tsc.c 38.1 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4
#include <linux/sched.h>
5
#include <linux/sched/clock.h>
A
Alok Kataria 已提交
6
#include <linux/init.h>
7
#include <linux/export.h>
A
Alok Kataria 已提交
8
#include <linux/timer.h>
A
Alok Kataria 已提交
9
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
10
#include <linux/cpufreq.h>
11 12 13
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
14
#include <linux/timex.h>
15
#include <linux/static_key.h>
A
Alok Kataria 已提交
16 17

#include <asm/hpet.h>
18 19 20 21
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
22
#include <asm/hypervisor.h>
23
#include <asm/nmi.h>
24
#include <asm/x86_init.h>
25
#include <asm/geode.h>
26
#include <asm/apic.h>
27
#include <asm/intel-family.h>
28
#include <asm/i8259.h>
A
Alok Kataria 已提交
29

30
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
31
EXPORT_SYMBOL(cpu_khz);
32 33

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
34 35
EXPORT_SYMBOL(tsc_khz);

36 37
#define KHZ	1000

A
Alok Kataria 已提交
38 39 40
/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
41
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
42

43
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
44

45
int tsc_clocksource_reliable;
46

47 48 49 50 51
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;

52
struct cyc2ns {
53 54
	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
	seqcount_t	   seq;		/* 32 + 4    = 36 */
55

56
}; /* fits one cacheline */
57

58
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
59

60
void cyc2ns_read_begin(struct cyc2ns_data *data)
61
{
62
	int seq, idx;
63

64
	preempt_disable_notrace();
65

66 67 68
	do {
		seq = this_cpu_read(cyc2ns.seq.sequence);
		idx = seq & 1;
69

70 71 72
		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
73

74
	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
75 76
}

77
void cyc2ns_read_end(void)
78
{
79
	preempt_enable_notrace();
80 81 82 83
}

/*
 * Accelerators for sched_clock()
84 85 86 87 88 89 90 91 92 93 94 95
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
96 97 98
 *  into a shift. The larger SC is, the more accurate the conversion, but
 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 *  (64-bit result) can be used.
99
 *
100
 *  We can use khz divisor instead of mhz to keep a better precision.
101 102 103 104 105 106 107
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
108
	struct cyc2ns_data data;
109 110
	unsigned long long ns;

111
	cyc2ns_read_begin(&data);
112

113 114
	ns = data.cyc2ns_offset;
	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
115

116
	cyc2ns_read_end();
117

118 119 120
	return ns;
}

121
static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
122
{
P
Peter Zijlstra 已提交
123
	unsigned long long ns_now;
124 125
	struct cyc2ns_data data;
	struct cyc2ns *c2n;
126

127 128
	ns_now = cycles_2_ns(tsc_now);

129 130 131 132 133
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
134
	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
135 136
			       NSEC_PER_MSEC, 0);

137 138 139 140 141 142
	/*
	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
	 * not expected to be greater than 31 due to the original published
	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
	 */
143 144 145
	if (data.cyc2ns_shift == 32) {
		data.cyc2ns_shift = 31;
		data.cyc2ns_mul >>= 1;
146 147
	}

148 149 150 151
	data.cyc2ns_offset = ns_now -
		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);

	c2n = per_cpu_ptr(&cyc2ns, cpu);
152

153 154 155 156
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[0] = data;
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[1] = data;
157 158 159 160 161 162 163 164 165 166 167
}

static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
{
	unsigned long flags;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	if (khz)
		__set_cyc2ns_scale(khz, cpu, tsc_now);
168

169
	sched_clock_idle_wakeup_event();
170 171
	local_irq_restore(flags);
}
P
Peter Zijlstra 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Initialize cyc2ns for boot cpu
 */
static void __init cyc2ns_init_boot_cpu(void)
{
	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);

	seqcount_init(&c2n->seq);
	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
}

/*
D
Dou Liyang 已提交
185
 * Secondary CPUs do not run through tsc_init(), so set up
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
 * all the scale factors for all CPUs, assuming the same
 * speed as the bootup CPU. (cpufreq notifiers will fix this
 * up if their speed diverges)
 */
static void __init cyc2ns_init_secondary_cpus(void)
{
	unsigned int cpu, this_cpu = smp_processor_id();
	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
	struct cyc2ns_data *data = c2n->data;

	for_each_possible_cpu(cpu) {
		if (cpu != this_cpu) {
			seqcount_init(&c2n->seq);
			c2n = per_cpu_ptr(&cyc2ns, cpu);
			c2n->data[0] = data[0];
			c2n->data[1] = data[1];
		}
	}
}

A
Alok Kataria 已提交
206 207 208 209 210
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
211 212 213 214 215 216
	if (static_branch_likely(&__use_tsc)) {
		u64 tsc_now = rdtsc();

		/* return the value in ns */
		return cycles_2_ns(tsc_now);
	}
A
Alok Kataria 已提交
217 218 219 220 221 222 223

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
224
	 *   can achieve it. )
A
Alok Kataria 已提交
225 226
	 */

227 228
	/* No locking but a rare wrong value is not a big deal: */
	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
A
Alok Kataria 已提交
229 230
}

231 232 233 234 235 236 237 238
/*
 * Generate a sched_clock if you already have a TSC value.
 */
u64 native_sched_clock_from_tsc(u64 tsc)
{
	return cycles_2_ns(tsc);
}

A
Alok Kataria 已提交
239 240 241 242 243 244 245
/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
246

247
bool using_native_sched_clock(void)
248 249 250
{
	return pv_time_ops.sched_clock == native_sched_clock;
}
A
Alok Kataria 已提交
251 252 253
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
254

255
bool using_native_sched_clock(void) { return true; }
A
Alok Kataria 已提交
256 257 258 259 260 261 262 263 264 265 266
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
267
	mark_tsc_unstable("boot parameter notsc");
A
Alok Kataria 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
283

V
Venkatesh Pallipadi 已提交
284 285
static int no_sched_irq_time;

286 287 288 289
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
290 291
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
292 293
	if (!strcmp(str, "unstable"))
		mark_tsc_unstable("boot parameter");
294 295 296 297 298
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
299 300 301 302 303 304
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
305
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
306 307 308 309 310 311 312
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
313
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
314
		else
315
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
316 317 318 319 320 321 322
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

323 324
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
325
 */
326
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
327
{
328
	u64 tmp;
A
Alok Kataria 已提交
329

330 331 332 333 334
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
335
	deltatsc = div64_u64(deltatsc, tmp);
336 337 338 339 340 341 342 343 344 345

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
346

347 348 349 350 351 352 353 354 355 356 357 358 359
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

360
#define CAL_MS		10
361
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
362 363 364
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
365
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
366 367
#define CAL2_PIT_LOOPS	5000

368

369 370 371 372 373 374 375
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
376
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
377 378 379 380 381
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (!has_legacy_pic()) {
		/*
		 * Relies on tsc_early_delay_calibrate() to have given us semi
		 * usable udelay(), wait for the same 50ms we would have with
		 * the PIT loop below.
		 */
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		return ULONG_MAX;
	}

396 397 398 399 400 401 402 403 404
	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
405 406
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
427
	 * If we were not able to read the PIT more than loopmin
428 429 430 431 432
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
433
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
434 435 436 437
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
438
	do_div(delta, ms);
439 440 441
	return delta;
}

L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
477 478 479 480 481 482 483
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

484
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
485
{
486
	int count;
487
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
488

L
Linus Torvalds 已提交
489
	for (count = 0; count < 50000; count++) {
490
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
491
			break;
492
		prev_tsc = tsc;
493
		tsc = get_cycles();
L
Linus Torvalds 已提交
494
	}
495
	*deltap = get_cycles() - prev_tsc;
496 497 498 499 500 501 502
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
503 504 505
}

/*
506 507 508
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
509
 * more than 50ms on it.
L
Linus Torvalds 已提交
510
 */
511
#define MAX_QUICK_PIT_MS 50
512
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
513

L
Linus Torvalds 已提交
514 515
static unsigned long quick_pit_calibrate(void)
{
516 517 518 519
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

520 521 522
	if (!has_legacy_pic())
		return 0;

L
Linus Torvalds 已提交
523
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
524 525
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
526 527 528 529 530 531 532 533 534
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
535 536
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
537 538 539 540
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

541 542 543 544 545 546
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
547
	pit_verify_msb(0);
548

549 550 551 552 553
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

554 555 556 557 558 559 560 561 562 563
			delta -= tsc;

			/*
			 * Extrapolate the error and fail fast if the error will
			 * never be below 500 ppm.
			 */
			if (i == 1 &&
			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
				return 0;

564 565 566
			/*
			 * Iterate until the error is less than 500 ppm
			 */
567 568 569 570 571 572 573 574 575 576 577 578 579
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
580 581
		}
	}
582
	pr_info("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
583
	return 0;
584 585 586 587 588 589 590 591 592

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
593
	 * reliable (within the error).
594 595 596 597 598 599 600
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
601
	pr_info("Fast TSC calibration using PIT\n");
602
	return delta;
L
Linus Torvalds 已提交
603
}
604

A
Alok Kataria 已提交
605
/**
606 607
 * native_calibrate_tsc
 * Determine TSC frequency via CPUID, else return 0.
A
Alok Kataria 已提交
608
 */
609
unsigned long native_calibrate_tsc(void)
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
{
	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
	unsigned int crystal_khz;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x15)
		return 0;

	eax_denominator = ebx_numerator = ecx_hz = edx = 0;

	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);

	if (ebx_numerator == 0 || eax_denominator == 0)
		return 0;

	crystal_khz = ecx_hz / 1000;

	if (crystal_khz == 0) {
		switch (boot_cpu_data.x86_model) {
632 633
		case INTEL_FAM6_SKYLAKE_MOBILE:
		case INTEL_FAM6_SKYLAKE_DESKTOP:
634 635
		case INTEL_FAM6_KABYLAKE_MOBILE:
		case INTEL_FAM6_KABYLAKE_DESKTOP:
636 637
			crystal_khz = 24000;	/* 24.0 MHz */
			break;
638
		case INTEL_FAM6_ATOM_DENVERTON:
639 640
			crystal_khz = 25000;	/* 25.0 MHz */
			break;
641
		case INTEL_FAM6_ATOM_GOLDMONT:
642 643
			crystal_khz = 19200;	/* 19.2 MHz */
			break;
644 645 646
		}
	}

647 648
	if (crystal_khz == 0)
		return 0;
649 650 651 652 653 654 655
	/*
	 * TSC frequency determined by CPUID is a "hardware reported"
	 * frequency and is the most accurate one so far we have. This
	 * is considered a known frequency.
	 */
	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);

656 657 658 659 660 661 662
	/*
	 * For Atom SoCs TSC is the only reliable clocksource.
	 * Mark TSC reliable so no watchdog on it.
	 */
	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	return crystal_khz * ebx_numerator / eax_denominator;
}

static unsigned long cpu_khz_from_cpuid(void)
{
	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x16)
		return 0;

	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;

	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);

	return eax_base_mhz * 1000;
}

683 684 685
/*
 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 * later in boot after acpi is initialized.
686
 */
687
static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
A
Alok Kataria 已提交
688
{
689
	u64 tsc1, tsc2, delta, ref1, ref2;
690
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
691
	unsigned long flags, latch, ms;
692
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
693

694 695 696 697 698 699 700 701 702 703 704 705
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
706
	 * SMI/SMM disturbance happened between the two reads. If the
707 708 709 710 711 712 713 714 715 716 717
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
718 719 720 721 722 723 724

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
725
		unsigned long tsc_pit_khz;
726 727 728

		/*
		 * Read the start value and the reference count of
729 730 731
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
732
		 */
733
		local_irq_save(flags);
734
		tsc1 = tsc_read_refs(&ref1, hpet);
735
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
736
		tsc2 = tsc_read_refs(&ref2, hpet);
737 738
		local_irq_restore(flags);

739 740
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
741 742

		/* hpet or pmtimer available ? */
743
		if (ref1 == ref2)
744 745 746 747 748 749 750
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
751
		if (hpet)
752
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
753
		else
754
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
755 756

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
757 758 759 760 761 762 763 764 765 766 767 768

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
769 770
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
771
			return tsc_ref_min;
772 773
		}

774 775 776 777 778 779 780 781 782 783 784
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
785
	}
A
Alok Kataria 已提交
786 787

	/*
788
	 * Now check the results.
A
Alok Kataria 已提交
789
	 */
790 791
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
792
		pr_warn("Unable to calibrate against PIT\n");
793 794

		/* We don't have an alternative source, disable TSC */
795
		if (!hpet && !ref1 && !ref2) {
796
			pr_notice("No reference (HPET/PMTIMER) available\n");
797 798 799 800 801
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
802
			pr_warn("HPET/PMTIMER calibration failed\n");
803 804 805 806
			return 0;
		}

		/* Use the alternative source */
807 808
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
809 810 811

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
812

813
	/* We don't have an alternative source, use the PIT calibration value */
814
	if (!hpet && !ref1 && !ref2) {
815
		pr_info("Using PIT calibration value\n");
816
		return tsc_pit_min;
A
Alok Kataria 已提交
817 818
	}

819 820
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
821
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
822
		return tsc_pit_min;
A
Alok Kataria 已提交
823 824
	}

825 826 827
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
828
	 * running at double speed. At least we let the user know:
829
	 */
830 831 832
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
833
	return tsc_pit_min;
A
Alok Kataria 已提交
834 835
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
/**
 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 */
unsigned long native_calibrate_cpu_early(void)
{
	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();

	if (!fast_calibrate)
		fast_calibrate = cpu_khz_from_msr();
	if (!fast_calibrate) {
		local_irq_save(flags);
		fast_calibrate = quick_pit_calibrate();
		local_irq_restore(flags);
	}
	return fast_calibrate;
}


/**
 * native_calibrate_cpu - calibrate the cpu
 */
857
static unsigned long native_calibrate_cpu(void)
858 859 860 861 862 863 864 865 866
{
	unsigned long tsc_freq = native_calibrate_cpu_early();

	if (!tsc_freq)
		tsc_freq = pit_hpet_ptimer_calibrate_cpu();

	return tsc_freq;
}

867
void recalibrate_cpu_khz(void)
A
Alok Kataria 已提交
868 869 870 871
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

872
	if (!boot_cpu_has(X86_FEATURE_TSC))
873
		return;
874

875
	cpu_khz = x86_platform.calibrate_cpu();
876
	tsc_khz = x86_platform.calibrate_tsc();
877 878
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
879 880
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
881 882
	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
						    cpu_khz_old, cpu_khz);
A
Alok Kataria 已提交
883 884 885 886 887
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
888

889 890
static unsigned long long cyc2ns_suspend;

891
void tsc_save_sched_clock_state(void)
892
{
893
	if (!sched_clock_stable())
894 895 896 897 898 899 900 901 902 903 904 905 906
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
907
void tsc_restore_sched_clock_state(void)
908 909 910 911 912
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

913
	if (!sched_clock_stable())
914 915 916 917
		return;

	local_irq_save(flags);

918
	/*
919
	 * We're coming out of suspend, there's no concurrency yet; don't
920 921 922 923 924 925 926
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

927 928
	offset = cyc2ns_suspend - sched_clock();

929 930 931 932
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
933 934 935 936

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
957
	unsigned long *lpj;
A
Alok Kataria 已提交
958

959
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
960
#ifdef CONFIG_SMP
961
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
962 963 964 965 966 967 968 969 970
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
971
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
972
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
973 974 975 976 977

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

978
		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
P
Peter Zijlstra 已提交
979
	}
A
Alok Kataria 已提交
980 981 982 983 984 985 986 987

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

988
static int __init cpufreq_register_tsc_scaling(void)
A
Alok Kataria 已提交
989
{
990
	if (!boot_cpu_has(X86_FEATURE_TSC))
991 992 993
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
994 995 996 997 998
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

999
core_initcall(cpufreq_register_tsc_scaling);
A
Alok Kataria 已提交
1000 1001

#endif /* CONFIG_CPU_FREQ */
1002

1003 1004 1005 1006 1007 1008 1009
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)


/*
 * If ART is present detect the numerator:denominator to convert to TSC
 */
1010
static void __init detect_art(void)
1011 1012 1013 1014 1015 1016
{
	unsigned int unused[2];

	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
		return;

1017 1018 1019 1020
	/*
	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
	 * and the TSC counter resets must not occur asynchronously.
	 */
1021 1022
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1023 1024
	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
	    tsc_async_resets)
1025 1026
		return;

1027 1028 1029 1030
	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
	      &art_to_tsc_numerator, unused, unused+1);

	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1031 1032
		return;

1033 1034
	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);

1035 1036 1037 1038 1039
	/* Make this sticky over multiple CPU init calls */
	setup_force_cpu_cap(X86_FEATURE_ART);
}


1040 1041
/* clocksource code */

1042 1043 1044 1045 1046
static void tsc_resume(struct clocksource *cs)
{
	tsc_verify_tsc_adjust(true);
}

1047
/*
1048
 * We used to compare the TSC to the cycle_last value in the clocksource
1049 1050 1051 1052 1053 1054 1055 1056 1057
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
1058 1059 1060 1061
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1062
 */
1063
static u64 read_tsc(struct clocksource *cs)
1064
{
1065
	return (u64)rdtsc_ordered();
1066 1067
}

1068 1069 1070 1071
static void tsc_cs_mark_unstable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;
1072

1073
	tsc_unstable = 1;
1074 1075
	if (using_native_sched_clock())
		clear_sched_clock_stable();
1076 1077 1078 1079
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to clocksource watchdog\n");
}

1080 1081 1082 1083 1084 1085 1086 1087 1088
static void tsc_cs_tick_stable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;

	if (using_native_sched_clock())
		sched_clock_tick_stable();
}

1089 1090 1091
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static struct clocksource clocksource_tsc_early = {
	.name                   = "tsc-early",
	.rating                 = 299,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
	.archdata               = { .vclock_mode = VCLOCK_TSC },
	.resume			= tsc_resume,
	.mark_unstable		= tsc_cs_mark_unstable,
	.tick_stable		= tsc_cs_tick_stable,
1103
	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1104 1105 1106 1107 1108 1109 1110
};

/*
 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
 * this one will immediately take over. We will only register if TSC has
 * been found good.
 */
1111 1112 1113 1114 1115 1116
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1117
				  CLOCK_SOURCE_VALID_FOR_HRES |
1118
				  CLOCK_SOURCE_MUST_VERIFY,
1119
	.archdata               = { .vclock_mode = VCLOCK_TSC },
1120
	.resume			= tsc_resume,
1121
	.mark_unstable		= tsc_cs_mark_unstable,
1122
	.tick_stable		= tsc_cs_tick_stable,
1123
	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1124 1125 1126 1127
};

void mark_tsc_unstable(char *reason)
{
1128 1129 1130 1131 1132
	if (tsc_unstable)
		return;

	tsc_unstable = 1;
	if (using_native_sched_clock())
1133
		clear_sched_clock_stable();
1134 1135
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to %s\n", reason);
1136 1137 1138

	clocksource_mark_unstable(&clocksource_tsc_early);
	clocksource_mark_unstable(&clocksource_tsc);
1139 1140 1141 1142
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1143 1144
static void __init check_system_tsc_reliable(void)
{
1145 1146 1147
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
	if (is_geode_lx()) {
		/* RTSC counts during suspend */
1148
#define RTSC_SUSP 0x100
1149
		unsigned long res_low, res_high;
1150

1151 1152 1153 1154 1155
		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
		/* Geode_LX - the OLPC CPU has a very reliable TSC */
		if (res_low & RTSC_SUSP)
			tsc_clocksource_reliable = 1;
	}
1156
#endif
1157 1158 1159
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1160 1161 1162 1163 1164

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1165
int unsynchronized_tsc(void)
1166
{
1167
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1168 1169
		return 1;

1170
#ifdef CONFIG_SMP
1171 1172 1173 1174 1175 1176
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1177 1178 1179

	if (tsc_clocksource_reliable)
		return 0;
1180 1181 1182 1183 1184 1185 1186
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1187
			return 1;
1188 1189
	}

1190
	return 0;
1191 1192
}

1193 1194 1195
/*
 * Convert ART to TSC given numerator/denominator found in detect_art()
 */
1196
struct system_counterval_t convert_art_to_tsc(u64 art)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
{
	u64 tmp, res, rem;

	rem = do_div(art, art_to_tsc_denominator);

	res = art * art_to_tsc_numerator;
	tmp = rem * art_to_tsc_numerator;

	do_div(tmp, art_to_tsc_denominator);
	res += tmp + art_to_tsc_offset;

	return (struct system_counterval_t) {.cs = art_related_clocksource,
			.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
 *
 * PTM requires all timestamps to be in units of nanoseconds. When user
 * software requests a cross-timestamp, this function converts system timestamp
 * to TSC.
 *
 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
 * that this flag is set before conversion to TSC is attempted.
 *
 * Return:
 * struct system_counterval_t - system counter value with the pointer to the
 *	corresponding clocksource
 *	@cycles:	System counter value
 *	@cs:		Clocksource corresponding to system counter value. Used
 *			by timekeeping code to verify comparibility of two cycle
 *			values.
 */

struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
{
	u64 tmp, res, rem;

	rem = do_div(art_ns, USEC_PER_SEC);

	res = art_ns * tsc_khz;
	tmp = rem * tsc_khz;

	do_div(tmp, USEC_PER_SEC);
	res += tmp;

	return (struct system_counterval_t) { .cs = art_related_clocksource,
					      .cycles = res};
}
EXPORT_SYMBOL(convert_art_ns_to_tsc);


1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1263
 * If there are any calibration anomalies (too many SMIs, etc),
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;
1274
	int cpu;
1275 1276

	/* Don't bother refining TSC on unstable systems */
1277
	if (tsc_unstable)
1278
		goto unreg;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1299
	if (ref_start == ref_stop)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1318 1319 1320
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1321

1322 1323 1324
	/* Inform the TSC deadline clockevent devices about the recalibration */
	lapic_update_tsc_freq();

1325 1326
	/* Update the sched_clock() rate to match the clocksource one */
	for_each_possible_cpu(cpu)
1327
		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1328

1329
out:
1330
	if (tsc_unstable)
1331
		goto unreg;
1332

1333 1334
	if (boot_cpu_has(X86_FEATURE_ART))
		art_related_clocksource = &clocksource_tsc;
1335
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1336
unreg:
1337
	clocksource_unregister(&clocksource_tsc_early);
1338 1339 1340 1341
}


static int __init init_tsc_clocksource(void)
1342
{
1343
	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1344 1345
		return 0;

1346 1347
	if (tsc_unstable)
		goto unreg;
1348

1349 1350
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1351

1352 1353 1354
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1355
	/*
1356 1357
	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
	 * the refined calibration and directly register it as a clocksource.
1358
	 */
1359
	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1360 1361
		if (boot_cpu_has(X86_FEATURE_ART))
			art_related_clocksource = &clocksource_tsc;
1362
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1363
unreg:
1364
		clocksource_unregister(&clocksource_tsc_early);
1365 1366 1367
		return 0;
	}

1368 1369
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1370
}
1371 1372 1373 1374 1375
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1376

1377
static bool __init determine_cpu_tsc_frequencies(bool early)
1378
{
1379 1380
	/* Make sure that cpu and tsc are not already calibrated */
	WARN_ON(cpu_khz || tsc_khz);
1381

1382 1383 1384 1385 1386 1387 1388 1389
	if (early) {
		cpu_khz = x86_platform.calibrate_cpu();
		tsc_khz = x86_platform.calibrate_tsc();
	} else {
		/* We should not be here with non-native cpu calibration */
		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
	}
1390 1391

	/*
D
Dou Liyang 已提交
1392
	 * Trust non-zero tsc_khz as authoritative,
1393 1394 1395
	 * and use it to sanity check cpu_khz,
	 * which will be off if system timer is off.
	 */
1396 1397
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
1398 1399
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
1400

1401 1402
	if (tsc_khz == 0)
		return false;
1403

1404
	pr_info("Detected %lu.%03lu MHz processor\n",
1405 1406
		(unsigned long)cpu_khz / KHZ,
		(unsigned long)cpu_khz % KHZ);
1407

1408 1409
	if (cpu_khz != tsc_khz) {
		pr_info("Detected %lu.%03lu MHz TSC",
1410 1411 1412 1413 1414 1415 1416 1417
			(unsigned long)tsc_khz / KHZ,
			(unsigned long)tsc_khz % KHZ);
	}
	return true;
}

static unsigned long __init get_loops_per_jiffy(void)
{
1418
	u64 lpj = (u64)tsc_khz * KHZ;
1419 1420 1421 1422 1423

	do_div(lpj, HZ);
	return lpj;
}

D
Dou Liyang 已提交
1424 1425 1426 1427 1428 1429 1430 1431
static void __init tsc_enable_sched_clock(void)
{
	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
	tsc_store_and_check_tsc_adjust(true);
	cyc2ns_init_boot_cpu();
	static_branch_enable(&__use_tsc);
}

1432 1433 1434 1435
void __init tsc_early_init(void)
{
	if (!boot_cpu_has(X86_FEATURE_TSC))
		return;
1436
	if (!determine_cpu_tsc_frequencies(true))
1437 1438
		return;
	loops_per_jiffy = get_loops_per_jiffy();
1439

D
Dou Liyang 已提交
1440
	tsc_enable_sched_clock();
1441 1442 1443 1444
}

void __init tsc_init(void)
{
1445 1446 1447 1448 1449 1450 1451
	/*
	 * native_calibrate_cpu_early can only calibrate using methods that are
	 * available early in boot.
	 */
	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
		x86_platform.calibrate_cpu = native_calibrate_cpu;

1452 1453 1454 1455 1456 1457 1458
	if (!boot_cpu_has(X86_FEATURE_TSC)) {
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
		return;
	}

	if (!tsc_khz) {
		/* We failed to determine frequencies earlier, try again */
1459
		if (!determine_cpu_tsc_frequencies(false)) {
1460 1461 1462 1463
			mark_tsc_unstable("could not calculate TSC khz");
			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
			return;
		}
D
Dou Liyang 已提交
1464
		tsc_enable_sched_clock();
1465 1466
	}

1467
	cyc2ns_init_secondary_cpus();
1468

V
Venkatesh Pallipadi 已提交
1469 1470 1471
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1472
	lpj_fine = get_loops_per_jiffy();
1473 1474
	use_tsc_delay();

1475 1476
	check_system_tsc_reliable();

1477
	if (unsynchronized_tsc()) {
1478
		mark_tsc_unstable("TSCs unsynchronized");
1479 1480
		return;
	}
1481

1482
	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1483
	detect_art();
1484 1485
}

1486 1487 1488 1489 1490 1491 1492
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1493
unsigned long calibrate_delay_is_known(void)
1494
{
1495
	int sibling, cpu = smp_processor_id();
1496 1497
	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
	const struct cpumask *mask = topology_core_cpumask(cpu);
1498

1499
	if (!constant_tsc || !mask)
1500 1501 1502
		return 0;

	sibling = cpumask_any_but(mask, cpu);
1503 1504
	if (sibling < nr_cpu_ids)
		return cpu_data(sibling).loops_per_jiffy;
1505 1506 1507
	return 0;
}
#endif