->bch)
		goto fail;

	info->nand.ecc.size    = 512;
	info->nand.ecc.hwctl   = omap3_enable_hwecc_bch;
	info->nand.ecc.correct = omap3_correct_data_bch;
	info->nand.ecc.mode    = NAND_ECC_HW;

	/*
	 * The number of corrected errors in an ecc block that will trigger
	 * block scrubbing defaults to the ecc strength (4 or 8).
	 * Set mtd->bitflip_threshold here to define a custom threshold.
	 */

	if (max_errors == 8) {
		info->nand.ecc.strength  = 8;
		info->nand.ecc.bytes     = 13;
		info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
	} else {
		info->nand.ecc.strength  = 4;
		info->nand.ecc.bytes     = 7;
		info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
	}

	pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
	return 0;
fail:
	omap3_free_bch(mtd);
	return -1;
}

/**
 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
 * @mtd: MTD device structure
 */
static int omap3_init_bch_tail(struct mtd_info *mtd)
{
	int i, steps;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	struct nand_ecclayout *layout = &info->ecclayout;

	/* build oob layout */
	steps = mtd->writesize/info->nand.ecc.size;
	layout->eccbytes = steps*info->nand.ecc.bytes;

	/* do not bother creating special oob layouts for small page devices */
	if (mtd->oobsize < 64) {
		pr_err("BCH ecc is not supported on small page devices\n");
		goto fail;
	}

	/* reserve 2 bytes for bad block marker */
	if (layout->eccbytes+2 > mtd->oobsize) {
		pr_err("no oob layout available for oobsize %d eccbytes %u\n",
		       mtd->oobsize, layout->eccbytes);
		goto fail;
	}

	/* put ecc bytes at oob tail */
	for (i = 0; i < layout->eccbytes; i++)
		layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;

	layout->oobfree[0].offset = 2;
	layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
	info->nand.ecc.layout = layout;

	if (!(info->nand.options & NAND_BUSWIDTH_16))
		info->nand.badblock_pattern = &bb_descrip_flashbased;
	return 0;
fail:
	omap3_free_bch(mtd);
	return -1;
}

#else
static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
{
	pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
	return -1;
}
static int omap3_init_bch_tail(struct mtd_info *mtd)
{
	return -1;
}
static void omap3_free_bch(struct mtd_info *mtd)
{
}
#endif /* CONFIG_MTD_NAND_OMAP_BCH */

1161 1162 1163 1164 1165
static int __devinit omap_nand_probe(struct platform_device *pdev)
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
	int				err;
1166
	int				i, offset;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	pdata = pdev->dev.platform_data;
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

	info->pdev = pdev;

	info->gpmc_cs		= pdata->cs;
1186
	info->phys_base		= pdata->phys_base;
1187 1188 1189 1190 1191

	info->mtd.priv		= &info->nand;
	info->mtd.name		= dev_name(&pdev->dev);
	info->mtd.owner		= THIS_MODULE;

1192
	info->nand.options	= pdata->devsize;
1193
	info->nand.options	|= NAND_SKIP_BBTSCAN;
1194 1195

	/* NAND write protect off */
1196
	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
1197 1198 1199 1200

	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
				pdev->dev.driver->name)) {
		err = -EBUSY;
1201
		goto out_free_info;
1202 1203 1204 1205 1206 1207 1208
	}

	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
	if (!info->nand.IO_ADDR_R) {
		err = -ENOMEM;
		goto out_release_mem_region;
	}
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	info->nand.controller = &info->controller;

	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
	info->nand.cmd_ctrl  = omap_hwcontrol;

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
	 * funcrtion and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line.Otherwise use a standard
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
		info->nand.dev_ready = omap_dev_ready;
		info->nand.chip_delay = 0;
	} else {
		info->nand.waitfunc = omap_wait;
		info->nand.chip_delay = 50;
	}

1230 1231
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
1232 1233
		info->nand.read_buf   = omap_read_buf_pref;
		info->nand.write_buf  = omap_write_buf_pref;
1234 1235 1236
		break;

	case NAND_OMAP_POLLED:
1237 1238 1239 1240 1241 1242 1243
		if (info->nand.options & NAND_BUSWIDTH_16) {
			info->nand.read_buf   = omap_read_buf16;
			info->nand.write_buf  = omap_write_buf16;
		} else {
			info->nand.read_buf   = omap_read_buf8;
			info->nand.write_buf  = omap_write_buf8;
		}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		break;

	case NAND_OMAP_PREFETCH_DMA:
		err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
				omap_nand_dma_cb, &info->comp, &info->dma_ch);
		if (err < 0) {
			info->dma_ch = -1;
			dev_err(&pdev->dev, "DMA request failed!\n");
			goto out_release_mem_region;
		} else {
			omap_set_dma_dest_burst_mode(info->dma_ch,
					OMAP_DMA_DATA_BURST_16);
			omap_set_dma_src_burst_mode(info->dma_ch,
					OMAP_DMA_DATA_BURST_16);

			info->nand.read_buf   = omap_read_buf_dma_pref;
			info->nand.write_buf  = omap_write_buf_dma_pref;
		}
		break;

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	case NAND_OMAP_PREFETCH_IRQ:
		err = request_irq(pdata->gpmc_irq,
				omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
							pdata->gpmc_irq, err);
			goto out_release_mem_region;
		} else {
			info->gpmc_irq	     = pdata->gpmc_irq;
			info->nand.read_buf  = omap_read_buf_irq_pref;
			info->nand.write_buf = omap_write_buf_irq_pref;
		}
		break;

1278 1279 1280 1281 1282
	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
		goto out_release_mem_region;
1283 1284 1285
	}

	info->nand.verify_buf = omap_verify_buf;
1286

1287 1288 1289
	/* selsect the ecc type */
	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
		info->nand.ecc.mode = NAND_ECC_SOFT;
1290 1291
	else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
		(pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1292 1293
		info->nand.ecc.bytes            = 3;
		info->nand.ecc.size             = 512;
M
Mike Dunn 已提交
1294
		info->nand.ecc.strength         = 1;
1295 1296 1297 1298
		info->nand.ecc.calculate        = omap_calculate_ecc;
		info->nand.ecc.hwctl            = omap_enable_hwecc;
		info->nand.ecc.correct          = omap_correct_data;
		info->nand.ecc.mode             = NAND_ECC_HW;
1299 1300 1301 1302 1303 1304 1305
	} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
		err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
		if (err) {
			err = -EINVAL;
			goto out_release_mem_region;
		}
1306
	}
1307 1308 1309 1310

	/* DIP switches on some boards change between 8 and 16 bit
	 * bus widths for flash.  Try the other width if the first try fails.
	 */
1311
	if (nand_scan_ident(&info->mtd, 1, NULL)) {
1312
		info->nand.options ^= NAND_BUSWIDTH_16;
1313
		if (nand_scan_ident(&info->mtd, 1, NULL)) {
1314 1315 1316 1317 1318
			err = -ENXIO;
			goto out_release_mem_region;
		}
	}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	/* rom code layout */
	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {

		if (info->nand.options & NAND_BUSWIDTH_16)
			offset = 2;
		else {
			offset = 1;
			info->nand.badblock_pattern = &bb_descrip_flashbased;
		}
		omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
		for (i = 0; i < omap_oobinfo.eccbytes; i++)
			omap_oobinfo.eccpos[i] = i+offset;

		omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
		omap_oobinfo.oobfree->length = info->mtd.oobsize -
					(offset + omap_oobinfo.eccbytes);

		info->nand.ecc.layout = &omap_oobinfo;
1337 1338 1339 1340 1341 1342 1343 1344
	} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
		/* build OOB layout for BCH ECC correction */
		err = omap3_init_bch_tail(&info->mtd);
		if (err) {
			err = -EINVAL;
			goto out_release_mem_region;
		}
1345
	}
1346

1347 1348 1349 1350 1351 1352
	/* second phase scan */
	if (nand_scan_tail(&info->mtd)) {
		err = -ENXIO;
		goto out_release_mem_region;
	}

1353 1354
	mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
				  pdata->nr_parts);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	platform_set_drvdata(pdev, &info->mtd);

	return 0;

out_release_mem_region:
	release_mem_region(info->phys_base, NAND_IO_SIZE);
out_free_info:
	kfree(info);

	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
1371 1372
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
1373
	omap3_free_bch(&info->mtd);
1374 1375

	platform_set_drvdata(pdev, NULL);
1376
	if (info->dma_ch != -1)
1377 1378
		omap_free_dma(info->dma_ch);

1379 1380 1381
	if (info->gpmc_irq)
		free_irq(info->gpmc_irq, info);

1382 1383
	/* Release NAND device, its internal structures and partitions */
	nand_release(&info->mtd);
1384
	iounmap(info->nand.IO_ADDR_R);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	kfree(&info->mtd);
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

1398
module_platform_driver(omap_nand_driver);
1399

1400
MODULE_ALIAS("platform:" DRIVER_NAME);
1401 1402
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");