slab.c 107.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
A
Andrew Morton 已提交
195 196 197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198 199 200 201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
202
			 */
L
Linus Torvalds 已提交
203 204
};

J
Joonsoo Kim 已提交
205 206 207 208 209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
227 228 229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
230 231 232 233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
235 236
};

237 238 239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_NODE (MAX_NUMNODES)
244

245
static int drain_freelist(struct kmem_cache *cache,
246
			struct kmem_cache_node *n, int tofree);
247
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 249
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251
static void cache_reap(struct work_struct *unused);
252

253 254
static int slab_early_init = 1;

255
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
256

257
static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 259 260 261 262 263
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
264
	parent->colour_next = 0;
265 266 267 268 269
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
270 271 272
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
273
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274 275
	} while (0)

A
Andrew Morton 已提交
276 277
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
278 279 280 281
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
282 283 284 285 286

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
287 288 289
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
290
 *
A
Adrian Bunk 已提交
291
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
292 293
 * which could lock up otherwise freeable slabs.
 */
294 295
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
296 297 298 299 300 301

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
302
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
303 304 305 306 307
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
308 309
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
310
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
311
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
312 313 314 315 316
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
317 318 319 320 321 322 323 324 325
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
326
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
327 328 329
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
330
#define	STATS_INC_NODEFREES(x)	do { } while (0)
331
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
332
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
341 342
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
343
 * 0		: objp
344
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
345 346
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
347
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
348
 * 		redzone word.
349
 * cachep->obj_offset: The real object.
350 351
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
352
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
353
 */
354
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
355
{
356
	return cachep->obj_offset;
L
Linus Torvalds 已提交
357 358
}

359
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
360 361
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 363
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
364 365
}

366
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
367 368 369
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
370
		return (unsigned long long *)(objp + cachep->size -
371
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
372
					      REDZONE_ALIGN);
373
	return (unsigned long long *) (objp + cachep->size -
374
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
375 376
}

377
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
378 379
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
381 382 383 384
}

#else

385
#define obj_offset(x)			0
386 387
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
388 389 390 391
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

L
Linus Torvalds 已提交
425
/*
426 427
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
428
 */
429 430 431
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
432
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
433

434 435
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
436
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
437
	return page->slab_cache;
438 439
}

440
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 442
				 unsigned int idx)
{
443
	return page->s_mem + cache->size * idx;
444 445
}

446
/*
447 448 449
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
450 451 452
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453
					const struct page *page, void *obj)
454
{
455
	u32 offset = (obj - page->s_mem);
456
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457 458
}

L
Linus Torvalds 已提交
459
/* internal cache of cache description objs */
460
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
461 462 463
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
464
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
465
	.name = "kmem_cache",
L
Linus Torvalds 已提交
466 467
};

468 469
#define BAD_ALIEN_MAGIC 0x01020304ul

470
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
471

472
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
473
{
474
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
475 476
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

491 492
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
493
{
494
	int nr_objs;
495
	size_t remained_size;
496
	size_t freelist_size;
497
	int extra_space = 0;
498

499 500
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
501 502 503 504 505 506 507 508
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
509
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510 511 512 513 514

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
515 516 517
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
518 519 520
		nr_objs--;

	return nr_objs;
521
}
L
Linus Torvalds 已提交
522

A
Andrew Morton 已提交
523 524 525
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
526 527 528 529 530 531 532
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
533

534 535 536 537 538
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
539
	 * - One unsigned int for each object
540 541 542 543 544 545 546 547 548 549 550 551 552
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
553
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
554
					sizeof(freelist_idx_t), align);
555
		mgmt_size = calculate_freelist_size(nr_objs, align);
556 557 558
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
559 560
}

561
#if DEBUG
562
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
563

A
Andrew Morton 已提交
564 565
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
566 567
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
568
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
569
	dump_stack();
570
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
571
}
572
#endif
L
Linus Torvalds 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

590 591 592 593 594 595 596 597 598 599 600
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

601 602 603 604 605 606 607
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
608
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609 610 611 612 613

static void init_reap_node(int cpu)
{
	int node;

614
	node = next_node(cpu_to_mem(cpu), node_online_map);
615
	if (node == MAX_NUMNODES)
616
		node = first_node(node_online_map);
617

618
	per_cpu(slab_reap_node, cpu) = node;
619 620 621 622
}

static void next_reap_node(void)
{
623
	int node = __this_cpu_read(slab_reap_node);
624 625 626 627

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
628
	__this_cpu_write(slab_reap_node, node);
629 630 631 632 633 634 635
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
636 637 638 639 640 641 642
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
643
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
644
{
645
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
646 647 648 649 650 651

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
652
	if (keventd_up() && reap_work->work.func == NULL) {
653
		init_reap_node(cpu);
654
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 656
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
657 658 659
	}
}

660
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
661
{
662 663
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
664
	 * However, when such objects are allocated or transferred to another
665 666 667 668
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
669 670 671 672 673 674
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
675
	}
676 677 678 679 680
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
681
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 683 684 685 686
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
687 688
}

689
static inline bool is_slab_pfmemalloc(struct page *page)
690 691 692 693 694 695 696 697
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
698
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699
	struct page *page;
700 701 702 703 704
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

705
	spin_lock_irqsave(&n->list_lock, flags);
706 707
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
708 709
			goto out;

710 711
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
712 713
			goto out;

714 715
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
716 717 718 719
			goto out;

	pfmemalloc_active = false;
out:
720
	spin_unlock_irqrestore(&n->list_lock, flags);
721 722
}

723
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 725 726 727 728 729 730
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
731
		struct kmem_cache_node *n;
732 733 734 735 736 737 738

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
739
		for (i = 0; i < ac->avail; i++) {
740 741 742 743 744 745 746 747 748 749 750 751 752
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
753
		n = get_node(cachep, numa_mem_id());
754
		if (!list_empty(&n->slabs_free) && force_refill) {
755
			struct page *page = virt_to_head_page(objp);
756
			ClearPageSlabPfmemalloc(page);
757 758 759 760 761 762 763 764 765 766 767 768 769
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

770 771 772 773 774 775 776 777 778 779 780 781 782
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

J
Joonsoo Kim 已提交
783 784
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
785 786 787
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
788
		struct page *page = virt_to_head_page(objp);
789 790 791 792
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

793 794 795 796 797 798 799 800 801
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

802 803 804
	ac->entry[ac->avail++] = objp;
}

805 806 807 808 809 810 811 812 813 814
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
815
	int nr = min3(from->avail, max, to->limit - to->avail);
816 817 818 819 820 821 822 823 824 825 826 827

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

828 829 830
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
831
#define reap_alien(cachep, n) do { } while (0)
832

J
Joonsoo Kim 已提交
833 834
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
835
{
836
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
837 838
}

J
Joonsoo Kim 已提交
839
static inline void free_alien_cache(struct alien_cache **ac_ptr)
840 841 842 843 844 845 846 847 848 849 850 851 852 853
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

854
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 856 857 858 859
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
860 861 862 863 864
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

865 866
#else	/* CONFIG_NUMA */

867
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869

J
Joonsoo Kim 已提交
870 871 872
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
873
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
874 875 876 877
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
878
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
879 880 881 882
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883
{
J
Joonsoo Kim 已提交
884
	struct alien_cache **alc_ptr;
885
	size_t memsize = sizeof(void *) * nr_node_ids;
886 887 888 889
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
903 904
		}
	}
J
Joonsoo Kim 已提交
905
	return alc_ptr;
906 907
}

J
Joonsoo Kim 已提交
908
static void free_alien_cache(struct alien_cache **alc_ptr)
909 910 911
{
	int i;

J
Joonsoo Kim 已提交
912
	if (!alc_ptr)
913 914
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
915 916
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
917 918
}

919
static void __drain_alien_cache(struct kmem_cache *cachep,
920 921
				struct array_cache *ac, int node,
				struct list_head *list)
922
{
923
	struct kmem_cache_node *n = get_node(cachep, node);
924 925

	if (ac->avail) {
926
		spin_lock(&n->list_lock);
927 928 929 930 931
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
932 933
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
934

935
		free_block(cachep, ac->entry, ac->avail, node, list);
936
		ac->avail = 0;
937
		spin_unlock(&n->list_lock);
938 939 940
	}
}

941 942 943
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
944
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945
{
946
	int node = __this_cpu_read(slab_reap_node);
947

948
	if (n->alien) {
J
Joonsoo Kim 已提交
949 950 951 952 953
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
954
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
955 956 957
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
958
				spin_unlock_irq(&alc->lock);
959
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
960
			}
961 962 963 964
		}
	}
}

A
Andrew Morton 已提交
965
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
966
				struct alien_cache **alien)
967
{
P
Pekka Enberg 已提交
968
	int i = 0;
J
Joonsoo Kim 已提交
969
	struct alien_cache *alc;
970 971 972 973
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
974 975
		alc = alien[i];
		if (alc) {
976 977
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
978
			ac = &alc->ac;
979
			spin_lock_irqsave(&alc->lock, flags);
980
			__drain_alien_cache(cachep, ac, i, &list);
981
			spin_unlock_irqrestore(&alc->lock, flags);
982
			slabs_destroy(cachep, &list);
983 984 985
		}
	}
}
986

987 988
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
989
{
990
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
991 992
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
993
	LIST_HEAD(list);
P
Pekka Enberg 已提交
994

995
	n = get_node(cachep, node);
996
	STATS_INC_NODEFREES(cachep);
997 998
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
999
		ac = &alien->ac;
1000
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
1001
		if (unlikely(ac->avail == ac->limit)) {
1002
			STATS_INC_ACOVERFLOW(cachep);
1003
			__drain_alien_cache(cachep, ac, page_node, &list);
1004
		}
J
Joonsoo Kim 已提交
1005
		ac_put_obj(cachep, ac, objp);
1006
		spin_unlock(&alien->lock);
1007
		slabs_destroy(cachep, &list);
1008
	} else {
1009
		n = get_node(cachep, page_node);
1010
		spin_lock(&n->list_lock);
1011
		free_block(cachep, &objp, 1, page_node, &list);
1012
		spin_unlock(&n->list_lock);
1013
		slabs_destroy(cachep, &list);
1014 1015 1016
	}
	return 1;
}
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039

/*
 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
 * or warn about failures.
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
}
1040 1041
#endif

1042
/*
1043
 * Allocates and initializes node for a node on each slab cache, used for
1044
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1045
 * will be allocated off-node since memory is not yet online for the new node.
1046
 * When hotplugging memory or a cpu, existing node are not replaced if
1047 1048
 * already in use.
 *
1049
 * Must hold slab_mutex.
1050
 */
1051
static int init_cache_node_node(int node)
1052 1053
{
	struct kmem_cache *cachep;
1054
	struct kmem_cache_node *n;
1055
	const size_t memsize = sizeof(struct kmem_cache_node);
1056

1057
	list_for_each_entry(cachep, &slab_caches, list) {
1058
		/*
1059
		 * Set up the kmem_cache_node for cpu before we can
1060 1061 1062
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1063 1064
		n = get_node(cachep, node);
		if (!n) {
1065 1066
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1067
				return -ENOMEM;
1068
			kmem_cache_node_init(n);
1069 1070
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1071 1072

			/*
1073 1074
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1075 1076
			 * protection here.
			 */
1077
			cachep->node[node] = n;
1078 1079
		}

1080 1081
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1082 1083
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1084
		spin_unlock_irq(&n->list_lock);
1085 1086 1087 1088
	}
	return 0;
}

1089 1090 1091 1092 1093 1094
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1095
static void cpuup_canceled(long cpu)
1096 1097
{
	struct kmem_cache *cachep;
1098
	struct kmem_cache_node *n = NULL;
1099
	int node = cpu_to_mem(cpu);
1100
	const struct cpumask *mask = cpumask_of_node(node);
1101

1102
	list_for_each_entry(cachep, &slab_caches, list) {
1103 1104
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
1105
		struct alien_cache **alien;
1106
		LIST_HEAD(list);
1107

1108
		n = get_node(cachep, node);
1109
		if (!n)
1110
			continue;
1111

1112
		spin_lock_irq(&n->list_lock);
1113

1114 1115
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1116 1117 1118 1119

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1120
			free_block(cachep, nc->entry, nc->avail, node, &list);
1121 1122
			nc->avail = 0;
		}
1123

1124
		if (!cpumask_empty(mask)) {
1125
			spin_unlock_irq(&n->list_lock);
1126
			goto free_slab;
1127 1128
		}

1129
		shared = n->shared;
1130 1131
		if (shared) {
			free_block(cachep, shared->entry,
1132
				   shared->avail, node, &list);
1133
			n->shared = NULL;
1134 1135
		}

1136 1137
		alien = n->alien;
		n->alien = NULL;
1138

1139
		spin_unlock_irq(&n->list_lock);
1140 1141 1142 1143 1144 1145

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1146 1147

free_slab:
1148
		slabs_destroy(cachep, &list);
1149 1150 1151 1152 1153 1154
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1155
	list_for_each_entry(cachep, &slab_caches, list) {
1156
		n = get_node(cachep, node);
1157
		if (!n)
1158
			continue;
1159
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1160 1161 1162
	}
}

1163
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1164
{
1165
	struct kmem_cache *cachep;
1166
	struct kmem_cache_node *n = NULL;
1167
	int node = cpu_to_mem(cpu);
1168
	int err;
L
Linus Torvalds 已提交
1169

1170 1171 1172 1173
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1174
	 * kmem_cache_node and not this cpu's kmem_cache_node
1175
	 */
1176
	err = init_cache_node_node(node);
1177 1178
	if (err < 0)
		goto bad;
1179 1180 1181 1182 1183

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1184
	list_for_each_entry(cachep, &slab_caches, list) {
1185
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1186
		struct alien_cache **alien = NULL;
1187 1188 1189 1190

		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1191
				0xbaadf00d, GFP_KERNEL);
1192
			if (!shared)
L
Linus Torvalds 已提交
1193
				goto bad;
1194 1195
		}
		if (use_alien_caches) {
1196
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1197 1198
			if (!alien) {
				kfree(shared);
1199
				goto bad;
1200
			}
1201
		}
1202
		n = get_node(cachep, node);
1203
		BUG_ON(!n);
1204

1205 1206
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1207 1208 1209 1210
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1211
			n->shared = shared;
1212 1213
			shared = NULL;
		}
1214
#ifdef CONFIG_NUMA
1215 1216
		if (!n->alien) {
			n->alien = alien;
1217
			alien = NULL;
L
Linus Torvalds 已提交
1218
		}
1219
#endif
1220
		spin_unlock_irq(&n->list_lock);
1221 1222 1223
		kfree(shared);
		free_alien_cache(alien);
	}
1224

1225 1226
	return 0;
bad:
1227
	cpuup_canceled(cpu);
1228 1229 1230
	return -ENOMEM;
}

1231
static int cpuup_callback(struct notifier_block *nfb,
1232 1233 1234 1235 1236 1237 1238 1239
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1240
		mutex_lock(&slab_mutex);
1241
		err = cpuup_prepare(cpu);
1242
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1243 1244
		break;
	case CPU_ONLINE:
1245
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1246 1247 1248
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1249
  	case CPU_DOWN_PREPARE:
1250
  	case CPU_DOWN_PREPARE_FROZEN:
1251
		/*
1252
		 * Shutdown cache reaper. Note that the slab_mutex is
1253 1254 1255 1256
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1257
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1258
		/* Now the cache_reaper is guaranteed to be not running. */
1259
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1260 1261
  		break;
  	case CPU_DOWN_FAILED:
1262
  	case CPU_DOWN_FAILED_FROZEN:
1263 1264
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1265
	case CPU_DEAD:
1266
	case CPU_DEAD_FROZEN:
1267 1268
		/*
		 * Even if all the cpus of a node are down, we don't free the
1269
		 * kmem_cache_node of any cache. This to avoid a race between
1270
		 * cpu_down, and a kmalloc allocation from another cpu for
1271
		 * memory from the node of the cpu going down.  The node
1272 1273 1274
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1275
		/* fall through */
1276
#endif
L
Linus Torvalds 已提交
1277
	case CPU_UP_CANCELED:
1278
	case CPU_UP_CANCELED_FROZEN:
1279
		mutex_lock(&slab_mutex);
1280
		cpuup_canceled(cpu);
1281
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1282 1283
		break;
	}
1284
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1285 1286
}

1287
static struct notifier_block cpucache_notifier = {
1288 1289
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1290

1291 1292 1293 1294 1295 1296
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1297
 * Must hold slab_mutex.
1298
 */
1299
static int __meminit drain_cache_node_node(int node)
1300 1301 1302 1303
{
	struct kmem_cache *cachep;
	int ret = 0;

1304
	list_for_each_entry(cachep, &slab_caches, list) {
1305
		struct kmem_cache_node *n;
1306

1307
		n = get_node(cachep, node);
1308
		if (!n)
1309 1310
			continue;

1311
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1312

1313 1314
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1335
		mutex_lock(&slab_mutex);
1336
		ret = init_cache_node_node(nid);
1337
		mutex_unlock(&slab_mutex);
1338 1339
		break;
	case MEM_GOING_OFFLINE:
1340
		mutex_lock(&slab_mutex);
1341
		ret = drain_cache_node_node(nid);
1342
		mutex_unlock(&slab_mutex);
1343 1344 1345 1346 1347 1348 1349 1350
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1351
	return notifier_from_errno(ret);
1352 1353 1354
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1355
/*
1356
 * swap the static kmem_cache_node with kmalloced memory
1357
 */
1358
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1359
				int nodeid)
1360
{
1361
	struct kmem_cache_node *ptr;
1362

1363
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1364 1365
	BUG_ON(!ptr);

1366
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1367 1368 1369 1370 1371
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1372
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1373
	cachep->node[nodeid] = ptr;
1374 1375
}

1376
/*
1377 1378
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1379
 */
1380
static void __init set_up_node(struct kmem_cache *cachep, int index)
1381 1382 1383 1384
{
	int node;

	for_each_online_node(node) {
1385
		cachep->node[node] = &init_kmem_cache_node[index + node];
1386
		cachep->node[node]->next_reap = jiffies +
1387 1388
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1389 1390 1391
	}
}

A
Andrew Morton 已提交
1392 1393 1394
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1395 1396 1397
 */
void __init kmem_cache_init(void)
{
1398 1399
	int i;

1400 1401
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1402 1403
	kmem_cache = &kmem_cache_boot;

1404
	if (num_possible_nodes() == 1)
1405 1406
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1407
	for (i = 0; i < NUM_INIT_LISTS; i++)
1408
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1409

L
Linus Torvalds 已提交
1410 1411
	/*
	 * Fragmentation resistance on low memory - only use bigger
1412 1413
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1414
	 */
1415
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1416
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1417 1418 1419

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1420 1421 1422
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1423
	 *    Initially an __init data area is used for the head array and the
1424
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1425
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1426
	 * 2) Create the first kmalloc cache.
1427
	 *    The struct kmem_cache for the new cache is allocated normally.
1428 1429 1430
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1431
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1432
	 *    kmalloc cache with kmalloc allocated arrays.
1433
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1434 1435
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1436 1437
	 */

1438
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1439

E
Eric Dumazet 已提交
1440
	/*
1441
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1442
	 */
1443
	create_boot_cache(kmem_cache, "kmem_cache",
1444
		offsetof(struct kmem_cache, node) +
1445
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1446 1447
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1448
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1449

A
Andrew Morton 已提交
1450
	/*
1451 1452
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1453
	 */
1454
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1455
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1456
	slab_state = PARTIAL_NODE;
1457
	setup_kmalloc_cache_index_table();
1458

1459 1460
	slab_early_init = 0;

1461
	/* 5) Replace the bootstrap kmem_cache_node */
1462
	{
P
Pekka Enberg 已提交
1463 1464
		int nid;

1465
		for_each_online_node(nid) {
1466
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1467

1468
			init_list(kmalloc_caches[INDEX_NODE],
1469
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1470 1471
		}
	}
L
Linus Torvalds 已提交
1472

1473
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1474 1475 1476 1477 1478 1479
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1480
	slab_state = UP;
P
Peter Zijlstra 已提交
1481

1482
	/* 6) resize the head arrays to their final sizes */
1483 1484
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1485 1486
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1487
	mutex_unlock(&slab_mutex);
1488

1489 1490 1491
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1492 1493 1494
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1495 1496 1497
	 */
	register_cpu_notifier(&cpucache_notifier);

1498 1499 1500
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1501
	 * node.
1502 1503 1504 1505
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1506 1507 1508
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513 1514 1515
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1516 1517
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1518
	 */
1519
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1520
		start_cpu_timer(cpu);
1521 1522

	/* Done! */
1523
	slab_state = FULL;
L
Linus Torvalds 已提交
1524 1525 1526 1527
	return 0;
}
__initcall(cpucache_init);

1528 1529 1530
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1531
#if DEBUG
1532
	struct kmem_cache_node *n;
1533
	struct page *page;
1534 1535
	unsigned long flags;
	int node;
1536 1537 1538 1539 1540
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1541 1542 1543 1544 1545

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1546
		cachep->name, cachep->size, cachep->gfporder);
1547

1548
	for_each_kmem_cache_node(cachep, node, n) {
1549 1550 1551
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1552
		spin_lock_irqsave(&n->list_lock, flags);
1553
		list_for_each_entry(page, &n->slabs_full, lru) {
1554 1555 1556
			active_objs += cachep->num;
			active_slabs++;
		}
1557 1558
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1559 1560
			active_slabs++;
		}
1561
		list_for_each_entry(page, &n->slabs_free, lru)
1562 1563
			num_slabs++;

1564 1565
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1566 1567 1568 1569 1570 1571 1572 1573

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1574
#endif
1575 1576
}

L
Linus Torvalds 已提交
1577
/*
W
Wang Sheng-Hui 已提交
1578 1579
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1585 1586
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1587 1588
{
	struct page *page;
1589
	int nr_pages;
1590

1591
	flags |= cachep->allocflags;
1592 1593
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1594

1595 1596 1597
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

1598
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1599
	if (!page) {
1600
		memcg_uncharge_slab(cachep, cachep->gfporder);
1601
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1602
		return NULL;
1603
	}
L
Linus Torvalds 已提交
1604

1605
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1606
	if (page_is_pfmemalloc(page))
1607 1608
		pfmemalloc_active = true;

1609
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1610
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1611 1612 1613 1614 1615
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1616
	__SetPageSlab(page);
1617
	if (page_is_pfmemalloc(page))
1618
		SetPageSlabPfmemalloc(page);
1619

1620 1621 1622 1623 1624 1625 1626 1627
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1628

1629
	return page;
L
Linus Torvalds 已提交
1630 1631 1632 1633 1634
}

/*
 * Interface to system's page release.
 */
1635
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1636
{
1637
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1638

1639
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1640

1641 1642 1643 1644 1645 1646
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1647

1648
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1649
	__ClearPageSlabPfmemalloc(page);
1650
	__ClearPageSlab(page);
1651 1652
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1653

L
Linus Torvalds 已提交
1654 1655
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1656 1657
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1658 1659 1660 1661
}

static void kmem_rcu_free(struct rcu_head *head)
{
1662 1663
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1664

1665 1666 1667 1668
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1674
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1675
			    unsigned long caller)
L
Linus Torvalds 已提交
1676
{
1677
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1678

1679
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1680

P
Pekka Enberg 已提交
1681
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1682 1683
		return;

P
Pekka Enberg 已提交
1684 1685 1686 1687
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1688 1689 1690 1691 1692 1693 1694
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1695
				*addr++ = svalue;
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701 1702
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1703
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1704 1705 1706
}
#endif

1707
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1708
{
1709
	int size = cachep->object_size;
1710
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1711 1712

	memset(addr, val, size);
P
Pekka Enberg 已提交
1713
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1714 1715 1716 1717 1718
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1719 1720 1721
	unsigned char error = 0;
	int bad_count = 0;

1722
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1723 1724 1725 1726 1727 1728
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1729 1730
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749
}
#endif

#if DEBUG

1750
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1756
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1757 1758
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1759 1760 1761
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1762 1763 1764
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1765
	}
1766
	realobj = (char *)objp + obj_offset(cachep);
1767
	size = cachep->object_size;
P
Pekka Enberg 已提交
1768
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1769 1770
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1771 1772
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1773 1774 1775 1776
		dump_line(realobj, i, limit);
	}
}

1777
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782
{
	char *realobj;
	int size, i;
	int lines = 0;

1783
	realobj = (char *)objp + obj_offset(cachep);
1784
	size = cachep->object_size;
L
Linus Torvalds 已提交
1785

P
Pekka Enberg 已提交
1786
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1787
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1788
		if (i == size - 1)
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793 1794
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1795
				printk(KERN_ERR
1796 1797
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1798 1799 1800
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1801
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1802
			limit = 16;
P
Pekka Enberg 已提交
1803 1804
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1817
		struct page *page = virt_to_head_page(objp);
1818
		unsigned int objnr;
L
Linus Torvalds 已提交
1819

1820
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1821
		if (objnr) {
1822
			objp = index_to_obj(cachep, page, objnr - 1);
1823
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1824
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1825
			       realobj, size);
L
Linus Torvalds 已提交
1826 1827
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1828
		if (objnr + 1 < cachep->num) {
1829
			objp = index_to_obj(cachep, page, objnr + 1);
1830
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1831
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1832
			       realobj, size);
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837 1838
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1839
#if DEBUG
1840 1841
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1842 1843 1844
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1845
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1846 1847 1848

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1849
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1850
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1851
				kernel_map_pages(virt_to_page(objp),
1852
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1862
					   "was overwritten");
L
Linus Torvalds 已提交
1863 1864
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1865
					   "was overwritten");
L
Linus Torvalds 已提交
1866 1867
		}
	}
1868
}
L
Linus Torvalds 已提交
1869
#else
1870 1871
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1872 1873
{
}
L
Linus Torvalds 已提交
1874 1875
#endif

1876 1877 1878
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1879
 * @page: page pointer being destroyed
1880
 *
W
Wang Sheng-Hui 已提交
1881 1882 1883
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1884
 */
1885
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1886
{
1887
	void *freelist;
1888

1889 1890
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1891
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1902 1903

	} else {
1904
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1905
	}
1906 1907

	/*
1908
	 * From now on, we don't use freelist
1909 1910 1911
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1912
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1913 1914
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1925
/**
1926 1927 1928 1929 1930 1931 1932
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1933 1934 1935 1936 1937
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1938
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1939
			size_t size, size_t align, unsigned long flags)
1940
{
1941
	unsigned long offslab_limit;
1942
	size_t left_over = 0;
1943
	int gfporder;
1944

1945
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1946 1947 1948
		unsigned int num;
		size_t remainder;

1949
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1950 1951
		if (!num)
			continue;
1952

1953 1954 1955 1956
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1957
		if (flags & CFLGS_OFF_SLAB) {
1958
			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1959 1960 1961 1962 1963
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
1964 1965
			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
				freelist_size_per_obj += sizeof(char);
1966
			offslab_limit = size;
1967
			offslab_limit /= freelist_size_per_obj;
1968 1969 1970 1971

 			if (num > offslab_limit)
				break;
		}
1972

1973
		/* Found something acceptable - save it away */
1974
		cachep->num = num;
1975
		cachep->gfporder = gfporder;
1976 1977
		left_over = remainder;

1978 1979 1980 1981 1982 1983 1984 1985
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1986 1987 1988 1989
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1990
		if (gfporder >= slab_max_order)
1991 1992
			break;

1993 1994 1995
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1996
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1997 1998 1999 2000 2001
			break;
	}
	return left_over;
}

2002 2003 2004 2005 2006 2007 2008 2009
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
2010
	cpu_cache = __alloc_percpu(size, sizeof(void *));
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

2023
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2024
{
2025
	if (slab_state >= FULL)
2026
		return enable_cpucache(cachep, gfp);
2027

2028 2029 2030 2031
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

2032
	if (slab_state == DOWN) {
2033 2034
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
2035
	} else if (slab_state == PARTIAL) {
2036 2037
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
2038
	} else {
2039
		int node;
2040

2041 2042 2043 2044 2045
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
2046 2047
		}
	}
2048

2049
	cachep->node[numa_mem_id()]->next_reap =
2050 2051
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2052 2053 2054 2055 2056 2057 2058

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2059
	return 0;
2060 2061
}

J
Joonsoo Kim 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

L
Linus Torvalds 已提交
2088
/**
2089
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2090
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2091 2092 2093 2094
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2095
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2109
int
2110
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2111
{
2112 2113
	size_t left_over, freelist_size;
	size_t ralign = BYTES_PER_WORD;
2114
	gfp_t gfp;
2115
	int err;
2116
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2126 2127
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2128
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133 2134 2135
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2136 2137
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2138 2139 2140
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2141 2142 2143
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2144 2145
	}

D
David Woodhouse 已提交
2146 2147 2148 2149 2150 2151 2152
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2153

2154
	/* 3) caller mandated alignment */
2155 2156
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2157
	}
2158 2159
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2160
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2161
	/*
2162
	 * 4) Store it.
L
Linus Torvalds 已提交
2163
	 */
2164
	cachep->align = ralign;
L
Linus Torvalds 已提交
2165

2166 2167 2168 2169 2170
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2171 2172
#if DEBUG

2173 2174 2175 2176
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2177 2178
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2179 2180
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2181 2182
	}
	if (flags & SLAB_STORE_USER) {
2183
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2184 2185
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2186
		 */
D
David Woodhouse 已提交
2187 2188 2189 2190
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2191 2192
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
	if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
		size >= 256 && cachep->object_size > cache_line_size() &&
		ALIGN(size, cachep->align) < PAGE_SIZE) {
2203
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2204 2205 2206 2207 2208
		size = PAGE_SIZE;
	}
#endif
#endif

2209 2210 2211
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2212 2213
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2214
	 */
2215
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2216
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2223
	size = ALIGN(size, cachep->align);
2224 2225 2226 2227 2228 2229
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2230

2231
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2232

2233
	if (!cachep->num)
2234
		return -E2BIG;
L
Linus Torvalds 已提交
2235

2236
	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2242
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2243
		flags &= ~CFLGS_OFF_SLAB;
2244
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2245 2246 2247 2248
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2249
		freelist_size = calculate_freelist_size(cachep->num, 0);
2250 2251 2252 2253 2254 2255 2256 2257 2258

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2259 2260 2261 2262
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2263 2264
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2265
	cachep->colour = left_over / cachep->colour_off;
2266
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2267
	cachep->flags = flags;
2268
	cachep->allocflags = __GFP_COMP;
2269
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2270
		cachep->allocflags |= GFP_DMA;
2271
	cachep->size = size;
2272
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2273

2274
	if (flags & CFLGS_OFF_SLAB) {
2275
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2276
		/*
2277
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2278
		 * But since we go off slab only for object size greater than
2279 2280
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2281 2282
		 * But leave a BUG_ON for some lucky dude.
		 */
2283
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2284
	}
L
Linus Torvalds 已提交
2285

2286 2287
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2288
		__kmem_cache_shutdown(cachep);
2289
		return err;
2290
	}
L
Linus Torvalds 已提交
2291

2292
	return 0;
L
Linus Torvalds 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2306
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2307 2308 2309
{
#ifdef CONFIG_SMP
	check_irq_off();
2310
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2311 2312
#endif
}
2313

2314
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2315 2316 2317
{
#ifdef CONFIG_SMP
	check_irq_off();
2318
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2319 2320 2321
#endif
}

L
Linus Torvalds 已提交
2322 2323 2324 2325
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2326
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2327 2328
#endif

2329
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2330 2331 2332
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2333 2334
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2335
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2336
	struct array_cache *ac;
2337
	int node = numa_mem_id();
2338
	struct kmem_cache_node *n;
2339
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2340 2341

	check_irq_off();
2342
	ac = cpu_cache_get(cachep);
2343 2344
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2345
	free_block(cachep, ac->entry, ac->avail, node, &list);
2346
	spin_unlock(&n->list_lock);
2347
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2348 2349 2350
	ac->avail = 0;
}

2351
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2352
{
2353
	struct kmem_cache_node *n;
2354 2355
	int node;

2356
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2357
	check_irq_on();
2358 2359
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2360
			drain_alien_cache(cachep, n->alien);
2361

2362 2363
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2364 2365
}

2366 2367 2368 2369 2370 2371 2372
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2373
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2374
{
2375 2376
	struct list_head *p;
	int nr_freed;
2377
	struct page *page;
L
Linus Torvalds 已提交
2378

2379
	nr_freed = 0;
2380
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2381

2382 2383 2384 2385
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2386 2387
			goto out;
		}
L
Linus Torvalds 已提交
2388

2389
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2390
#if DEBUG
2391
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2392
#endif
2393
		list_del(&page->lru);
2394 2395 2396 2397
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2398 2399
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2400
		slab_destroy(cache, page);
2401
		nr_freed++;
L
Linus Torvalds 已提交
2402
	}
2403 2404
out:
	return nr_freed;
L
Linus Torvalds 已提交
2405 2406
}

2407
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2408
{
2409 2410
	int ret = 0;
	int node;
2411
	struct kmem_cache_node *n;
2412 2413 2414 2415

	drain_cpu_caches(cachep);

	check_irq_on();
2416
	for_each_kmem_cache_node(cachep, node, n) {
2417
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2418

2419 2420
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2421 2422 2423 2424
	}
	return (ret ? 1 : 0);
}

2425
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2426
{
2427
	int i;
2428
	struct kmem_cache_node *n;
2429
	int rc = __kmem_cache_shrink(cachep, false);
L
Linus Torvalds 已提交
2430

2431 2432
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2433

2434
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2435

2436
	/* NUMA: free the node structures */
2437 2438 2439 2440 2441
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2442 2443
	}
	return 0;
L
Linus Torvalds 已提交
2444 2445
}

2446 2447
/*
 * Get the memory for a slab management obj.
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2459
 */
2460
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2461 2462
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2463
{
2464
	void *freelist;
2465
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2466

L
Linus Torvalds 已提交
2467 2468
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2469
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2470
					      local_flags, nodeid);
2471
		if (!freelist)
L
Linus Torvalds 已提交
2472 2473
			return NULL;
	} else {
2474 2475
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2476
	}
2477 2478 2479
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2480 2481
}

2482
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2483
{
2484
	return ((freelist_idx_t *)page->freelist)[idx];
2485 2486 2487
}

static inline void set_free_obj(struct page *page,
2488
					unsigned int idx, freelist_idx_t val)
2489
{
2490
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2491 2492
}

2493
static void cache_init_objs(struct kmem_cache *cachep,
2494
			    struct page *page)
L
Linus Torvalds 已提交
2495 2496 2497 2498
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2499
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2512 2513 2514
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2515 2516
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2517
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2518 2519 2520 2521

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2522
					   " end of an object");
L
Linus Torvalds 已提交
2523 2524
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2525
					   " start of an object");
L
Linus Torvalds 已提交
2526
		}
2527
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2528
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2529
			kernel_map_pages(virt_to_page(objp),
2530
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2531 2532
#else
		if (cachep->ctor)
2533
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2534
#endif
2535
		set_obj_status(page, i, OBJECT_FREE);
2536
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2537 2538 2539
	}
}

2540
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2541
{
2542 2543
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2544
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2545
		else
2546
			BUG_ON(cachep->allocflags & GFP_DMA);
2547
	}
L
Linus Torvalds 已提交
2548 2549
}

2550
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2551
				int nodeid)
2552
{
2553
	void *objp;
2554

2555
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2556
	page->active++;
2557
#if DEBUG
J
Joonsoo Kim 已提交
2558
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2559 2560 2561 2562 2563
#endif

	return objp;
}

2564
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2565
				void *objp, int nodeid)
2566
{
2567
	unsigned int objnr = obj_to_index(cachep, page, objp);
2568
#if DEBUG
J
Joonsoo Kim 已提交
2569
	unsigned int i;
2570

2571
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2572
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2573

2574
	/* Verify double free bug */
2575
	for (i = page->active; i < cachep->num; i++) {
2576
		if (get_free_obj(page, i) == objnr) {
2577 2578 2579 2580
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2581 2582
	}
#endif
2583
	page->active--;
2584
	set_free_obj(page, page->active, objnr);
2585 2586
}

2587 2588 2589
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2590
 * virtual address for kfree, ksize, and slab debugging.
2591
 */
2592
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2593
			   void *freelist)
L
Linus Torvalds 已提交
2594
{
2595
	page->slab_cache = cache;
2596
	page->freelist = freelist;
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601 2602
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2603
static int cache_grow(struct kmem_cache *cachep,
2604
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2605
{
2606
	void *freelist;
P
Pekka Enberg 已提交
2607 2608
	size_t offset;
	gfp_t local_flags;
2609
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2610

A
Andrew Morton 已提交
2611 2612 2613
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2614
	 */
2615 2616 2617 2618
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2619
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2620

2621
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2622
	check_irq_off();
2623
	n = get_node(cachep, nodeid);
2624
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2625 2626

	/* Get colour for the slab, and cal the next value. */
2627 2628 2629 2630 2631
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2632

2633
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2646 2647 2648
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2649
	 */
2650 2651 2652
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2653 2654 2655
		goto failed;

	/* Get slab management. */
2656
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2657
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2658
	if (!freelist)
L
Linus Torvalds 已提交
2659 2660
		goto opps1;

2661
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2662

2663
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2664 2665 2666 2667

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2668
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2669 2670

	/* Make slab active. */
2671
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2672
	STATS_INC_GROWN(cachep);
2673 2674
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2675
	return 1;
A
Andrew Morton 已提交
2676
opps1:
2677
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2678
failed:
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2695 2696
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2697 2698 2699
	}
}

2700 2701
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2702
	unsigned long long redzone1, redzone2;
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2718
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2719 2720 2721
			obj, redzone1, redzone2);
}

2722
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2723
				   unsigned long caller)
L
Linus Torvalds 已提交
2724 2725
{
	unsigned int objnr;
2726
	struct page *page;
L
Linus Torvalds 已提交
2727

2728 2729
	BUG_ON(virt_to_cache(objp) != cachep);

2730
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2731
	kfree_debugcheck(objp);
2732
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2733 2734

	if (cachep->flags & SLAB_RED_ZONE) {
2735
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2736 2737 2738 2739
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2740
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2741

2742
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2743 2744

	BUG_ON(objnr >= cachep->num);
2745
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2746

2747
	set_obj_status(page, objnr, OBJECT_FREE);
L
Linus Torvalds 已提交
2748 2749
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2750
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2751
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2752
			kernel_map_pages(virt_to_page(objp),
2753
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2769 2770
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2771 2772
{
	int batchcount;
2773
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2774
	struct array_cache *ac;
P
Pekka Enberg 已提交
2775 2776
	int node;

L
Linus Torvalds 已提交
2777
	check_irq_off();
2778
	node = numa_mem_id();
2779 2780 2781
	if (unlikely(force_refill))
		goto force_grow;
retry:
2782
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2783 2784
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2785 2786 2787 2788
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2789 2790 2791
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2792
	n = get_node(cachep, node);
2793

2794 2795
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2796

2797
	/* See if we can refill from the shared array */
2798 2799
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2800
		goto alloc_done;
2801
	}
2802

L
Linus Torvalds 已提交
2803 2804
	while (batchcount > 0) {
		struct list_head *entry;
2805
		struct page *page;
L
Linus Torvalds 已提交
2806
		/* Get slab alloc is to come from. */
2807 2808 2809 2810 2811
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2812 2813 2814
				goto must_grow;
		}

2815
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2816
		check_spinlock_acquired(cachep);
2817 2818 2819 2820 2821 2822

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2823
		BUG_ON(page->active >= cachep->num);
2824

2825
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2826 2827 2828 2829
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2830
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2831
									node));
L
Linus Torvalds 已提交
2832 2833 2834
		}

		/* move slabp to correct slabp list: */
2835 2836
		list_del(&page->lru);
		if (page->active == cachep->num)
2837
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2838
		else
2839
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2840 2841
	}

A
Andrew Morton 已提交
2842
must_grow:
2843
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2844
alloc_done:
2845
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2846 2847 2848

	if (unlikely(!ac->avail)) {
		int x;
2849
force_grow:
D
David Rientjes 已提交
2850
		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2851

A
Andrew Morton 已提交
2852
		/* cache_grow can reenable interrupts, then ac could change. */
2853
		ac = cpu_cache_get(cachep);
2854
		node = numa_mem_id();
2855 2856 2857

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2858 2859
			return NULL;

A
Andrew Morton 已提交
2860
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2861 2862 2863
			goto retry;
	}
	ac->touched = 1;
2864 2865

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2866 2867
}

A
Andrew Morton 已提交
2868 2869
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875 2876 2877
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2878
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2879
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2880
{
2881 2882
	struct page *page;

P
Pekka Enberg 已提交
2883
	if (!objp)
L
Linus Torvalds 已提交
2884
		return objp;
P
Pekka Enberg 已提交
2885
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2886
#ifdef CONFIG_DEBUG_PAGEALLOC
2887
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2888
			kernel_map_pages(virt_to_page(objp),
2889
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2898
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2899 2900

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2901 2902 2903 2904
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2905
			printk(KERN_ERR
2906
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2907 2908
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2909 2910 2911 2912
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2913 2914 2915

	page = virt_to_head_page(objp);
	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2916
	objp += obj_offset(cachep);
2917
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2918
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2919 2920
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2921
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2922
		       objp, (int)ARCH_SLAB_MINALIGN);
2923
	}
L
Linus Torvalds 已提交
2924 2925 2926 2927 2928 2929
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
2930
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2931
{
2932
	if (unlikely(cachep == kmem_cache))
A
Akinobu Mita 已提交
2933
		return false;
2934

2935
	return should_failslab(cachep->object_size, flags, cachep->flags);
2936 2937
}

2938
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2939
{
P
Pekka Enberg 已提交
2940
	void *objp;
L
Linus Torvalds 已提交
2941
	struct array_cache *ac;
2942
	bool force_refill = false;
L
Linus Torvalds 已提交
2943

2944
	check_irq_off();
2945

2946
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2947 2948
	if (likely(ac->avail)) {
		ac->touched = 1;
2949 2950
		objp = ac_get_obj(cachep, ac, flags, false);

2951
		/*
2952 2953
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
2954
		 */
2955 2956 2957 2958 2959
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
2960
	}
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2971 2972 2973 2974 2975
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2976 2977
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2978 2979 2980
	return objp;
}

2981
#ifdef CONFIG_NUMA
2982
/*
2983
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2984 2985 2986 2987 2988 2989 2990 2991
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

2992
	if (in_interrupt() || (flags & __GFP_THISNODE))
2993
		return NULL;
2994
	nid_alloc = nid_here = numa_mem_id();
2995
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2996
		nid_alloc = cpuset_slab_spread_node();
2997
	else if (current->mempolicy)
2998
		nid_alloc = mempolicy_slab_node();
2999
	if (nid_alloc != nid_here)
3000
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3001 3002 3003
	return NULL;
}

3004 3005
/*
 * Fallback function if there was no memory available and no objects on a
3006
 * certain node and fall back is permitted. First we scan all the
3007
 * available node for available objects. If that fails then we
3008 3009 3010
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3011
 */
3012
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3013
{
3014 3015
	struct zonelist *zonelist;
	gfp_t local_flags;
3016
	struct zoneref *z;
3017 3018
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3019
	void *obj = NULL;
3020
	int nid;
3021
	unsigned int cpuset_mems_cookie;
3022 3023 3024 3025

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3026
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3027

3028
retry_cpuset:
3029
	cpuset_mems_cookie = read_mems_allowed_begin();
3030
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3031

3032 3033 3034 3035 3036
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3037 3038
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3039

3040
		if (cpuset_zone_allowed(zone, flags) &&
3041 3042
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3043
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3044
					gfp_exact_node(flags), nid);
3045 3046 3047
				if (obj)
					break;
		}
3048 3049
	}

3050
	if (!obj) {
3051 3052 3053 3054 3055 3056
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3057 3058
		struct page *page;

3059 3060 3061
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3062
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3063 3064
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3065
		if (page) {
3066 3067 3068
			/*
			 * Insert into the appropriate per node queues
			 */
3069 3070
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3071
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3072
					gfp_exact_node(flags), nid);
3073 3074 3075 3076 3077 3078 3079 3080
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3081
				/* cache_grow already freed obj */
3082 3083 3084
				obj = NULL;
			}
		}
3085
	}
3086

3087
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3088
		goto retry_cpuset;
3089 3090 3091
	return obj;
}

3092 3093
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3094
 */
3095
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3096
				int nodeid)
3097 3098
{
	struct list_head *entry;
3099
	struct page *page;
3100
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3101 3102 3103
	void *obj;
	int x;

3104
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3105
	n = get_node(cachep, nodeid);
3106
	BUG_ON(!n);
P
Pekka Enberg 已提交
3107

A
Andrew Morton 已提交
3108
retry:
3109
	check_irq_off();
3110 3111 3112 3113 3114 3115
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3116 3117 3118
			goto must_grow;
	}

3119
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3120 3121 3122 3123 3124 3125
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3126
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3127

3128
	obj = slab_get_obj(cachep, page, nodeid);
3129
	n->free_objects--;
P
Pekka Enberg 已提交
3130
	/* move slabp to correct slabp list: */
3131
	list_del(&page->lru);
P
Pekka Enberg 已提交
3132

3133 3134
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3135
	else
3136
		list_add(&page->lru, &n->slabs_partial);
3137

3138
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3139
	goto done;
3140

A
Andrew Morton 已提交
3141
must_grow:
3142
	spin_unlock(&n->list_lock);
D
David Rientjes 已提交
3143
	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3144 3145
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3146

3147
	return fallback_alloc(cachep, flags);
3148

A
Andrew Morton 已提交
3149
done:
P
Pekka Enberg 已提交
3150
	return obj;
3151
}
3152 3153

static __always_inline void *
3154
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3155
		   unsigned long caller)
3156 3157 3158
{
	unsigned long save_flags;
	void *ptr;
3159
	int slab_node = numa_mem_id();
3160

3161
	flags &= gfp_allowed_mask;
3162

3163 3164
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3165
	if (slab_should_failslab(cachep, flags))
3166 3167
		return NULL;

3168 3169
	cachep = memcg_kmem_get_cache(cachep, flags);

3170 3171 3172
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3173
	if (nodeid == NUMA_NO_NODE)
3174
		nodeid = slab_node;
3175

3176
	if (unlikely(!get_node(cachep, nodeid))) {
3177 3178 3179 3180 3181
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3182
	if (nodeid == slab_node) {
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3198
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3199
				 flags);
3200

3201
	if (likely(ptr)) {
3202
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3203 3204 3205
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3206

3207
	memcg_kmem_put_cache(cachep);
3208 3209 3210 3211 3212 3213 3214 3215
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3216
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3227 3228
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3244
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3245 3246 3247 3248
{
	unsigned long save_flags;
	void *objp;

3249
	flags &= gfp_allowed_mask;
3250

3251 3252
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3253
	if (slab_should_failslab(cachep, flags))
3254 3255
		return NULL;

3256 3257
	cachep = memcg_kmem_get_cache(cachep, flags);

3258 3259 3260 3261 3262
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3263
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3264
				 flags);
3265 3266
	prefetchw(objp);

3267
	if (likely(objp)) {
3268
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3269 3270 3271
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3272

3273
	memcg_kmem_put_cache(cachep);
3274 3275
	return objp;
}
3276 3277

/*
3278
 * Caller needs to acquire correct kmem_cache_node's list_lock
3279
 * @list: List of detached free slabs should be freed by caller
3280
 */
3281 3282
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3283 3284
{
	int i;
3285
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3286 3287

	for (i = 0; i < nr_objects; i++) {
3288
		void *objp;
3289
		struct page *page;
L
Linus Torvalds 已提交
3290

3291 3292 3293
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3294 3295
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3296
		check_spinlock_acquired_node(cachep, node);
3297
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3298
		STATS_DEC_ACTIVE(cachep);
3299
		n->free_objects++;
L
Linus Torvalds 已提交
3300 3301

		/* fixup slab chains */
3302
		if (page->active == 0) {
3303 3304
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3305
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3306
			} else {
3307
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3308 3309 3310 3311 3312 3313
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3314
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3315 3316 3317 3318
		}
	}
}

3319
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3320 3321
{
	int batchcount;
3322
	struct kmem_cache_node *n;
3323
	int node = numa_mem_id();
3324
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3325 3326 3327 3328 3329 3330

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3331
	n = get_node(cachep, node);
3332 3333 3334
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3335
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3336 3337 3338
		if (max) {
			if (batchcount > max)
				batchcount = max;
3339
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3340
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3341 3342 3343 3344 3345
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3346
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3347
free_done:
L
Linus Torvalds 已提交
3348 3349 3350 3351 3352
#if STATS
	{
		int i = 0;
		struct list_head *p;

3353 3354
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3355
			struct page *page;
L
Linus Torvalds 已提交
3356

3357 3358
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3359 3360 3361 3362 3363 3364 3365

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3366
	spin_unlock(&n->list_lock);
3367
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3368
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3369
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3370 3371 3372
}

/*
A
Andrew Morton 已提交
3373 3374
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3375
 */
3376
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3377
				unsigned long caller)
L
Linus Torvalds 已提交
3378
{
3379
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3380 3381

	check_irq_off();
3382
	kmemleak_free_recursive(objp, cachep->flags);
3383
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3384

3385
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3386

3387 3388 3389 3390 3391 3392 3393
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3394
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3395 3396
		return;

3397
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3403

3404
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3415
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3416
{
3417
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3418

3419
	trace_kmem_cache_alloc(_RET_IP_, ret,
3420
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3421 3422

	return ret;
L
Linus Torvalds 已提交
3423 3424 3425
}
EXPORT_SYMBOL(kmem_cache_alloc);

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
	__kmem_cache_free_bulk(s, size, p);
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
								void **p)
{
	return __kmem_cache_alloc_bulk(s, flags, size, p);
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3439
#ifdef CONFIG_TRACING
3440
void *
3441
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3442
{
3443 3444
	void *ret;

3445
	ret = slab_alloc(cachep, flags, _RET_IP_);
3446 3447

	trace_kmalloc(_RET_IP_, ret,
3448
		      size, cachep->size, flags);
3449
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3450
}
3451
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3452 3453
#endif

L
Linus Torvalds 已提交
3454
#ifdef CONFIG_NUMA
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3466 3467
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3468
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3469

3470
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3471
				    cachep->object_size, cachep->size,
3472
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3473 3474

	return ret;
3475
}
L
Linus Torvalds 已提交
3476 3477
EXPORT_SYMBOL(kmem_cache_alloc_node);

3478
#ifdef CONFIG_TRACING
3479
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3480
				  gfp_t flags,
3481 3482
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3483
{
3484 3485
	void *ret;

3486
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3487

3488
	trace_kmalloc_node(_RET_IP_, ret,
3489
			   size, cachep->size,
3490 3491
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3492
}
3493
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3494 3495
#endif

3496
static __always_inline void *
3497
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3498
{
3499
	struct kmem_cache *cachep;
3500

3501
	cachep = kmalloc_slab(size, flags);
3502 3503
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3504
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3505
}
3506 3507 3508

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3509
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3510
}
3511
EXPORT_SYMBOL(__kmalloc_node);
3512 3513

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3514
		int node, unsigned long caller)
3515
{
3516
	return __do_kmalloc_node(size, flags, node, caller);
3517 3518 3519
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3520 3521

/**
3522
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3523
 * @size: how many bytes of memory are required.
3524
 * @flags: the type of memory to allocate (see kmalloc).
3525
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3526
 */
3527
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3528
					  unsigned long caller)
L
Linus Torvalds 已提交
3529
{
3530
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3531
	void *ret;
L
Linus Torvalds 已提交
3532

3533
	cachep = kmalloc_slab(size, flags);
3534 3535
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3536
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3537

3538
	trace_kmalloc(caller, ret,
3539
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3540 3541

	return ret;
3542 3543 3544 3545
}

void *__kmalloc(size_t size, gfp_t flags)
{
3546
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3547 3548 3549
}
EXPORT_SYMBOL(__kmalloc);

3550
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3551
{
3552
	return __do_kmalloc(size, flags, caller);
3553 3554
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3555

L
Linus Torvalds 已提交
3556 3557 3558 3559 3560 3561 3562 3563
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3564
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3565 3566
{
	unsigned long flags;
3567 3568 3569
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3570 3571

	local_irq_save(flags);
3572
	debug_check_no_locks_freed(objp, cachep->object_size);
3573
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3574
		debug_check_no_obj_freed(objp, cachep->object_size);
3575
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3576
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3577

3578
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3579 3580 3581 3582 3583 3584 3585
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3586 3587
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3593
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3594 3595
	unsigned long flags;

3596 3597
	trace_kfree(_RET_IP_, objp);

3598
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3599 3600 3601
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3602
	c = virt_to_cache(objp);
3603 3604 3605
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3606
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3607 3608 3609 3610
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3611
/*
3612
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3613
 */
3614
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3615 3616
{
	int node;
3617
	struct kmem_cache_node *n;
3618
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3619
	struct alien_cache **new_alien = NULL;
3620

3621
	for_each_online_node(node) {
3622

3623 3624 3625 3626 3627
		if (use_alien_caches) {
			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
			if (!new_alien)
				goto fail;
		}
3628

3629 3630 3631
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3632
				cachep->shared*cachep->batchcount,
3633
					0xbaadf00d, gfp);
3634 3635 3636 3637
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3638
		}
3639

3640
		n = get_node(cachep, node);
3641 3642
		if (n) {
			struct array_cache *shared = n->shared;
3643
			LIST_HEAD(list);
3644

3645
			spin_lock_irq(&n->list_lock);
3646

3647
			if (shared)
3648
				free_block(cachep, shared->entry,
3649
						shared->avail, node, &list);
3650

3651 3652 3653
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3654 3655
				new_alien = NULL;
			}
3656
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3657
					cachep->batchcount + cachep->num;
3658
			spin_unlock_irq(&n->list_lock);
3659
			slabs_destroy(cachep, &list);
3660
			kfree(shared);
3661 3662 3663
			free_alien_cache(new_alien);
			continue;
		}
3664 3665
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3666 3667
			free_alien_cache(new_alien);
			kfree(new_shared);
3668
			goto fail;
3669
		}
3670

3671
		kmem_cache_node_init(n);
3672 3673
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3674 3675 3676
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3677
					cachep->batchcount + cachep->num;
3678
		cachep->node[node] = n;
3679
	}
3680
	return 0;
3681

A
Andrew Morton 已提交
3682
fail:
3683
	if (!cachep->list.next) {
3684 3685 3686
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3687 3688
			n = get_node(cachep, node);
			if (n) {
3689 3690 3691
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3692
				cachep->node[node] = NULL;
3693 3694 3695 3696
			}
			node--;
		}
	}
3697
	return -ENOMEM;
3698 3699
}

3700
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3701
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3702
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3703
{
3704 3705
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3706

3707 3708
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3709 3710
		return -ENOMEM;

3711 3712 3713
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3714

L
Linus Torvalds 已提交
3715 3716 3717
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3718
	cachep->shared = shared;
L
Linus Torvalds 已提交
3719

3720 3721 3722 3723
	if (!prev)
		goto alloc_node;

	for_each_online_cpu(cpu) {
3724
		LIST_HEAD(list);
3725 3726
		int node;
		struct kmem_cache_node *n;
3727
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3728

3729
		node = cpu_to_mem(cpu);
3730 3731
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3732
		free_block(cachep, ac->entry, ac->avail, node, &list);
3733
		spin_unlock_irq(&n->list_lock);
3734
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3735
	}
3736 3737 3738
	free_percpu(prev);

alloc_node:
3739
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3740 3741
}

G
Glauber Costa 已提交
3742 3743 3744 3745
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3746
	struct kmem_cache *c;
G
Glauber Costa 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3756 3757 3758 3759
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3760 3761 3762 3763 3764
	}

	return ret;
}

3765
/* Called with slab_mutex held always */
3766
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3767 3768
{
	int err;
G
Glauber Costa 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3779

G
Glauber Costa 已提交
3780 3781
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3782 3783
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3784 3785
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3786
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3787 3788 3789 3790
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3791
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3792
		limit = 1;
3793
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3794
		limit = 8;
3795
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3796
		limit = 24;
3797
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3798 3799 3800 3801
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3802 3803
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810 3811
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3812
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3813 3814 3815
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3816 3817 3818
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3819 3820 3821 3822
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3823 3824 3825
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3826 3827
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3828
		       cachep->name, -err);
3829
	return err;
L
Linus Torvalds 已提交
3830 3831
}

3832
/*
3833 3834
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3835
 * if drain_array() is used on the shared array.
3836
 */
3837
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3838
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3839
{
3840
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3841 3842
	int tofree;

3843 3844
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3845 3846
	if (ac->touched && !force) {
		ac->touched = 0;
3847
	} else {
3848
		spin_lock_irq(&n->list_lock);
3849 3850 3851 3852
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
3853
			free_block(cachep, ac->entry, tofree, node, &list);
3854 3855 3856 3857
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3858
		spin_unlock_irq(&n->list_lock);
3859
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3860 3861 3862 3863 3864
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3865
 * @w: work descriptor
L
Linus Torvalds 已提交
3866 3867 3868 3869 3870 3871
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3872 3873
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3874
 */
3875
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3876
{
3877
	struct kmem_cache *searchp;
3878
	struct kmem_cache_node *n;
3879
	int node = numa_mem_id();
3880
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3881

3882
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3883
		/* Give up. Setup the next iteration. */
3884
		goto out;
L
Linus Torvalds 已提交
3885

3886
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3887 3888
		check_irq_on();

3889
		/*
3890
		 * We only take the node lock if absolutely necessary and we
3891 3892 3893
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3894
		n = get_node(searchp, node);
3895

3896
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3897

3898
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3899

3900 3901 3902 3903
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3904
		if (time_after(n->next_reap, jiffies))
3905
			goto next;
L
Linus Torvalds 已提交
3906

3907
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3908

3909
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3910

3911 3912
		if (n->free_touched)
			n->free_touched = 0;
3913 3914
		else {
			int freed;
L
Linus Torvalds 已提交
3915

3916
			freed = drain_freelist(searchp, n, (n->free_limit +
3917 3918 3919
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3920
next:
L
Linus Torvalds 已提交
3921 3922 3923
		cond_resched();
	}
	check_irq_on();
3924
	mutex_unlock(&slab_mutex);
3925
	next_reap_node();
3926
out:
A
Andrew Morton 已提交
3927
	/* Set up the next iteration */
3928
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3929 3930
}

3931
#ifdef CONFIG_SLABINFO
3932
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3933
{
3934
	struct page *page;
P
Pekka Enberg 已提交
3935 3936 3937 3938
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3939
	const char *name;
L
Linus Torvalds 已提交
3940
	char *error = NULL;
3941
	int node;
3942
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3943 3944 3945

	active_objs = 0;
	num_slabs = 0;
3946
	for_each_kmem_cache_node(cachep, node, n) {
3947

3948
		check_irq_on();
3949
		spin_lock_irq(&n->list_lock);
3950

3951 3952
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3953 3954 3955 3956
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3957 3958
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
3959
				error = "slabs_partial accounting error";
3960
			if (!page->active && !error)
3961
				error = "slabs_partial accounting error";
3962
			active_objs += page->active;
3963 3964
			active_slabs++;
		}
3965 3966
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
3967
				error = "slabs_free accounting error";
3968 3969
			num_slabs++;
		}
3970 3971 3972
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
3973

3974
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3975
	}
P
Pekka Enberg 已提交
3976 3977
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3978
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3979 3980
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3981
	name = cachep->name;
L
Linus Torvalds 已提交
3982 3983 3984
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
3999
#if STATS
4000
	{			/* node stats */
L
Linus Torvalds 已提交
4001 4002 4003 4004 4005 4006 4007
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4008
		unsigned long node_frees = cachep->node_frees;
4009
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4010

J
Joe Perches 已提交
4011 4012 4013 4014 4015
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4025
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4038
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4039
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4040
{
P
Pekka Enberg 已提交
4041
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4042
	int limit, batchcount, shared, res;
4043
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4044

L
Linus Torvalds 已提交
4045 4046 4047 4048
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4049
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4060
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4061
	res = -EINVAL;
4062
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4063
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4064 4065
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4066
				res = 0;
L
Linus Torvalds 已提交
4067
			} else {
4068
				res = do_tune_cpucache(cachep, limit,
4069 4070
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4071 4072 4073 4074
			}
			break;
		}
	}
4075
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4076 4077 4078 4079
	if (res >= 0)
		res = count;
	return res;
}
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4113 4114
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4115 4116
{
	void *p;
4117
	int i;
4118

4119 4120
	if (n[0] == n[1])
		return;
4121
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4122
		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4123
			continue;
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4134
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4135

4136
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4137
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4138
		if (modname[0])
4139 4140 4141 4142 4143 4144 4145 4146 4147
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4148
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4149
	struct page *page;
4150
	struct kmem_cache_node *n;
4151
	const char *name;
4152
	unsigned long *x = m->private;
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4163
	x[1] = 0;
4164

4165
	for_each_kmem_cache_node(cachep, node, n) {
4166 4167

		check_irq_on();
4168
		spin_lock_irq(&n->list_lock);
4169

4170 4171 4172 4173
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4174
		spin_unlock_irq(&n->list_lock);
4175 4176
	}
	name = cachep->name;
4177
	if (x[0] == x[1]) {
4178
		/* Increase the buffer size */
4179
		mutex_unlock(&slab_mutex);
4180
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4181 4182
		if (!m->private) {
			/* Too bad, we are really out */
4183
			m->private = x;
4184
			mutex_lock(&slab_mutex);
4185 4186
			return -ENOMEM;
		}
4187 4188
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4189
		mutex_lock(&slab_mutex);
4190 4191 4192 4193
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4194 4195 4196
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4197 4198
		seq_putc(m, '\n');
	}
4199

4200 4201 4202
	return 0;
}

4203
static const struct seq_operations slabstats_op = {
4204
	.start = slab_start,
4205 4206
	.next = slab_next,
	.stop = slab_stop,
4207 4208
	.show = leaks_show,
};
4209 4210 4211

static int slabstats_open(struct inode *inode, struct file *file)
{
4212 4213 4214 4215 4216 4217 4218 4219 4220
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4235
#endif
4236 4237 4238
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4239 4240
#endif

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4253
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4254
{
4255 4256
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4257
		return 0;
L
Linus Torvalds 已提交
4258

4259
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4260
}
K
Kirill A. Shutemov 已提交
4261
EXPORT_SYMBOL(ksize);