omap2.c 59.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
12
#include <linux/dmaengine.h>
13 14
#include <linux/dma-mapping.h>
#include <linux/delay.h>
15
#include <linux/module.h>
16
#include <linux/interrupt.h>
17 18
#include <linux/jiffies.h>
#include <linux/sched.h>
19 20 21
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
22
#include <linux/omap-dma.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25 26
#include <linux/of.h>
#include <linux/of_device.h>
27

28
#include <linux/bch.h>
29
#include <linux/platform_data/elm.h>
30

31
#include <linux/platform_data/mtd-nand-omap2.h>
32 33

#define	DRIVER_NAME	"omap2-nand"
34
#define	OMAP_NAND_TIMEOUT_MS	5000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

103 104 105 106 107
#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
108
#define	ECCSIZE0_SHIFT			12
109 110 111 112
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
113 114 115 116 117
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001
118

119 120
#define OMAP24XX_DMA_GPMC		4

121 122 123
#define BCH8_MAX_ERROR		8	/* upto 8 bit correctable */
#define BCH4_MAX_ERROR		4	/* upto 4 bit correctable */

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4
#define BCH8_ECC_MAX		((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
#define BCH4_ECC_MAX		((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

142 143
#define OMAP_ECC_BCH8_POLYNOMIAL	0x201b

144 145 146 147 148 149
#ifdef CONFIG_MTD_NAND_OMAP_BCH
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
#endif

150 151 152 153 154 155 156
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
/* Define some generic bad / good block scan pattern which are used
 * while scanning a device for factory marked good / bad blocks
 */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr bb_descrip_flashbased = {
157
	.options = NAND_BBT_SCANALLPAGES,
158 159 160 161
	.offs = 0,
	.len = 1,
	.pattern = scan_ff_pattern,
};
162

163

164 165 166 167 168 169 170 171 172
struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
173
	unsigned long			mem_size;
174
	struct completion		comp;
175
	struct dma_chan			*dma;
176 177
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
178 179 180 181 182 183
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
184
	struct gpmc_nand_regs		reg;
185
	/* fields specific for BCHx_HW ECC scheme */
186 187
	struct bch_control             *bch;
	struct nand_ecclayout           ecclayout;
188 189 190
	bool				is_elm_used;
	struct device			*elm_dev;
	struct device_node		*of_node;
191 192
};

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

266 267
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
268
			writeb(cmd, info->reg.gpmc_nand_command);
269 270

		else if (ctrl & NAND_ALE)
271
			writeb(cmd, info->reg.gpmc_nand_address);
272 273

		else /* NAND_NCE */
274
			writeb(cmd, info->reg.gpmc_nand_data);
275
	}
276 277
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
302
	u32	status = 0;
303 304 305

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
306 307
		/* wait until buffer is available for write */
		do {
308
			status = readl(info->reg.gpmc_status) &
309
					STATUS_BUFF_EMPTY;
310
		} while (!status);
311 312 313
	}
}

314 315 316 317 318 319 320 321 322 323
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

324
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
325 326 327 328 329 330 331 332 333 334 335 336 337
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
338
	u32	status = 0;
339 340 341 342
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
343
		iowrite16(*p++, info->nand.IO_ADDR_W);
344 345
		/* wait until buffer is available for write */
		do {
346
			status = readl(info->reg.gpmc_status) &
347
					STATUS_BUFF_EMPTY;
348
		} while (!status);
349 350
	}
}
351 352 353 354 355 356 357 358 359 360 361

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
362
	uint32_t r_count = 0;
363 364 365 366
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
367 368 369 370 371 372 373
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
374 375 376
	}

	/* configure and start prefetch transfer */
377 378
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
379 380 381
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
382
			omap_read_buf16(mtd, (u_char *)p, len);
383
		else
384
			omap_read_buf8(mtd, (u_char *)p, len);
385 386
	} else {
		do {
387
			r_count = readl(info->reg.gpmc_prefetch_status);
388
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
389 390
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
391 392 393 394
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
395
		omap_prefetch_reset(info->gpmc_cs, info);
396 397 398 399 400 401 402 403 404 405 406 407 408 409
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
410
	uint32_t w_count = 0;
411
	int i = 0, ret = 0;
412
	u16 *p = (u16 *)buf;
413
	unsigned long tim, limit;
414
	u32 val;
415 416 417

	/* take care of subpage writes */
	if (len % 2 != 0) {
418
		writeb(*buf, info->nand.IO_ADDR_W);
419 420 421 422 423
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
424 425
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
426 427 428
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
429
			omap_write_buf16(mtd, (u_char *)p, len);
430
		else
431
			omap_write_buf8(mtd, (u_char *)p, len);
432
	} else {
433
		while (len) {
434
			w_count = readl(info->reg.gpmc_prefetch_status);
435
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
436
			w_count = w_count >> 1;
437
			for (i = 0; (i < w_count) && len; i++, len -= 2)
438
				iowrite16(*p++, info->nand.IO_ADDR_W);
439
		}
440
		/* wait for data to flushed-out before reset the prefetch */
441 442 443
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
444
		do {
445
			cpu_relax();
446
			val = readl(info->reg.gpmc_prefetch_status);
447
			val = PREFETCH_STATUS_COUNT(val);
448
		} while (val && (tim++ < limit));
449

450
		/* disable and stop the PFPW engine */
451
		omap_prefetch_reset(info->gpmc_cs, info);
452 453 454
	}
}

455
/*
456
 * omap_nand_dma_callback: callback on the completion of dma transfer
457 458
 * @data: pointer to completion data structure
 */
459 460 461 462
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}
463 464

/*
465
 * omap_nand_dma_transfer: configure and start dma transfer
466 467 468 469 470 471 472 473 474 475
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
476
	struct dma_async_tx_descriptor *tx;
477 478
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
479
	struct scatterlist sg;
480
	unsigned long tim, limit;
481 482
	unsigned n;
	int ret;
483
	u32 val;
484 485 486 487 488 489 490 491 492 493 494 495 496

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

497 498 499
	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
500 501 502 503 504
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

505 506 507 508 509 510 511 512 513 514
	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

515 516 517
	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
518
	if (ret)
519
		/* PFPW engine is busy, use cpu copy method */
520
		goto out_copy_unmap;
521 522

	init_completion(&info->comp);
523
	dma_async_issue_pending(info->dma);
524 525 526

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
527 528
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
529 530

	do {
531
		cpu_relax();
532
		val = readl(info->reg.gpmc_prefetch_status);
533
		val = PREFETCH_STATUS_COUNT(val);
534
	} while (val && (tim++ < limit));
535 536

	/* disable and stop the PFPW engine */
537
	omap_prefetch_reset(info->gpmc_cs, info);
538

539
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
540 541
	return 0;

542
out_copy_unmap:
543
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
582
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
583 584
}

585
/*
586
 * omap_nand_irq - GPMC irq handler
587 588 589 590 591 592 593 594
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

595
	bytes = readl(info->reg.gpmc_prefetch_status);
596
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
597 598
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
599
		if (this_irq == info->gpmc_irq_count)
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

616
		if (this_irq == info->gpmc_irq_count)
617 618 619 620 621 622 623 624
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

625 626
	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
653 654
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
655 656 657 658 659
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
660 661 662

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
663 664 665 666 667

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
668
	omap_prefetch_reset(info->gpmc_cs, info);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;
691
	u32 val;
692 693 694 695 696 697 698 699 700 701

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

702
	/* configure and start prefetch transfer : size=24 */
703 704
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
705 706 707 708 709
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
710 711 712

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
713 714 715

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
716

717 718 719
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
720 721
	do {
		val = readl(info->reg.gpmc_prefetch_status);
722
		val = PREFETCH_STATUS_COUNT(val);
723
		cpu_relax();
724
	} while (val && (tim++ < limit));
725 726

	/* disable and stop the PFPW engine */
727
	omap_prefetch_reset(info->gpmc_cs, info);
728 729 730 731 732 733 734 735 736
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
765 766
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
845
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
846 847 848 849
		return -1;

	case 11:
		/* UN-Correctable error */
850
		pr_debug("ECC UNCORRECTED_ERROR B\n");
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

867 868
		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);
869 870 871

		page_data[find_byte] ^= (1 << find_bit);

872
		return 1;
873 874 875 876 877 878 879
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
880
		pr_debug("UNCORRECTED_ERROR default\n");
881 882 883 884 885 886 887 888 889 890 891 892
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
893 894 895 896 897
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
898 899 900 901 902 903 904
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
905
	int stat = 0;
906 907 908 909 910 911 912 913 914 915 916 917 918

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
919 920
			/* keep track of the number of corrected errors */
			stat += ret;
921 922 923 924 925
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
926
	return stat;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
946 947 948 949 950 951 952 953 954 955 956 957 958 959
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
	if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
960 961 962 963 964 965 966 967 968 969 970 971 972
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
973 974 975 976 977
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}
997

998 999 1000
	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
1001
}
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
1021
	int status, state = this->state;
1022 1023

	if (state == FL_ERASING)
T
Toan Pham 已提交
1024
		timeo += msecs_to_jiffies(400);
1025
	else
T
Toan Pham 已提交
1026
		timeo += msecs_to_jiffies(20);
1027

1028
	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1029
	while (time_before(jiffies, timeo)) {
1030
		status = readb(info->reg.gpmc_nand_data);
1031
		if (status & NAND_STATUS_READY)
1032
			break;
1033
		cond_resched();
1034
	}
1035

1036
	status = readb(info->reg.gpmc_nand_data);
1037 1038 1039 1040 1041 1042 1043 1044 1045
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
1046
	unsigned int val = 0;
1047 1048 1049
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

1050 1051
	val = readl(info->reg.gpmc_status);

1052
	if ((val & 0x100) == 0x100) {
1053
		return 1;
1054
	} else {
1055
		return 0;
1056 1057 1058
	}
}

1059
#if defined(CONFIG_MTD_NAND_ECC_BCH) || defined(CONFIG_MTD_NAND_OMAP_BCH)
1060 1061 1062 1063
/**
 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
 * @mtd: MTD device structure
 * @mode: Read/Write mode
1064 1065 1066 1067 1068 1069 1070
 *
 * When using BCH, sector size is hardcoded to 512 bytes.
 * Using wrapping mode 6 both for reading and writing if ELM module not uses
 * for error correction.
 * On writing,
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1071 1072 1073 1074
 */
static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
{
	int nerrors;
1075
	unsigned int dev_width, nsectors;
1076 1077 1078
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	struct nand_chip *chip = mtd->priv;
1079 1080 1081 1082 1083
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

	/* Using wrapping mode 6 for writing */
	wr_mode = BCH_WRAPMODE_6;
1084 1085

	/*
1086 1087
	 * ECC engine enabled for valid ecc_size0 nibbles
	 * and disabled for ecc_size1 nibbles.
1088
	 */
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	ecc_size0 = BCH_ECC_SIZE0;
	ecc_size1 = BCH_ECC_SIZE1;

	/* Perform ecc calculation on 512-byte sector */
	nsectors = 1;

	/* Update number of error correction */
	nerrors = info->nand.ecc.strength;

	/* Multi sector reading/writing for NAND flash with page size < 4096 */
	if (info->is_elm_used && (mtd->writesize <= 4096)) {
		if (mode == NAND_ECC_READ) {
			/* Using wrapping mode 1 for reading */
			wr_mode = BCH_WRAPMODE_1;

			/*
			 * ECC engine enabled for ecc_size0 nibbles
			 * and disabled for ecc_size1 nibbles.
			 */
			ecc_size0 = (nerrors == 8) ?
				BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
			ecc_size1 = (nerrors == 8) ?
				BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
		}

		/* Perform ecc calculation for one page (< 4096) */
		nsectors = info->nand.ecc.steps;
	}
1117 1118 1119

	writel(ECC1, info->reg.gpmc_ecc_control);

1120 1121
	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1122 1123
	writel(val, info->reg.gpmc_ecc_size_config);

1124 1125
	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

1126 1127 1128
	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
	       (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1129
	       (wr_mode                  <<  8) | /* wrap mode */
1130 1131 1132 1133 1134 1135 1136
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

1137
	/* Clear ecc and enable bits */
1138
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1139
}
1140
#endif
1141

1142
#ifdef CONFIG_MTD_NAND_ECC_BCH
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/**
 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 */
static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
				    u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	unsigned long nsectors, val1, val2;
	int i;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;

	for (i = 0; i < nsectors; i++) {

		/* Read hw-computed remainder */
		val1 = readl(info->reg.gpmc_bch_result0[i]);
		val2 = readl(info->reg.gpmc_bch_result1[i]);

		/*
		 * Add constant polynomial to remainder, in order to get an ecc
		 * sequence of 0xFFs for a buffer filled with 0xFFs; and
		 * left-justify the resulting polynomial.
		 */
		*ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
		*ecc_code++ = 0x13 ^ ((val2 >>  4) & 0xFF);
		*ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
		*ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
		*ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
		*ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
		*ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
	}

	return 0;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

/**
 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 */
static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
				    u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	unsigned long nsectors, val1, val2, val3, val4;
	int i;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;

	for (i = 0; i < nsectors; i++) {

		/* Read hw-computed remainder */
		val1 = readl(info->reg.gpmc_bch_result0[i]);
		val2 = readl(info->reg.gpmc_bch_result1[i]);
		val3 = readl(info->reg.gpmc_bch_result2[i]);
		val4 = readl(info->reg.gpmc_bch_result3[i]);

		/*
		 * Add constant polynomial to remainder, in order to get an ecc
		 * sequence of 0xFFs for a buffer filled with 0xFFs.
		 */
		*ecc_code++ = 0xef ^ (val4 & 0xFF);
		*ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
		*ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
		*ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
		*ecc_code++ = 0xed ^ (val3 & 0xFF);
		*ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
		*ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
		*ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
		*ecc_code++ = 0x97 ^ (val2 & 0xFF);
		*ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
		*ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
		*ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
		*ecc_code++ = 0xb5 ^ (val1 & 0xFF);
	}

	return 0;
1226
}
1227
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1228

1229
#ifdef CONFIG_MTD_NAND_OMAP_BCH
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/**
 * omap3_calculate_ecc_bch - Generate bytes of ECC bytes
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8 ecc vectors for the page
 */
static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
				    u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
	int i, eccbchtsel;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	/*
	 * find BCH scheme used
	 * 0 -> BCH4
	 * 1 -> BCH8
	 */
	eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);

	for (i = 0; i < nsectors; i++) {

		/* Read hw-computed remainder */
		bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
		bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
		if (eccbchtsel) {
			bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
			bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
		}

		if (eccbchtsel) {
			/* BCH8 ecc scheme */
			*ecc_code++ = (bch_val4 & 0xFF);
			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
			*ecc_code++ = (bch_val3 & 0xFF);
			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
			*ecc_code++ = (bch_val2 & 0xFF);
			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
			*ecc_code++ = (bch_val1 & 0xFF);
			/*
			 * Setting 14th byte to zero to handle
			 * erased page & maintain compatibility
			 * with RBL
			 */
			*ecc_code++ = 0x0;
		} else {
			/* BCH4 ecc scheme */
			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
				((bch_val1 >> 28) & 0xF);
			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val1 & 0xF) << 4);
			/*
			 * Setting 8th byte to zero to handle
			 * erased page
			 */
			*ecc_code++ = 0x0;
		}
	}

	return 0;
}

/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @mtd:	MTD device structure
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
 * In case of error/erased pages non-zero error vector is reported.
 * In case of non-zero ecc vector, check read_ecc at fixed offset
 * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
 * To handle bit flips in this data, count the number of 0's in
 * read_ecc[x] and check if it greater than 4. If it is less, it is
 * programmed page, else erased page.
 *
 * 1. If page is erased, check with standard ecc vector (ecc vector
 * for erased page to find any bit flip). If check fails, bit flip
 * is present in erased page. Count the bit flips in erased page and
 * if it falls under correctable level, report page with 0xFF and
 * update the correctable bit information.
 * 2. If error is reported on programmed page, update elm error
 * vector and correct the page with ELM error correction routine.
 *
 */
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
			mtd);
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
	int eccsize, eccflag, ecc_vector_size;
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
	enum bch_ecc type;
	bool is_error_reported = false;

	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
		type = BCH8_ECC;
		erased_ecc_vec = bch8_vector;
	} else {
		type = BCH4_ECC;
		erased_ecc_vec = bch4_vector;
	}

	ecc_vector_size = info->nand.ecc.bytes;

	/*
	 * Remove extra byte padding for BCH8 RBL
	 * compatibility and erased page handling
	 */
	eccsize = ecc_vector_size - 1;

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */

		for (j = 0; (j < eccsize); j++) {
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
			/*
			 * Set threshold to minimum of 4, half of ecc.strength/2
			 * to allow max bit flip in byte to 4
			 */
			unsigned int threshold = min_t(unsigned int, 4,
					info->nand.ecc.strength / 2);

			/*
			 * Check data area is programmed by counting
			 * number of 0's at fixed offset in spare area.
			 * Checking count of 0's against threshold.
			 * In case programmed page expects at least threshold
			 * zeros in byte.
			 * If zeros are less than threshold for programmed page/
			 * zeros are more than threshold erased page, either
			 * case page reported as uncorrectable.
			 */
			if (hweight8(~read_ecc[eccsize]) >= threshold) {
				/*
				 * Update elm error vector as
				 * data area is programmed
				 */
				err_vec[i].error_reported = true;
				is_error_reported = true;
			} else {
				/* Error reported in erased page */
				int bitflip_count;
				u_char *buf = &data[info->nand.ecc.size * i];

				if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
					bitflip_count = erased_sector_bitflips(
							buf, read_ecc, info);

					if (bitflip_count)
						stat += bitflip_count;
					else
						return -EINVAL;
				}
			}
		}

		/* Update the ecc vector */
		calc_ecc += ecc_vector_size;
		read_ecc += ecc_vector_size;
	}

	/* Check if any error reported */
	if (!is_error_reported)
		return 0;

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

	for (i = 0; i < eccsteps; i++) {
		if (err_vec[i].error_reported) {
			for (j = 0; j < err_vec[i].error_count; j++) {
				u32 bit_pos, byte_pos, error_max, pos;

				if (type == BCH8_ECC)
					error_max = BCH8_ECC_MAX;
				else
					error_max = BCH4_ECC_MAX;

				if (info->nand.ecc.strength == BCH8_MAX_ERROR)
					pos = err_vec[i].error_loc[j];
				else
					/* Add 4 to take care 4 bit padding */
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;

				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
					if (byte_pos < 512)
						data[byte_pos] ^= 1 << bit_pos;
					else
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
				}
				/* else, not interested to correct ecc */
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
		data += info->nand.ecc.size;
		spare_ecc += ecc_vector_size;
	}

	for (i = 0; i < eccsteps; i++)
		/* Return error if uncorrectable error present */
		if (err_vec[i].error_uncorrectable)
			return -EINVAL;

	return stat;
}
1521
#endif /* CONFIG_MTD_NAND_OMAP_BCH */
1522

1523
#ifdef CONFIG_MTD_NAND_ECC_BCH
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * omap3_correct_data_bch - Decode received data and correct errors
 * @mtd: MTD device structure
 * @data: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 */
static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
				  u_char *read_ecc, u_char *calc_ecc)
{
	int i, count;
	/* cannot correct more than 8 errors */
	unsigned int errloc[8];
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);

	count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
			   errloc);
	if (count > 0) {
		/* correct errors */
		for (i = 0; i < count; i++) {
			/* correct data only, not ecc bytes */
			if (errloc[i] < 8*512)
				data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
			pr_debug("corrected bitflip %u\n", errloc[i]);
		}
	} else if (count < 0) {
		pr_err("ecc unrecoverable error\n");
	}
	return count;
}
1555
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1556

1557
#ifdef CONFIG_MTD_NAND_OMAP_BCH
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required)
{
	int i;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(mtd, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	/* Write ecc vector to OOB area */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *oob = &chip->oob_poi[eccpos[0]];
	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
	int stat;
	unsigned int max_bitflips = 0;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(mtd, buf, mtd->writesize);

	/* Read oob bytes */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
	chip->read_buf(mtd, oob, chip->ecc.total);

	/* Calculate ecc bytes */
	chip->ecc.calculate(mtd, buf, ecc_calc);

	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);

	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

1644
/**
1645 1646 1647
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1648
 */
1649 1650
static int is_elm_present(struct omap_nand_info *info,
			struct device_node *elm_node, enum bch_ecc bch_type)
1651
{
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	struct platform_device *pdev;
	info->is_elm_used = false;
	/* check whether elm-id is passed via DT */
	if (!elm_node) {
		pr_err("nand: error: ELM DT node not found\n");
		return -ENODEV;
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
		pr_err("nand: error: ELM device not found\n");
		return -ENODEV;
1664
	}
1665 1666 1667 1668 1669 1670
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
	if (elm_config(info->elm_dev, bch_type))
		return -ENODEV;
	info->is_elm_used = true;
	return 0;
1671
}
1672
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1673

1674
#ifdef CONFIG_MTD_NAND_ECC_BCH
1675
/**
1676
 * omap3_free_bch - Release BCH ecc resources
1677 1678
 * @mtd: MTD device structure
 */
1679
static void omap3_free_bch(struct mtd_info *mtd)
1680 1681 1682
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1683 1684 1685
	if (info->bch) {
		free_bch(info->bch);
		info->bch = NULL;
1686 1687 1688 1689 1690 1691 1692 1693 1694
	}
}

/**
 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
 * @mtd: MTD device structure
 */
static int omap3_init_bch_tail(struct mtd_info *mtd)
{
1695
	int i, steps, offset;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	struct nand_ecclayout *layout = &info->ecclayout;

	/* build oob layout */
	steps = mtd->writesize/info->nand.ecc.size;
	layout->eccbytes = steps*info->nand.ecc.bytes;

	/* do not bother creating special oob layouts for small page devices */
	if (mtd->oobsize < 64) {
		pr_err("BCH ecc is not supported on small page devices\n");
		goto fail;
	}

	/* reserve 2 bytes for bad block marker */
	if (layout->eccbytes+2 > mtd->oobsize) {
		pr_err("no oob layout available for oobsize %d eccbytes %u\n",
		       mtd->oobsize, layout->eccbytes);
		goto fail;
	}

1717 1718 1719 1720 1721 1722
	/* ECC layout compatible with RBL for BCH8 */
	if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
		offset = 2;
	else
		offset = mtd->oobsize - layout->eccbytes;

1723 1724
	/* put ecc bytes at oob tail */
	for (i = 0; i < layout->eccbytes; i++)
1725 1726 1727 1728 1729 1730
		layout->eccpos[i] = offset + i;

	if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
		layout->oobfree[0].offset = 2 + layout->eccbytes * steps;
	else
		layout->oobfree[0].offset = 2;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

	layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
	info->nand.ecc.layout = layout;

	if (!(info->nand.options & NAND_BUSWIDTH_16))
		info->nand.badblock_pattern = &bb_descrip_flashbased;
	return 0;
fail:
	omap3_free_bch(mtd);
	return -1;
}

#else
static int omap3_init_bch_tail(struct mtd_info *mtd)
{
	return -1;
}
static void omap3_free_bch(struct mtd_info *mtd)
{
}
1751
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1752

B
Bill Pemberton 已提交
1753
static int omap_nand_probe(struct platform_device *pdev)
1754 1755 1756
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
1757 1758
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
1759
	int				err;
1760
	int				i, offset;
1761 1762
	dma_cap_mask_t			mask;
	unsigned			sig;
1763
	struct resource			*res;
1764
	struct mtd_part_parser_data	ppdata = {};
1765

J
Jingoo Han 已提交
1766
	pdata = dev_get_platdata(&pdev->dev);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

1781
	info->pdev		= pdev;
1782
	info->gpmc_cs		= pdata->cs;
1783
	info->reg		= pdata->reg;
1784 1785
	info->bch		= NULL;
	info->of_node		= pdata->of_node;
1786 1787 1788 1789 1790 1791
	mtd			= &info->mtd;
	mtd->priv		= &info->nand;
	mtd->name		= dev_name(&pdev->dev);
	mtd->owner		= THIS_MODULE;
	nand_chip		= &info->nand;
	nand_chip->options	|= NAND_SKIP_BBTSCAN;
1792

1793 1794 1795 1796 1797 1798
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res == NULL) {
		err = -EINVAL;
		dev_err(&pdev->dev, "error getting memory resource\n");
		goto out_free_info;
	}
1799

1800 1801 1802 1803
	info->phys_base = res->start;
	info->mem_size = resource_size(res);

	if (!request_mem_region(info->phys_base, info->mem_size,
1804 1805
				pdev->dev.driver->name)) {
		err = -EBUSY;
1806
		goto out_free_info;
1807 1808
	}

1809 1810
	nand_chip->IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
	if (!nand_chip->IO_ADDR_R) {
1811 1812 1813
		err = -ENOMEM;
		goto out_release_mem_region;
	}
1814

1815
	nand_chip->controller = &info->controller;
1816

1817 1818
	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;
1819 1820 1821

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
1822 1823
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1824 1825 1826 1827
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
1828 1829
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
1830
	} else {
1831 1832
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
1833 1834
	}

1835 1836 1837 1838 1839 1840 1841 1842 1843
	/* scan NAND device connected to chip controller */
	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
	if (nand_scan_ident(mtd, 1, NULL)) {
		pr_err("nand device scan failed, may be bus-width mismatch\n");
		err = -ENXIO;
		goto out_release_mem_region;
	}

	/* re-populate low-level callbacks based on xfer modes */
1844 1845
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
1846 1847
		nand_chip->read_buf   = omap_read_buf_pref;
		nand_chip->write_buf  = omap_write_buf_pref;
1848 1849 1850
		break;

	case NAND_OMAP_POLLED:
1851 1852 1853
		if (nand_chip->options & NAND_BUSWIDTH_16) {
			nand_chip->read_buf   = omap_read_buf16;
			nand_chip->write_buf  = omap_write_buf16;
1854
		} else {
1855 1856
			nand_chip->read_buf   = omap_read_buf8;
			nand_chip->write_buf  = omap_write_buf8;
1857
		}
1858 1859 1860
		break;

	case NAND_OMAP_PREFETCH_DMA:
1861 1862 1863 1864 1865
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		sig = OMAP24XX_DMA_GPMC;
		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
		if (!info->dma) {
1866 1867 1868
			dev_err(&pdev->dev, "DMA engine request failed\n");
			err = -ENXIO;
			goto out_release_mem_region;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
1879 1880
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
1881
				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1882
					err);
1883 1884
				goto out_release_mem_region;
			}
1885 1886
			nand_chip->read_buf   = omap_read_buf_dma_pref;
			nand_chip->write_buf  = omap_write_buf_dma_pref;
1887 1888 1889
		}
		break;

1890
	case NAND_OMAP_PREFETCH_IRQ:
1891 1892 1893 1894 1895 1896 1897 1898
		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(&pdev->dev, "error getting fifo irq\n");
			err = -ENODEV;
			goto out_release_mem_region;
		}
		err = request_irq(info->gpmc_irq_fifo,	omap_nand_irq,
					IRQF_SHARED, "gpmc-nand-fifo", info);
1899 1900
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
						info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
			goto out_release_mem_region;
		}

		info->gpmc_irq_count = platform_get_irq(pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(&pdev->dev, "error getting count irq\n");
			err = -ENODEV;
			goto out_release_mem_region;
		}
		err = request_irq(info->gpmc_irq_count,	omap_nand_irq,
					IRQF_SHARED, "gpmc-nand-count", info);
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
1918 1919
			goto out_release_mem_region;
		}
1920

1921 1922
		nand_chip->read_buf  = omap_read_buf_irq_pref;
		nand_chip->write_buf = omap_write_buf_irq_pref;
1923

1924 1925
		break;

1926 1927 1928 1929 1930
	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
		goto out_release_mem_region;
1931 1932
	}

1933 1934 1935 1936 1937
	/* populate MTD interface based on ECC scheme */
	switch (pdata->ecc_opt) {
	case OMAP_ECC_HAM1_CODE_HW:
		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
		nand_chip->ecc.mode             = NAND_ECC_HW;
1938 1939 1940 1941 1942 1943
		nand_chip->ecc.bytes            = 3;
		nand_chip->ecc.size             = 512;
		nand_chip->ecc.strength         = 1;
		nand_chip->ecc.calculate        = omap_calculate_ecc;
		nand_chip->ecc.hwctl            = omap_enable_hwecc;
		nand_chip->ecc.correct          = omap_correct_data;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 7;
		nand_chip->ecc.strength		= 4;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap3_correct_data_bch;
		nand_chip->ecc.calculate	= omap3_calculate_ecc_bch4;
		/* software bch library is used for locating errors */
		info->bch = init_bch(nand_chip->ecc.bytes,
					nand_chip->ecc.strength,
					OMAP_ECC_BCH8_POLYNOMIAL);
		if (!info->bch) {
			pr_err("nand: error: unable to use s/w BCH library\n");
1962
			err = -EINVAL;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
		goto out_release_mem_region;
#endif

	case OMAP_ECC_BCH4_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 7 + 1;
		nand_chip->ecc.strength		= 4;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
		nand_chip->ecc.calculate	= omap3_calculate_ecc_bch;
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* This ECC scheme requires ELM H/W block */
		if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
			pr_err("nand: error: could not initialize ELM\n");
			err = -ENODEV;
1988 1989
			goto out_release_mem_region;
		}
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
		goto out_release_mem_region;
#endif

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 13;
		nand_chip->ecc.strength		= 8;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap3_correct_data_bch;
		nand_chip->ecc.calculate	= omap3_calculate_ecc_bch8;
		/* software bch library is used for locating errors */
		info->bch = init_bch(nand_chip->ecc.bytes,
					nand_chip->ecc.strength,
					OMAP_ECC_BCH8_POLYNOMIAL);
		if (!info->bch) {
			pr_err("nand: error: unable to use s/w BCH library\n");
			err = -EINVAL;
			goto out_release_mem_region;
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
		goto out_release_mem_region;
#endif

	case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 13 + 1;
		nand_chip->ecc.strength		= 8;
		nand_chip->ecc.hwctl		= omap3_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
		nand_chip->ecc.calculate	= omap3_calculate_ecc_bch;
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* This ECC scheme requires ELM H/W block */
		if (is_elm_present(info, pdata->elm_of_node, BCH8_ECC) < 0) {
			pr_err("nand: error: could not initialize ELM\n");
			goto out_release_mem_region;
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
		goto out_release_mem_region;
#endif

	default:
		pr_err("nand: error: invalid or unsupported ECC scheme\n");
		err = -EINVAL;
		goto out_release_mem_region;
2052
	}
2053

2054
	/* rom code layout */
2055
	if (pdata->ecc_opt == OMAP_ECC_HAM1_CODE_HW) {
2056

2057
		if (nand_chip->options & NAND_BUSWIDTH_16) {
2058
			offset = 2;
2059
		} else {
2060
			offset = 1;
2061
			nand_chip->badblock_pattern = &bb_descrip_flashbased;
2062
		}
2063
		omap_oobinfo.eccbytes = 3 * (mtd->writesize / 512);
2064 2065 2066 2067
		for (i = 0; i < omap_oobinfo.eccbytes; i++)
			omap_oobinfo.eccpos[i] = i+offset;

		omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
2068
		omap_oobinfo.oobfree->length = mtd->oobsize -
2069 2070
					(offset + omap_oobinfo.eccbytes);

2071
		nand_chip->ecc.layout = &omap_oobinfo;
2072
	} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
2073 2074
		   (pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW_DETECTION_SW) ||
		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW_DETECTION_SW) ||
2075 2076
		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
		/* build OOB layout for BCH ECC correction */
2077
		err = omap3_init_bch_tail(mtd);
2078 2079 2080 2081
		if (err) {
			err = -EINVAL;
			goto out_release_mem_region;
		}
2082
	}
2083

2084
	/* second phase scan */
2085
	if (nand_scan_tail(mtd)) {
2086 2087 2088 2089
		err = -ENXIO;
		goto out_release_mem_region;
	}

2090
	ppdata.of_node = pdata->of_node;
2091
	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2092
				  pdata->nr_parts);
2093

2094
	platform_set_drvdata(pdev, mtd);
2095 2096 2097 2098

	return 0;

out_release_mem_region:
2099 2100
	if (info->dma)
		dma_release_channel(info->dma);
2101 2102 2103 2104
	if (info->gpmc_irq_count > 0)
		free_irq(info->gpmc_irq_count, info);
	if (info->gpmc_irq_fifo > 0)
		free_irq(info->gpmc_irq_fifo, info);
2105
	release_mem_region(info->phys_base, info->mem_size);
2106
out_free_info:
2107
	omap3_free_bch(mtd);
2108 2109 2110 2111 2112 2113 2114 2115
	kfree(info);

	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
2116
	struct nand_chip *nand_chip = mtd->priv;
2117 2118
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
2119
	omap3_free_bch(mtd);
2120

2121 2122 2123
	if (info->dma)
		dma_release_channel(info->dma);

2124 2125 2126 2127
	if (info->gpmc_irq_count > 0)
		free_irq(info->gpmc_irq_count, info);
	if (info->gpmc_irq_fifo > 0)
		free_irq(info->gpmc_irq_fifo, info);
2128

2129
	/* Release NAND device, its internal structures and partitions */
2130 2131
	nand_release(mtd);
	iounmap(nand_chip->IO_ADDR_R);
2132
	release_mem_region(info->phys_base, info->mem_size);
2133
	kfree(info);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

2146
module_platform_driver(omap_nand_driver);
2147

2148
MODULE_ALIAS("platform:" DRIVER_NAME);
2149 2150
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");