tsc.c 26.2 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4 5 6 7
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
8
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
9
#include <linux/cpufreq.h>
10 11 12
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
13
#include <linux/timex.h>
A
Alok Kataria 已提交
14 15

#include <asm/hpet.h>
16 17 18 19
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
20
#include <asm/hypervisor.h>
21
#include <asm/nmi.h>
22
#include <asm/x86_init.h>
A
Alok Kataria 已提交
23

24
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
25
EXPORT_SYMBOL(cpu_khz);
26 27

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
28 29 30 31 32
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
33
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
34 35 36 37

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
38
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
39

40
int tsc_clocksource_reliable;
A
Alok Kataria 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
	u64 this_offset;

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
54
	 *   can achieve it. )
A
Alok Kataria 已提交
55 56 57 58 59 60 61 62 63 64
	 */
	if (unlikely(tsc_disabled)) {
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
	rdtscll(this_offset);

	/* return the value in ns */
I
Ingo Molnar 已提交
65
	return __cycles_2_ns(this_offset);
A
Alok Kataria 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

80 81 82 83 84 85
unsigned long long native_read_tsc(void)
{
	return __native_read_tsc();
}
EXPORT_SYMBOL(native_read_tsc);

A
Alok Kataria 已提交
86 87 88 89 90 91 92 93 94
int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
95
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
112

V
Venkatesh Pallipadi 已提交
113 114
static int no_sched_irq_time;

115 116 117 118
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
119 120
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
121 122 123 124 125
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
126 127 128 129 130 131
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
132
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
133 134 135 136 137 138 139
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
140
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
141
		else
142
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
143 144 145 146 147 148 149
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

150 151
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
152
 */
153
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
154
{
155
	u64 tmp;
A
Alok Kataria 已提交
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
173

174 175 176 177 178 179 180 181 182 183 184 185 186
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

187
#define CAL_MS		10
188
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
189 190 191
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
192
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
193 194
#define CAL2_PIT_LOOPS	5000

195

196 197 198 199 200 201 202
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
203
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
204 205 206 207 208 209 210 211 212 213 214 215 216 217
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
218 219
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
240
	 * If we were not able to read the PIT more than loopmin
241 242 243 244 245
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
246
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
247 248 249 250
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
251
	do_div(delta, ms);
252 253 254
	return delta;
}

L
Linus Torvalds 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
290 291 292 293 294 295 296
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

297
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
298
{
299
	int count;
300
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
301

L
Linus Torvalds 已提交
302
	for (count = 0; count < 50000; count++) {
303
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
304
			break;
305
		prev_tsc = tsc;
306
		tsc = get_cycles();
L
Linus Torvalds 已提交
307
	}
308
	*deltap = get_cycles() - prev_tsc;
309 310 311 312 313 314 315
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
316 317 318
}

/*
319 320 321
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
322
 * more than 50ms on it.
L
Linus Torvalds 已提交
323
 */
324
#define MAX_QUICK_PIT_MS 50
325
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
326

L
Linus Torvalds 已提交
327 328
static unsigned long quick_pit_calibrate(void)
{
329 330 331 332
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
333
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
334 335
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
336 337 338 339 340 341 342 343 344
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
345 346
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
347 348 349 350
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

351 352 353 354 355 356
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
357
	pit_verify_msb(0);
358

359 360 361 362 363 364 365 366 367
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

			/*
			 * Iterate until the error is less than 500 ppm
			 */
			delta -= tsc;
368 369 370 371 372 373 374 375 376 377 378 379 380
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
381 382
		}
	}
383
	pr_err("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
384
	return 0;
385 386 387 388 389 390 391 392 393

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
394
	 * reliable (within the error).
395 396 397 398 399 400 401
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
402
	pr_info("Fast TSC calibration using PIT\n");
403
	return delta;
L
Linus Torvalds 已提交
404
}
405

A
Alok Kataria 已提交
406
/**
407
 * native_calibrate_tsc - calibrate the tsc on boot
A
Alok Kataria 已提交
408
 */
409
unsigned long native_calibrate_tsc(void)
A
Alok Kataria 已提交
410
{
411
	u64 tsc1, tsc2, delta, ref1, ref2;
412
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
413
	unsigned long flags, latch, ms, fast_calibrate;
414
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
415

L
Linus Torvalds 已提交
416 417
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
418
	local_irq_restore(flags);
L
Linus Torvalds 已提交
419 420
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
421

422 423 424 425 426 427 428 429 430 431 432 433
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
434
	 * SMI/SMM disturbance happened between the two reads. If the
435 436 437 438 439 440 441 442 443 444 445
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
446 447 448 449 450 451 452

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
453
		unsigned long tsc_pit_khz;
454 455 456

		/*
		 * Read the start value and the reference count of
457 458 459
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
460
		 */
461
		local_irq_save(flags);
462
		tsc1 = tsc_read_refs(&ref1, hpet);
463
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
464
		tsc2 = tsc_read_refs(&ref2, hpet);
465 466
		local_irq_restore(flags);

467 468
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
469 470

		/* hpet or pmtimer available ? */
471
		if (ref1 == ref2)
472 473 474 475 476 477 478
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
479
		if (hpet)
480
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
481
		else
482
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
483 484

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
485 486 487 488 489 490 491 492 493 494 495 496

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
497 498
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
499
			return tsc_ref_min;
500 501
		}

502 503 504 505 506 507 508 509 510 511 512
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
513
	}
A
Alok Kataria 已提交
514 515

	/*
516
	 * Now check the results.
A
Alok Kataria 已提交
517
	 */
518 519
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
520
		pr_warn("Unable to calibrate against PIT\n");
521 522

		/* We don't have an alternative source, disable TSC */
523
		if (!hpet && !ref1 && !ref2) {
524
			pr_notice("No reference (HPET/PMTIMER) available\n");
525 526 527 528 529
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
530
			pr_warn("HPET/PMTIMER calibration failed\n");
531 532 533 534
			return 0;
		}

		/* Use the alternative source */
535 536
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
537 538 539

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
540

541
	/* We don't have an alternative source, use the PIT calibration value */
542
	if (!hpet && !ref1 && !ref2) {
543
		pr_info("Using PIT calibration value\n");
544
		return tsc_pit_min;
A
Alok Kataria 已提交
545 546
	}

547 548
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
549
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
550
		return tsc_pit_min;
A
Alok Kataria 已提交
551 552
	}

553 554 555
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
556
	 * running at double speed. At least we let the user know:
557
	 */
558 559 560
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
561
	return tsc_pit_min;
A
Alok Kataria 已提交
562 563 564 565 566 567 568 569
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
570
		tsc_khz = x86_platform.calibrate_tsc();
571
		cpu_khz = tsc_khz;
A
Alok Kataria 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

DEFINE_PER_CPU(unsigned long, cyc2ns);
609
DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
A
Alok Kataria 已提交
610

611
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
A
Alok Kataria 已提交
612
{
613
	unsigned long long tsc_now, ns_now, *offset;
A
Alok Kataria 已提交
614 615 616 617 618 619
	unsigned long flags, *scale;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	scale = &per_cpu(cyc2ns, cpu);
620
	offset = &per_cpu(cyc2ns_offset, cpu);
A
Alok Kataria 已提交
621 622 623 624

	rdtscll(tsc_now);
	ns_now = __cycles_2_ns(tsc_now);

625
	if (cpu_khz) {
626 627
		*scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
				cpu_khz / 2) / cpu_khz;
628 629
		*offset = ns_now - mult_frac(tsc_now, *scale,
					     (1UL << CYC2NS_SCALE_FACTOR));
630
	}
A
Alok Kataria 已提交
631 632 633 634 635

	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}

636 637
static unsigned long long cyc2ns_suspend;

638
void tsc_save_sched_clock_state(void)
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
{
	if (!sched_clock_stable)
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
654
void tsc_restore_sched_clock_state(void)
655 656 657 658 659 660 661 662 663 664
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

	if (!sched_clock_stable)
		return;

	local_irq_save(flags);

T
Tejun Heo 已提交
665
	__this_cpu_write(cyc2ns_offset, 0);
666 667 668 669 670 671 672 673
	offset = cyc2ns_suspend - sched_clock();

	for_each_possible_cpu(cpu)
		per_cpu(cyc2ns_offset, cpu) = offset;

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
695
	unsigned long *lpj;
A
Alok Kataria 已提交
696 697 698 699

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

700
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
701
#ifdef CONFIG_SMP
702
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
703 704 705 706 707 708 709 710 711 712 713
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
			(val == CPUFREQ_RESUMECHANGE)) {
714
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
715 716 717 718 719 720

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");
	}

721
	set_cyc2ns_scale(tsc_khz, freq->cpu);
A
Alok Kataria 已提交
722 723 724 725 726 727 728 729 730 731

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
732 733 734 735
	if (!cpu_has_tsc)
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
736 737 738 739 740 741 742 743
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

/* clocksource code */

static struct clocksource clocksource_tsc;

/*
 * We compare the TSC to the cycle_last value in the clocksource
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
 */
761
static cycle_t read_tsc(struct clocksource *cs)
762 763 764 765 766 767 768
{
	cycle_t ret = (cycle_t)get_cycles();

	return ret >= clocksource_tsc.cycle_last ?
		ret : clocksource_tsc.cycle_last;
}

769
static void resume_tsc(struct clocksource *cs)
770
{
771 772
	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.cycle_last = 0;
773 774
}

775 776 777 778
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
779
	.resume			= resume_tsc,
780 781 782 783
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
#ifdef CONFIG_X86_64
784
	.archdata               = { .vclock_mode = VCLOCK_TSC },
785 786 787 788 789 790 791
#endif
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
792
		sched_clock_stable = 0;
V
Venkatesh Pallipadi 已提交
793
		disable_sched_clock_irqtime();
794
		pr_info("Marking TSC unstable due to %s\n", reason);
795 796
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
797 798 799
			clocksource_mark_unstable(&clocksource_tsc);
		else {
			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
800
			clocksource_tsc.rating = 0;
801
		}
802 803 804 805 806
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

807 808
static void __init check_system_tsc_reliable(void)
{
809
#ifdef CONFIG_MGEODE_LX
810
	/* RTSC counts during suspend */
811 812 813 814
#define RTSC_SUSP 0x100
	unsigned long res_low, res_high;

	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
815
	/* Geode_LX - the OLPC CPU has a very reliable TSC */
816
	if (res_low & RTSC_SUSP)
817
		tsc_clocksource_reliable = 1;
818
#endif
819 820 821
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
822 823 824 825 826 827 828 829 830 831

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
__cpuinit int unsynchronized_tsc(void)
{
	if (!cpu_has_tsc || tsc_unstable)
		return 1;

832
#ifdef CONFIG_SMP
833 834 835 836 837 838
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
839 840 841

	if (tsc_clocksource_reliable)
		return 0;
842 843 844 845 846 847 848
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
849
			return 1;
850 851
	}

852
	return 0;
853 854
}

855 856 857 858 859 860 861 862 863 864 865 866

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
867
 * If there are any calibration anomalies (too many SMIs, etc),
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
902
	if (ref_start == ref_stop)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
921 922 923
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
924 925 926 927 928 929 930

out:
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
931
{
932
	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
933 934
		return 0;

935 936
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
937 938 939 940 941
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
942

943 944 945
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

946 947 948 949 950 951 952 953 954
	/*
	 * Trust the results of the earlier calibration on systems
	 * exporting a reliable TSC.
	 */
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
		return 0;
	}

955 956
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
957
}
958 959 960 961 962
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
963 964 965 966 967 968

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

969 970
	x86_init.timers.tsc_pre_init();

971 972 973
	if (!cpu_has_tsc)
		return;

974
	tsc_khz = x86_platform.calibrate_tsc();
975
	cpu_khz = tsc_khz;
976

977
	if (!tsc_khz) {
978 979 980 981
		mark_tsc_unstable("could not calculate TSC khz");
		return;
	}

982 983 984
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
	for_each_possible_cpu(cpu)
		set_cyc2ns_scale(cpu_khz, cpu);

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
	tsc_disabled = 0;

V
Venkatesh Pallipadi 已提交
1001 1002 1003
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1004 1005 1006 1007
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1008 1009 1010 1011 1012
	use_tsc_delay();

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

1013
	check_system_tsc_reliable();
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
unsigned long __cpuinit calibrate_delay_is_known(void)
{
	int i, cpu = smp_processor_id();

	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

	for_each_online_cpu(i)
		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
			return cpu_data(i).loops_per_jiffy;
	return 0;
}
#endif