fib_trie.c 63.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93 94
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
95

96
struct key_vector {
97 98
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
99
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char slen;
A
Alexander Duyck 已提交
101
	union {
102
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
103
		struct hlist_head leaf;
104
		/* This array is valid if (pos | bits) > 0 (TNODE) */
105
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
106
	};
107 108
};

109
struct tnode {
110
	struct rcu_head rcu;
111 112
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
113
	struct key_vector __rcu *parent;
114
	struct key_vector kv[1];
115
#define tn_bits kv[0].bits
116 117 118
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
119 120
#define LEAF_SIZE	TNODE_SIZE(1)

121 122 123 124 125 126 127
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
128
	unsigned int resize_node_skipped;
129 130 131 132 133 134 135 136 137
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
138
	unsigned int prefixes;
R
Robert Olsson 已提交
139
	unsigned int nodesizes[MAX_STAT_DEPTH];
140
};
141 142

struct trie {
143
	struct key_vector kv[1];
144
#ifdef CONFIG_IP_FIB_TRIE_STATS
145
	struct trie_use_stats __percpu *stats;
146 147 148
#endif
};

149
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 151 152 153 154 155 156 157
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
158

159
static struct kmem_cache *fn_alias_kmem __read_mostly;
160
static struct kmem_cache *trie_leaf_kmem __read_mostly;
161

162 163 164 165 166
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

167
/* caller must hold RTNL */
168
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
170

171
/* caller must hold RCU read lock or RTNL */
172
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
174

175
/* wrapper for rcu_assign_pointer */
176
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177
{
A
Alexander Duyck 已提交
178
	if (n)
179
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
180 181
}

182
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
183 184 185

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
186
 */
187
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
188
{
189
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
190
}
R
Robert Olsson 已提交
191

192 193
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

194 195 196 197
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

198 199 200
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

201 202 203
	return index >> kv->pos;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
262

263 264
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
265
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
266
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
267 268

static void __alias_free_mem(struct rcu_head *head)
269
{
R
Robert Olsson 已提交
270 271
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
272 273
}

R
Robert Olsson 已提交
274
static inline void alias_free_mem_rcu(struct fib_alias *fa)
275
{
R
Robert Olsson 已提交
276 277
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
278

279
#define TNODE_KMALLOC_MAX \
280
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281
#define TNODE_VMALLOC_MAX \
282
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
283

284
static void __node_free_rcu(struct rcu_head *head)
285
{
286
	struct tnode *n = container_of(head, struct tnode, rcu);
287

288
	if (!n->tn_bits)
289
		kmem_cache_free(trie_leaf_kmem, n);
290
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 292 293
		kfree(n);
	else
		vfree(n);
294 295
}

296
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297

298
static struct tnode *tnode_alloc(int bits)
299
{
300 301 302 303 304 305 306 307 308
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
309
	if (size <= PAGE_SIZE)
310
		return kzalloc(size, GFP_KERNEL);
311
	else
312
		return vzalloc(size);
313
}
R
Robert Olsson 已提交
314

315
static inline void empty_child_inc(struct key_vector *n)
316
{
317
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 319
}

320
static inline void empty_child_dec(struct key_vector *n)
321
{
322
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 324
}

325
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
326
{
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
	struct key_vector *l = kv->kv;

	if (!kv)
		return NULL;

	/* initialize key vector */
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
343 344 345
	return l;
}

346
static struct key_vector *tnode_new(t_key key, int pos, int bits)
347
{
348
	struct tnode *tnode = tnode_alloc(bits);
349
	unsigned int shift = pos + bits;
350
	struct key_vector *tn = tnode->kv;
351 352 353

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
354

355
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356
		 sizeof(struct key_vector *) << bits);
357 358 359 360 361

	if (!tnode)
		return NULL;

	if (bits == KEYLENGTH)
362
		tnode->full_children = 1;
363
	else
364
		tnode->empty_children = 1ul << bits;
365 366 367 368 369 370

	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

371 372 373
	return tn;
}

374
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
375 376
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
377
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
378
{
379
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
380 381
}

382 383 384
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
385 386
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
387
{
388
	struct key_vector *chi = get_child(tn, i);
389
	int isfull, wasfull;
390

391
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
392

393
	/* update emptyChildren, overflow into fullChildren */
394
	if (n == NULL && chi != NULL)
395 396 397
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
398

399
	/* update fullChildren */
400
	wasfull = tnode_full(tn, chi);
401
	isfull = tnode_full(tn, n);
402

403
	if (wasfull && !isfull)
404
		tn_info(tn)->full_children--;
405
	else if (!wasfull && isfull)
406
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
407

408 409 410
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

411
	rcu_assign_pointer(tn->tnode[i], n);
412 413
}

414
static void update_children(struct key_vector *tn)
415 416 417 418
{
	unsigned long i;

	/* update all of the child parent pointers */
419
	for (i = child_length(tn); i;) {
420
		struct key_vector *inode = get_child(tn, --i);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

436 437
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
438
{
439 440
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
441
	else
442
		put_child(tp, get_index(key, tp), n);
443 444
}

445
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
446
{
447
	tn_info(tn)->rcu.next = NULL;
448 449
}

450 451
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
452
{
453 454
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
455
}
E
Eric Dumazet 已提交
456

457
static void tnode_free(struct key_vector *tn)
458
{
459
	struct callback_head *head = &tn_info(tn)->rcu;
460 461 462

	while (head) {
		head = head->next;
463
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 465
		node_free(tn);

466
		tn = container_of(head, struct tnode, rcu)->kv;
467 468 469 470 471
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
472 473 474
	}
}

475 476 477
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
478
{
479
	struct key_vector *tp = node_parent(oldtnode);
480 481 482 483
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
484
	put_child_root(tp, tn->key, tn);
485 486 487 488 489 490 491 492

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
493
	for (i = child_length(tn); i;) {
494
		struct key_vector *inode = get_child(tn, --i);
495 496 497

		/* resize child node */
		if (tnode_full(tn, inode))
498
			tn = resize(t, inode);
499
	}
500

501
	return tp;
502 503
}

504 505
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
506
{
507
	struct key_vector *tn;
508
	unsigned long i;
509
	t_key m;
510

S
Stephen Hemminger 已提交
511
	pr_debug("In inflate\n");
512

513
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
514
	if (!tn)
515
		goto notnode;
516

517 518 519
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

520 521 522 523
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
524
	 */
525
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526
		struct key_vector *inode = get_child(oldtnode, --i);
527
		struct key_vector *node0, *node1;
528
		unsigned long j, k;
529

530
		/* An empty child */
A
Alexander Duyck 已提交
531
		if (inode == NULL)
532 533 534
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
535
		if (!tnode_full(oldtnode, inode)) {
536
			put_child(tn, get_index(inode->key, tn), inode);
537 538 539
			continue;
		}

540 541 542
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

543 544
		/* An internal node with two children */
		if (inode->bits == 1) {
545 546
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
547
			continue;
548 549
		}

O
Olof Johansson 已提交
550
		/* We will replace this node 'inode' with two new
551
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
552 553 554 555 556
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
557
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
558 559
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
560 561 562
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
563
		 */
564 565 566
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
567
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
568

569
		tnode_free_append(tn, node1);
570 571 572 573 574
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
575
		for (k = child_length(inode), j = k / 2; j;) {
576 577 578 579
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
580
		}
581

582 583 584
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
585

586 587 588 589
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
590

591
	/* setup the parent pointers into and out of this node */
592
	return replace(t, oldtnode, tn);
593
nomem:
594 595
	/* all pointers should be clean so we are done */
	tnode_free(tn);
596 597
notnode:
	return NULL;
598 599
}

600 601
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
602
{
603
	struct key_vector *tn;
604
	unsigned long i;
605

S
Stephen Hemminger 已提交
606
	pr_debug("In halve\n");
607

608
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609
	if (!tn)
610
		goto notnode;
611

612 613 614
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

615 616 617 618
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
619
	 */
620
	for (i = child_length(oldtnode); i;) {
621 622
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
623
		struct key_vector *inode;
624

625 626 627 628 629
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
630

631
		/* Two nonempty children */
632
		inode = tnode_new(node0->key, oldtnode->pos, 1);
633 634
		if (!inode)
			goto nomem;
635
		tnode_free_append(tn, inode);
636

637 638 639 640 641 642 643
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
644
	}
645

646
	/* setup the parent pointers into and out of this node */
647 648 649 650 651 652
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
653 654
}

655 656
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
657
{
658
	struct key_vector *n, *tp;
659 660 661
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
662
	for (n = NULL, i = child_length(oldtnode); !n && i;)
663
		n = get_child(oldtnode, --i);
664 665 666

	/* compress one level */
	tp = node_parent(oldtnode);
667
	put_child_root(tp, oldtnode->key, n);
668 669 670 671
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
672 673

	return tp;
674 675
}

676
static unsigned char update_suffix(struct key_vector *tn)
677 678 679 680 681 682 683 684 685
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
686
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687
		struct key_vector *n = get_child(tn, i);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

711 712 713 714 715 716 717 718
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
719
 * child_length() and instead of multiplying by 2 (since the
720 721 722 723
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
724
 * The left-hand side may look a bit weird: child_length(tn)
725 726 727 728 729 730 731 732 733
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
734
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
735 736
 *     tn->full_children;
 *
737
 * new_child_length = child_length(tn) * 2;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
754
 * 100 * (child_length(tn) - tn->empty_children +
755 756 757
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
758
 * 100 * (child_length(tn) - tn->empty_children +
759
 *    tn->full_children) >=
760
 *      inflate_threshold * child_length(tn) * 2
761 762
 *
 * shorten again:
763
 * 50 * (tn->full_children + child_length(tn) -
764
 *    tn->empty_children) >= inflate_threshold *
765
 *    child_length(tn)
766 767
 *
 */
768
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
769
{
770
	unsigned long used = child_length(tn);
771 772 773
	unsigned long threshold = used;

	/* Keep root node larger */
774
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 776
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
777

778 779 780
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
781 782
}

783
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
784
{
785
	unsigned long used = child_length(tn);
786 787 788
	unsigned long threshold = used;

	/* Keep root node larger */
789
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790
	used -= tn_info(tn)->empty_children;
791

792 793 794 795 796
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

797
static inline bool should_collapse(struct key_vector *tn)
798
{
799
	unsigned long used = child_length(tn);
800

801
	used -= tn_info(tn)->empty_children;
802 803

	/* account for bits == KEYLENGTH case */
804
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 806 807 808
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
809 810
}

811
#define MAX_WORK 10
812
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
813
{
814 815 816
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
817
	struct key_vector *tp = node_parent(tn);
818
	unsigned long cindex = get_index(tn->key, tp);
819
	int max_work = MAX_WORK;
820 821 822 823

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

824 825 826 827
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
828
	BUG_ON(tn != get_child(tp, cindex));
829

830 831
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
832
	 */
833
	while (should_inflate(tp, tn) && max_work--) {
834 835
		tp = inflate(t, tn);
		if (!tp) {
836
#ifdef CONFIG_IP_FIB_TRIE_STATS
837
			this_cpu_inc(stats->resize_node_skipped);
838 839 840
#endif
			break;
		}
841

842
		tn = get_child(tp, cindex);
843 844 845 846
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
847
		return node_parent(tn);
848

849
	/* Halve as long as the number of empty children in this
850 851
	 * node is above threshold.
	 */
852
	while (should_halve(tp, tn) && max_work--) {
853 854
		tp = halve(t, tn);
		if (!tp) {
855
#ifdef CONFIG_IP_FIB_TRIE_STATS
856
			this_cpu_inc(stats->resize_node_skipped);
857 858 859 860
#endif
			break;
		}

861
		tn = get_child(tp, cindex);
862
	}
863 864

	/* Only one child remains */
865 866 867 868 869
	if (should_collapse(tn))
		return collapse(t, tn);

	/* update parent in case inflate or halve failed */
	tp = node_parent(tn);
870 871 872

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
873
		return tp;
874 875 876 877 878

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

879
		if (slen > tp->slen)
880
			tp->slen = slen;
881
	}
882

883
	return tp;
884 885
}

886
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
887
{
888
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
889 890 891 892 893 894
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

895
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
896
{
897 898 899
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
900
	while (tn->slen < l->slen) {
901 902 903 904 905
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
906
/* rcu_read_lock needs to be hold by caller from readside */
907 908
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
909
{
910 911 912 913 914 915 916 917 918
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
919

920
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
921 922 923 924 925 926

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
927
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
928
		 *     we have a mismatch in skip bits and failed
929 930
		 *   else
		 *     we know the value is cindex
931 932 933 934
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
935
		 */
936 937 938 939
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
940

941 942
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
943

944
	*tp = pn;
945

A
Alexander Duyck 已提交
946
	return n;
947 948
}

949 950 951
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
952
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
953
					u8 tos, u32 prio, u32 tb_id)
954 955 956 957 958 959
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

960
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
961 962 963 964
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
965 966 967 968
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
969 970 971 972 973 974 975 976 977
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

978
static void trie_rebalance(struct trie *t, struct key_vector *tn)
979
{
980 981
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
982 983
}

984
static int fib_insert_node(struct trie *t, struct key_vector *tp,
985
			   struct fib_alias *new, t_key key)
986
{
987
	struct key_vector *n, *l;
988

989
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
990
	if (!l)
991
		goto noleaf;
992 993

	/* retrieve child from parent node */
994
	n = get_child(tp, get_index(key, tp));
995

996 997 998 999 1000 1001 1002
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1003
		struct key_vector *tn;
1004

1005
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1006 1007
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1008

1009 1010 1011
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1012

1013
		/* start adding routes into the node */
1014
		put_child_root(tp, key, tn);
1015
		node_set_parent(n, tn);
1016

1017
		/* parent now has a NULL spot where the leaf can go */
1018
		tp = tn;
1019
	}
O
Olof Johansson 已提交
1020

1021
	/* Case 3: n is NULL, and will just insert a new leaf */
1022
	NODE_INIT_PARENT(l, tp);
1023
	put_child_root(tp, key, l);
1024 1025 1026
	trie_rebalance(t, tp);

	return 0;
1027 1028 1029 1030
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1031 1032
}

1033 1034
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1035 1036 1037 1038 1039 1040 1041
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1042
	} else {
1043 1044 1045 1046 1047
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1048 1049 1050
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1051 1052 1053 1054 1055 1056 1057
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1058
	}
R
Robert Olsson 已提交
1059

1060 1061 1062 1063 1064 1065 1066
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1067 1068
}

1069
/* Caller must hold RTNL. */
1070
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1071
{
1072
	struct trie *t = (struct trie *)tb->tb_data;
1073
	struct fib_alias *fa, *new_fa;
1074
	struct key_vector *l, *tp;
1075
	struct fib_info *fi;
A
Alexander Duyck 已提交
1076 1077
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1078
	u8 tos = cfg->fc_tos;
1079
	u32 key;
1080 1081
	int err;

1082
	if (plen > KEYLENGTH)
1083 1084
		return -EINVAL;

1085
	key = ntohl(cfg->fc_dst);
1086

1087
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1088

1089
	if ((plen < KEYLENGTH) && (key << plen))
1090 1091
		return -EINVAL;

1092 1093 1094
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1095
		goto err;
1096
	}
1097

1098
	l = fib_find_node(t, &tp, key);
1099 1100
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1101 1102 1103 1104 1105 1106

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1107 1108
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1109 1110
	 */

1111 1112 1113
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1114 1115

		err = -EEXIST;
1116
		if (cfg->fc_nlflags & NLM_F_EXCL)
1117 1118
			goto out;

1119 1120 1121 1122 1123 1124 1125
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1126
		hlist_for_each_entry_from(fa, fa_list) {
1127 1128 1129
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1140
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1141 1142 1143
			struct fib_info *fi_drop;
			u8 state;

1144 1145 1146 1147
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1148
				goto out;
1149
			}
R
Robert Olsson 已提交
1150
			err = -ENOBUFS;
1151
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1152 1153
			if (new_fa == NULL)
				goto out;
1154 1155

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1156 1157
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1158
			new_fa->fa_type = cfg->fc_type;
1159
			state = fa->fa_state;
1160
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1161
			new_fa->fa_slen = fa->fa_slen;
1162

1163 1164 1165
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
1166
							 cfg->fc_nlflags,
1167 1168 1169 1170 1171 1172 1173
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1174
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1175

R
Robert Olsson 已提交
1176
			alias_free_mem_rcu(fa);
1177 1178 1179

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1180
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1181 1182
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1183

O
Olof Johansson 已提交
1184
			goto succeeded;
1185 1186 1187 1188 1189
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1190 1191
		if (fa_match)
			goto out;
1192

1193
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1194
			fa = fa_first;
1195 1196
	}
	err = -ENOENT;
1197
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1198 1199 1200
		goto out;

	err = -ENOBUFS;
1201
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1202 1203 1204 1205 1206
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1207
	new_fa->fa_type = cfg->fc_type;
1208
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1209
	new_fa->fa_slen = slen;
1210
	new_fa->tb_id = tb->tb_id;
1211

1212 1213
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1214 1215 1216
					 cfg->fc_type,
					 cfg->fc_nlflags,
					 tb->tb_id);
1217 1218 1219 1220 1221
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1222
	/* Insert new entry to the list. */
1223 1224
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1225
		goto out_sw_fib_del;
1226

1227 1228 1229
	if (!plen)
		tb->tb_num_default++;

1230
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1231
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1232
		  &cfg->fc_nlinfo, 0);
1233 1234
succeeded:
	return 0;
1235

1236 1237
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1238 1239
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1240 1241
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1242
err:
1243 1244 1245
	return err;
}

1246
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1247 1248 1249 1250 1251 1252
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1253
/* should be called with rcu_read_lock */
1254
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1255
		     struct fib_result *res, int fib_flags)
1256
{
1257
	struct trie *t = (struct trie *) tb->tb_data;
1258 1259 1260
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1261
	const t_key key = ntohl(flp->daddr);
1262
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1263
	struct fib_alias *fa;
1264
	unsigned long index;
1265
	t_key cindex;
O
Olof Johansson 已提交
1266

1267 1268 1269 1270
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1271
	if (!n)
1272
		return -EAGAIN;
1273 1274

#ifdef CONFIG_IP_FIB_TRIE_STATS
1275
	this_cpu_inc(stats->gets);
1276 1277
#endif

1278 1279
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1280
		index = get_cindex(key, n);
1281 1282 1283 1284 1285 1286

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1287
		 *   if (index >= (1ul << bits))
1288
		 *     we have a mismatch in skip bits and failed
1289 1290
		 *   else
		 *     we know the value is cindex
1291 1292 1293 1294
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1295
		 */
1296
		if (index >= (1ul << n->bits))
1297
			break;
1298

1299 1300
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1301
			goto found;
1302

1303 1304
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1305
		 */
1306
		if (n->slen > n->pos) {
1307 1308
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1309
		}
1310

1311
		n = get_child_rcu(n, index);
1312 1313 1314
		if (unlikely(!n))
			goto backtrace;
	}
1315

1316 1317 1318
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1319
		struct key_vector __rcu **cptr = n->tnode;
1320

1321 1322 1323
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1324
		 */
1325
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1326
			goto backtrace;
O
Olof Johansson 已提交
1327

1328 1329 1330
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1331

1332 1333 1334
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1335 1336
		 */

1337
		while ((n = rcu_dereference(*cptr)) == NULL) {
1338 1339
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1340 1341
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1342
#endif
1343 1344 1345 1346 1347 1348 1349 1350
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1351 1352 1353 1354 1355
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1356
					return -EAGAIN;
1357 1358 1359 1360
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1361
				pn = node_parent_rcu(pn);
1362 1363 1364 1365 1366 1367 1368
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1369
			cptr = &pn->tnode[cindex];
1370
		}
1371
	}
1372

1373
found:
1374 1375 1376
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1377
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1378 1379 1380
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1381

1382
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1383
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1384
			continue;
A
Alexander Duyck 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1394
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1395
			this_cpu_inc(stats->semantic_match_passed);
1396
#endif
A
Alexander Duyck 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1407
				continue;
A
Alexander Duyck 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1419
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1420
			this_cpu_inc(stats->semantic_match_passed);
1421
#endif
A
Alexander Duyck 已提交
1422
			return err;
1423
		}
1424
	}
1425
#ifdef CONFIG_IP_FIB_TRIE_STATS
1426
	this_cpu_inc(stats->semantic_match_miss);
1427 1428
#endif
	goto backtrace;
1429
}
1430
EXPORT_SYMBOL_GPL(fib_table_lookup);
1431

1432 1433
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1446
		put_child_root(tp, l->key, NULL);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1462
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1463 1464 1465
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1466
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1467 1468
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1469 1470
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1471

A
Alexander Duyck 已提交
1472
	if (plen > KEYLENGTH)
1473 1474
		return -EINVAL;

1475
	key = ntohl(cfg->fc_dst);
1476

1477
	if ((plen < KEYLENGTH) && (key << plen))
1478 1479
		return -EINVAL;

1480
	l = fib_find_node(t, &tp, key);
1481
	if (!l)
1482 1483
		return -ESRCH;

1484
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1485 1486 1487
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1488
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1489 1490

	fa_to_delete = NULL;
1491
	hlist_for_each_entry_from(fa, fa_list) {
1492 1493
		struct fib_info *fi = fa->fa_info;

1494 1495 1496
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1497 1498
			break;

1499 1500
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1501
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1502 1503
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1504 1505 1506
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1507 1508 1509 1510 1511
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1512 1513
	if (!fa_to_delete)
		return -ESRCH;
1514

1515 1516 1517
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1518
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1519
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1520

1521 1522 1523
	if (!plen)
		tb->tb_num_default--;

1524
	fib_remove_alias(t, tp, l, fa_to_delete);
1525

1526
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1527
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1528

1529 1530
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1531
	return 0;
1532 1533
}

1534
/* Scan for the next leaf starting at the provided key value */
1535
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1536
{
1537
	struct key_vector *pn, *n = *tn;
1538
	unsigned long cindex;
1539

1540
	/* this loop is meant to try and find the key in the trie */
1541
	do {
1542 1543
		/* record parent and next child index */
		pn = n;
1544
		cindex = key ? get_index(key, pn) : 0;
1545 1546 1547

		if (cindex >> pn->bits)
			break;
1548

1549
		/* descend into the next child */
1550
		n = get_child_rcu(pn, cindex++);
1551 1552 1553 1554 1555 1556 1557
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1558

1559
	/* this loop will search for the next leaf with a greater key */
1560
	while (!IS_TRIE(pn)) {
1561 1562 1563
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1564

1565 1566 1567 1568
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1569

1570
		/* grab the next available node */
1571
		n = get_child_rcu(pn, cindex++);
1572 1573
		if (!n)
			continue;
1574

1575 1576 1577
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1578

1579 1580 1581 1582
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1583

1584 1585 1586 1587
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1588
	*tn = pn;
1589
	return n;
1590 1591
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1706 1707 1708 1709
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
1710 1711 1712
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
1713 1714
	struct fib_alias *fa;

1715 1716
	/* walk trie in reverse order */
	for (;;) {
1717
		unsigned char slen = 0;
1718
		struct key_vector *n;
1719

1720 1721
		if (!(cindex--)) {
			t_key pkey = pn->key;
1722

1723 1724 1725
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1726

1727 1728
			/* resize completed node */
			pn = resize(t, pn);
1729
			cindex = get_index(pkey, pn);
1730

1731 1732
			continue;
		}
1733

1734 1735 1736 1737
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1738

1739 1740 1741 1742
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1743

1744
			continue;
1745
		}
1746

1747 1748 1749
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;

1762 1763
			if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
				continue;
1764

1765 1766 1767 1768 1769
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
		}
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1780
	}
1781 1782
}

1783
/* Caller must hold RTNL. */
1784
int fib_table_flush(struct fib_table *tb)
1785
{
1786
	struct trie *t = (struct trie *)tb->tb_data;
1787 1788
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1789 1790
	struct hlist_node *tmp;
	struct fib_alias *fa;
1791
	int found = 0;
1792

1793 1794 1795 1796
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1797

1798 1799
		if (!(cindex--)) {
			t_key pkey = pn->key;
1800

1801 1802 1803
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1804

1805 1806 1807
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1808

1809 1810
			continue;
		}
1811

1812 1813 1814 1815
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1816

1817 1818 1819 1820
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1821

1822 1823
			continue;
		}
1824

1825 1826
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1827

1828 1829 1830 1831
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1832

1833 1834 1835 1836
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1837 1838 1839 1840
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1841 1842
		}

1843 1844
		/* update leaf slen */
		n->slen = slen;
1845

1846 1847 1848 1849 1850 1851
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1852
	}
1853

S
Stephen Hemminger 已提交
1854
	pr_debug("trie_flush found=%d\n", found);
1855 1856 1857
	return found;
}

1858
static void __trie_free_rcu(struct rcu_head *head)
1859
{
1860
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1861 1862 1863
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1864 1865
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1866
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1867 1868 1869
	kfree(tb);
}

1870 1871 1872 1873 1874
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1875
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1876
			     struct sk_buff *skb, struct netlink_callback *cb)
1877
{
A
Alexander Duyck 已提交
1878
	__be32 xkey = htonl(l->key);
1879
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1880
	int i, s_i;
1881

A
Alexander Duyck 已提交
1882
	s_i = cb->args[4];
1883 1884
	i = 0;

R
Robert Olsson 已提交
1885
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1886
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1887 1888 1889 1890 1891
		if (i < s_i) {
			i++;
			continue;
		}

1892 1893 1894 1895 1896
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1897
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1898 1899 1900 1901
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1902
				  xkey,
1903
				  KEYLENGTH - fa->fa_slen,
1904
				  fa->fa_tos,
1905
				  fa->fa_info, NLM_F_MULTI) < 0) {
1906
			cb->args[4] = i;
1907 1908
			return -1;
		}
1909
		i++;
1910
	}
1911

1912
	cb->args[4] = i;
1913 1914 1915
	return skb->len;
}

1916
/* rcu_read_lock needs to be hold by caller from readside */
1917 1918
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1919
{
1920
	struct trie *t = (struct trie *)tb->tb_data;
1921
	struct key_vector *l, *tp = t->kv;
1922 1923 1924
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1925 1926
	int count = cb->args[2];
	t_key key = cb->args[3];
1927

1928
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1929
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1930 1931
			cb->args[3] = key;
			cb->args[2] = count;
1932
			return -1;
1933
		}
1934

1935
		++count;
1936 1937
		key = l->key + 1;

1938 1939
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1940 1941 1942 1943

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1944
	}
1945 1946 1947 1948

	cb->args[3] = key;
	cb->args[2] = count;

1949 1950 1951
	return skb->len;
}

1952
void __init fib_trie_init(void)
1953
{
1954 1955
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1956 1957 1958
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1959
					   LEAF_SIZE,
1960
					   0, SLAB_PANIC, NULL);
1961
}
1962

1963
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1964 1965 1966
{
	struct fib_table *tb;
	struct trie *t;
1967 1968 1969 1970
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
1971

1972
	tb = kzalloc(sz, GFP_KERNEL);
1973 1974 1975 1976
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1977
	tb->tb_default = -1;
1978
	tb->tb_num_default = 0;
1979 1980 1981 1982
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
1983 1984

	t = (struct trie *) tb->tb_data;
1985 1986
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
1987 1988 1989 1990 1991 1992 1993
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1994 1995 1996 1997

	return tb;
}

1998 1999 2000
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2001
	struct seq_net_private p;
2002
	struct fib_table *tb;
2003
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2004 2005
	unsigned int index;
	unsigned int depth;
2006
};
2007

2008
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2009
{
2010
	unsigned long cindex = iter->index;
2011 2012
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2013

2014 2015
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2016

2017 2018 2019 2020 2021 2022 2023
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2024
			if (IS_LEAF(n)) {
2025 2026
				iter->tnode = pn;
				iter->index = cindex;
2027 2028
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2029
				iter->tnode = n;
2030 2031 2032
				iter->index = 0;
				++iter->depth;
			}
2033

2034 2035
			return n;
		}
2036

2037 2038 2039 2040
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2041
		--iter->depth;
2042
	}
2043

2044 2045 2046 2047
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2048
	return NULL;
2049 2050
}

2051 2052
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2053
{
2054
	struct key_vector *n, *pn = t->kv;
2055

S
Stephen Hemminger 已提交
2056
	if (!t)
2057 2058
		return NULL;

2059
	n = rcu_dereference(pn->tnode[0]);
2060
	if (!n)
2061
		return NULL;
2062

2063
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2064
		iter->tnode = n;
2065 2066 2067
		iter->index = 0;
		iter->depth = 1;
	} else {
2068
		iter->tnode = pn;
2069 2070
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2071
	}
2072 2073

	return n;
2074
}
O
Olof Johansson 已提交
2075

2076 2077
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2078
	struct key_vector *n;
2079
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2080

2081
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2082

2083
	rcu_read_lock();
2084
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2085
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2086
			struct fib_alias *fa;
2087

2088 2089 2090 2091
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2092

A
Alexander Duyck 已提交
2093
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2094
				++s->prefixes;
2095 2096
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2097 2098
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2099
			s->nullpointers += tn_info(n)->empty_children;
2100 2101
		}
	}
R
Robert Olsson 已提交
2102
	rcu_read_unlock();
2103 2104
}

2105 2106 2107 2108
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2109
{
E
Eric Dumazet 已提交
2110
	unsigned int i, max, pointers, bytes, avdepth;
2111

2112 2113 2114 2115
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2116

2117 2118
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2119
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2120

2121
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2122
	bytes = LEAF_SIZE * stat->leaves;
2123 2124

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2125
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2126

2127
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2128
	bytes += TNODE_SIZE(0) * stat->tnodes;
2129

R
Robert Olsson 已提交
2130 2131
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2132
		max--;
2133

2134
	pointers = 0;
2135
	for (i = 1; i < max; i++)
2136
		if (stat->nodesizes[i] != 0) {
2137
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2138 2139 2140
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2141
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2142

2143
	bytes += sizeof(struct key_vector *) * pointers;
2144 2145
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2146
}
R
Robert Olsson 已提交
2147

2148
#ifdef CONFIG_IP_FIB_TRIE_STATS
2149
static void trie_show_usage(struct seq_file *seq,
2150
			    const struct trie_use_stats __percpu *stats)
2151
{
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2167
	seq_printf(seq, "\nCounters:\n---------\n");
2168 2169
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2170
	seq_printf(seq, "semantic match passed = %u\n",
2171 2172 2173 2174
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2175
}
2176 2177
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2178
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2179
{
2180 2181 2182 2183 2184 2185
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2186
}
2187

2188

2189 2190
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2191
	struct net *net = (struct net *)seq->private;
2192
	unsigned int h;
2193

2194
	seq_printf(seq,
2195 2196
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2197
		   LEAF_SIZE, TNODE_SIZE(0));
2198

2199 2200 2201 2202
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2203
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2204 2205
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2206

2207 2208 2209 2210 2211 2212 2213 2214
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2215
			trie_show_usage(seq, t->stats);
2216 2217 2218
#endif
		}
	}
2219

2220
	return 0;
2221 2222
}

2223
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2224
{
2225
	return single_open_net(inode, file, fib_triestat_seq_show);
2226 2227
}

2228
static const struct file_operations fib_triestat_fops = {
2229 2230 2231 2232
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2233
	.release = single_release_net,
2234 2235
};

2236
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2237
{
2238 2239
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2240
	loff_t idx = 0;
2241
	unsigned int h;
2242

2243 2244 2245
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2246

2247
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2248
			struct key_vector *n;
2249 2250 2251 2252 2253 2254 2255 2256 2257

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2258
	}
2259

2260 2261 2262
	return NULL;
}

2263
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2264
	__acquires(RCU)
2265
{
2266
	rcu_read_lock();
2267
	return fib_trie_get_idx(seq, *pos);
2268 2269
}

2270
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2271
{
2272
	struct fib_trie_iter *iter = seq->private;
2273
	struct net *net = seq_file_net(seq);
2274 2275 2276
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2277
	struct key_vector *n;
2278

2279
	++*pos;
2280 2281 2282 2283
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2284

2285 2286
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2287
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2288 2289 2290 2291 2292
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2293

2294 2295 2296
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2297
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2298 2299 2300 2301 2302
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2303
	return NULL;
2304 2305 2306 2307

found:
	iter->tb = tb;
	return n;
2308
}
2309

2310
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2311
	__releases(RCU)
2312
{
2313 2314
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2315

2316 2317
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2318 2319
	while (n-- > 0)
		seq_puts(seq, "   ");
2320
}
2321

2322
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2323
{
S
Stephen Hemminger 已提交
2324
	switch (s) {
2325 2326 2327 2328 2329 2330
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2331
		snprintf(buf, len, "scope=%d", s);
2332 2333 2334
		return buf;
	}
}
2335

2336
static const char *const rtn_type_names[__RTN_MAX] = {
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2350

E
Eric Dumazet 已提交
2351
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2352 2353 2354
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2355
	snprintf(buf, len, "type %u", t);
2356
	return buf;
2357 2358
}

2359 2360
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2361
{
2362
	const struct fib_trie_iter *iter = seq->private;
2363
	struct key_vector *n = v;
2364

2365
	if (IS_TRIE(node_parent_rcu(n)))
2366
		fib_table_print(seq, iter->tb);
2367

2368
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2369
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2370

2371 2372 2373
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2374 2375
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2376
	} else {
A
Alexander Duyck 已提交
2377
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2378
		struct fib_alias *fa;
2379 2380

		seq_indent(seq, iter->depth);
2381
		seq_printf(seq, "  |-- %pI4\n", &val);
2382

A
Alexander Duyck 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2396
		}
2397
	}
2398

2399 2400 2401
	return 0;
}

2402
static const struct seq_operations fib_trie_seq_ops = {
2403 2404 2405 2406
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2407 2408
};

2409
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2410
{
2411 2412
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2413 2414
}

2415
static const struct file_operations fib_trie_fops = {
2416 2417 2418 2419
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2420
	.release = seq_release_net,
2421 2422
};

2423 2424
struct fib_route_iter {
	struct seq_net_private p;
2425
	struct fib_table *main_tb;
2426
	struct key_vector *tnode;
2427 2428 2429 2430
	loff_t	pos;
	t_key	key;
};

2431 2432
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2433
{
2434
	struct fib_table *tb = iter->main_tb;
2435
	struct key_vector *l, **tp = &iter->tnode;
2436 2437
	struct trie *t;
	t_key key;
2438

2439 2440
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2441
		pos -= iter->pos;
2442 2443 2444
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2445
		iter->tnode = t->kv;
2446
		iter->pos = 0;
2447
		key = 0;
2448 2449
	}

2450 2451
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2452
		iter->pos++;
2453 2454 2455 2456 2457 2458 2459 2460 2461

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2462 2463 2464
	}

	if (l)
2465
		iter->key = key;	/* remember it */
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2477
	struct trie *t;
2478 2479

	rcu_read_lock();
2480

2481
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2482 2483 2484
	if (!tb)
		return NULL;

2485 2486 2487 2488 2489 2490
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2491
	iter->tnode = t->kv;
2492 2493 2494 2495
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2496 2497 2498 2499 2500
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2501
	struct key_vector *l = NULL;
2502
	t_key key = iter->key;
2503 2504

	++*pos;
2505 2506 2507 2508 2509 2510 2511

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2512
		iter->pos++;
2513 2514
	} else {
		iter->pos = 0;
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2526
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2527
{
E
Eric Dumazet 已提交
2528
	unsigned int flags = 0;
2529

E
Eric Dumazet 已提交
2530 2531
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2532 2533
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2534
	if (mask == htonl(0xFFFFFFFF))
2535 2536 2537
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2538 2539
}

2540 2541 2542
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2543
 *	and needs to be same as fib_hash output to avoid breaking
2544 2545 2546
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2547
{
2548 2549
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2550
	struct fib_alias *fa;
2551
	struct key_vector *l = v;
2552
	__be32 prefix;
2553

2554 2555 2556 2557 2558 2559
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2560

2561 2562
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2563 2564 2565 2566
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2567

A
Alexander Duyck 已提交
2568 2569 2570
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2571

2572 2573 2574
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2596

A
Alexander Duyck 已提交
2597
		seq_pad(seq, '\n');
2598 2599 2600 2601 2602
	}

	return 0;
}

2603
static const struct seq_operations fib_route_seq_ops = {
2604 2605 2606
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2607
	.show   = fib_route_seq_show,
2608 2609
};

2610
static int fib_route_seq_open(struct inode *inode, struct file *file)
2611
{
2612
	return seq_open_net(inode, file, &fib_route_seq_ops,
2613
			    sizeof(struct fib_route_iter));
2614 2615
}

2616
static const struct file_operations fib_route_fops = {
2617 2618 2619 2620
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2621
	.release = seq_release_net,
2622 2623
};

2624
int __net_init fib_proc_init(struct net *net)
2625
{
2626
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2627 2628
		goto out1;

2629 2630
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2631 2632
		goto out2;

2633
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2634 2635
		goto out3;

2636
	return 0;
2637 2638

out3:
2639
	remove_proc_entry("fib_triestat", net->proc_net);
2640
out2:
2641
	remove_proc_entry("fib_trie", net->proc_net);
2642 2643
out1:
	return -ENOMEM;
2644 2645
}

2646
void __net_exit fib_proc_exit(struct net *net)
2647
{
2648 2649 2650
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2651 2652 2653
}

#endif /* CONFIG_PROC_FS */