tsc.c 25.8 KB
Newer Older
A
Alok Kataria 已提交
1
#include <linux/kernel.h>
A
Alok Kataria 已提交
2 3 4 5
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
6
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
7
#include <linux/cpufreq.h>
8 9 10
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
11
#include <linux/timex.h>
A
Alok Kataria 已提交
12 13

#include <asm/hpet.h>
14 15 16 17
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
18
#include <asm/hypervisor.h>
19
#include <asm/nmi.h>
20
#include <asm/x86_init.h>
A
Alok Kataria 已提交
21

22
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
23
EXPORT_SYMBOL(cpu_khz);
24 25

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
26 27 28 29 30
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
31
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
32 33 34 35

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
36
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
37

38
int tsc_clocksource_reliable;
A
Alok Kataria 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
	u64 this_offset;

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
52
	 *   can achieve it. )
A
Alok Kataria 已提交
53 54 55 56 57 58 59 60 61 62
	 */
	if (unlikely(tsc_disabled)) {
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
	rdtscll(this_offset);

	/* return the value in ns */
I
Ingo Molnar 已提交
63
	return __cycles_2_ns(this_offset);
A
Alok Kataria 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
			"cannot disable TSC completely.\n");
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
105

V
Venkatesh Pallipadi 已提交
106 107
static int no_sched_irq_time;

108 109 110 111
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
112 113
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
114 115 116 117 118
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
119 120 121 122 123 124
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
125
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
126 127 128 129 130 131 132
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
133
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
134
		else
135
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
136 137 138 139 140 141 142
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

143 144
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
145
 */
146
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
147
{
148
	u64 tmp;
A
Alok Kataria 已提交
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

180
#define CAL_MS		10
181
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
182 183 184
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
185
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
186 187
#define CAL2_PIT_LOOPS	5000

188

189 190 191 192 193 194 195
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
196
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
211 212
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
233
	 * If we were not able to read the PIT more than loopmin
234 235 236 237 238
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
239
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
240 241 242 243
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
244
	do_div(delta, ms);
245 246 247
	return delta;
}

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
283 284 285 286 287 288 289
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

290
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
291
{
292
	int count;
293
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
294

L
Linus Torvalds 已提交
295
	for (count = 0; count < 50000; count++) {
296
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
297
			break;
298
		prev_tsc = tsc;
299
		tsc = get_cycles();
L
Linus Torvalds 已提交
300
	}
301
	*deltap = get_cycles() - prev_tsc;
302 303 304 305 306 307 308
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
309 310 311
}

/*
312 313 314
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
315
 * more than 50ms on it.
L
Linus Torvalds 已提交
316
 */
317
#define MAX_QUICK_PIT_MS 50
318
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
319

L
Linus Torvalds 已提交
320 321
static unsigned long quick_pit_calibrate(void)
{
322 323 324 325
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
326
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
327 328
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
329 330 331 332 333 334 335 336 337
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
338 339
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
340 341 342 343
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

344 345 346 347 348 349
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
350
	pit_verify_msb(0);
351

352 353 354 355 356 357 358 359 360
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

			/*
			 * Iterate until the error is less than 500 ppm
			 */
			delta -= tsc;
361 362 363 364 365 366 367 368 369 370 371 372 373
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
374 375
		}
	}
376
	printk("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
377
	return 0;
378 379 380 381 382 383 384 385 386

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
387
	 * reliable (within the error).
388 389 390 391 392 393 394 395 396
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
	printk("Fast TSC calibration using PIT\n");
	return delta;
L
Linus Torvalds 已提交
397
}
398

A
Alok Kataria 已提交
399
/**
400
 * native_calibrate_tsc - calibrate the tsc on boot
A
Alok Kataria 已提交
401
 */
402
unsigned long native_calibrate_tsc(void)
A
Alok Kataria 已提交
403
{
404
	u64 tsc1, tsc2, delta, ref1, ref2;
405
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
406
	unsigned long flags, latch, ms, fast_calibrate;
407
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
408

L
Linus Torvalds 已提交
409 410
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
411
	local_irq_restore(flags);
L
Linus Torvalds 已提交
412 413
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
414

415 416 417 418 419 420 421 422 423 424 425 426
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
427
	 * SMI/SMM disturbance happened between the two reads. If the
428 429 430 431 432 433 434 435 436 437 438
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
439 440 441 442 443 444 445

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
446
		unsigned long tsc_pit_khz;
447 448 449

		/*
		 * Read the start value and the reference count of
450 451 452
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
453
		 */
454
		local_irq_save(flags);
455
		tsc1 = tsc_read_refs(&ref1, hpet);
456
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
457
		tsc2 = tsc_read_refs(&ref2, hpet);
458 459
		local_irq_restore(flags);

460 461
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
462 463

		/* hpet or pmtimer available ? */
464
		if (ref1 == ref2)
465 466 467 468 469 470 471
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
472
		if (hpet)
473
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
474
		else
475
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
476 477

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
			printk(KERN_INFO
			       "TSC: PIT calibration matches %s. %d loops\n",
			       hpet ? "HPET" : "PMTIMER", i + 1);
			return tsc_ref_min;
494 495
		}

496 497 498 499 500 501 502 503 504 505 506
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
507
	}
A
Alok Kataria 已提交
508 509

	/*
510
	 * Now check the results.
A
Alok Kataria 已提交
511
	 */
512 513
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
514
		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
515 516

		/* We don't have an alternative source, disable TSC */
517
		if (!hpet && !ref1 && !ref2) {
518 519 520 521 522 523 524
			printk("TSC: No reference (HPET/PMTIMER) available\n");
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
525
			       "failed.\n");
526 527 528 529 530 531 532 533 534
			return 0;
		}

		/* Use the alternative source */
		printk(KERN_INFO "TSC: using %s reference calibration\n",
		       hpet ? "HPET" : "PMTIMER");

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
535

536
	/* We don't have an alternative source, use the PIT calibration value */
537
	if (!hpet && !ref1 && !ref2) {
538 539
		printk(KERN_INFO "TSC: Using PIT calibration value\n");
		return tsc_pit_min;
A
Alok Kataria 已提交
540 541
	}

542 543
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
544 545
		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
		       "Using PIT calibration\n");
546
		return tsc_pit_min;
A
Alok Kataria 已提交
547 548
	}

549 550 551
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
552
	 * running at double speed. At least we let the user know:
553
	 */
554 555
	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
556 557
	printk(KERN_INFO "TSC: Using PIT calibration value\n");
	return tsc_pit_min;
A
Alok Kataria 已提交
558 559 560 561 562 563 564 565
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
566
		tsc_khz = x86_platform.calibrate_tsc();
567
		cpu_khz = tsc_khz;
A
Alok Kataria 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

DEFINE_PER_CPU(unsigned long, cyc2ns);
605
DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
A
Alok Kataria 已提交
606

607
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
A
Alok Kataria 已提交
608
{
609
	unsigned long long tsc_now, ns_now, *offset;
A
Alok Kataria 已提交
610 611 612 613 614 615
	unsigned long flags, *scale;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	scale = &per_cpu(cyc2ns, cpu);
616
	offset = &per_cpu(cyc2ns_offset, cpu);
A
Alok Kataria 已提交
617 618 619 620

	rdtscll(tsc_now);
	ns_now = __cycles_2_ns(tsc_now);

621
	if (cpu_khz) {
A
Alok Kataria 已提交
622
		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
623 624
		*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
	}
A
Alok Kataria 已提交
625 626 627 628 629

	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
static unsigned long long cyc2ns_suspend;

void save_sched_clock_state(void)
{
	if (!sched_clock_stable)
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
void restore_sched_clock_state(void)
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

	if (!sched_clock_stable)
		return;

	local_irq_save(flags);

T
Tejun Heo 已提交
659
	__this_cpu_write(cyc2ns_offset, 0);
660 661 662 663 664 665 666 667
	offset = cyc2ns_suspend - sched_clock();

	for_each_possible_cpu(cpu)
		per_cpu(cyc2ns_offset, cpu) = offset;

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
689
	unsigned long *lpj;
A
Alok Kataria 已提交
690 691 692 693

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

694
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
695
#ifdef CONFIG_SMP
696
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
697 698 699 700 701 702 703 704 705 706 707
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
			(val == CPUFREQ_RESUMECHANGE)) {
708
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
709 710 711 712 713 714

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");
	}

715
	set_cyc2ns_scale(tsc_khz, freq->cpu);
A
Alok Kataria 已提交
716 717 718 719 720 721 722 723 724 725

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
726 727 728 729
	if (!cpu_has_tsc)
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
730 731 732 733 734 735 736 737
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

/* clocksource code */

static struct clocksource clocksource_tsc;

/*
 * We compare the TSC to the cycle_last value in the clocksource
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
 */
755
static cycle_t read_tsc(struct clocksource *cs)
756 757 758 759 760 761 762
{
	cycle_t ret = (cycle_t)get_cycles();

	return ret >= clocksource_tsc.cycle_last ?
		ret : clocksource_tsc.cycle_last;
}

763
static void resume_tsc(struct clocksource *cs)
764 765 766 767
{
	clocksource_tsc.cycle_last = 0;
}

768 769 770 771
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
772
	.resume			= resume_tsc,
773 774 775 776
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
#ifdef CONFIG_X86_64
777
	.archdata               = { .vclock_mode = VCLOCK_TSC },
778 779 780 781 782 783 784
#endif
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
785
		sched_clock_stable = 0;
V
Venkatesh Pallipadi 已提交
786
		disable_sched_clock_irqtime();
787
		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
788 789
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
790 791 792
			clocksource_mark_unstable(&clocksource_tsc);
		else {
			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
793
			clocksource_tsc.rating = 0;
794
		}
795 796 797 798 799
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

800 801
static void __init check_system_tsc_reliable(void)
{
802
#ifdef CONFIG_MGEODE_LX
803
	/* RTSC counts during suspend */
804 805 806 807
#define RTSC_SUSP 0x100
	unsigned long res_low, res_high;

	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
808
	/* Geode_LX - the OLPC CPU has a very reliable TSC */
809
	if (res_low & RTSC_SUSP)
810
		tsc_clocksource_reliable = 1;
811
#endif
812 813 814
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
815 816 817 818 819 820 821 822 823 824

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
__cpuinit int unsynchronized_tsc(void)
{
	if (!cpu_has_tsc || tsc_unstable)
		return 1;

825
#ifdef CONFIG_SMP
826 827 828 829 830 831
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
832 833 834

	if (tsc_clocksource_reliable)
		return 0;
835 836 837 838 839 840 841
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
842
			return 1;
843 844
	}

845
	return 0;
846 847
}

848 849 850 851 852 853 854 855 856 857 858 859

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
860
 * If there are any calibration anomalies (too many SMIs, etc),
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
895
	if (ref_start == ref_stop)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
	printk(KERN_INFO "Refined TSC clocksource calibration: "
		"%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
					(unsigned long)tsc_khz % 1000);

out:
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
924
{
925
	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
926 927
		return 0;

928 929
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
930 931 932 933 934
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
935 936
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
937
}
938 939 940 941 942
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
943 944 945 946 947 948

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

949 950
	x86_init.timers.tsc_pre_init();

951 952 953
	if (!cpu_has_tsc)
		return;

954
	tsc_khz = x86_platform.calibrate_tsc();
955
	cpu_khz = tsc_khz;
956

957
	if (!tsc_khz) {
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
		mark_tsc_unstable("could not calculate TSC khz");
		return;
	}

	printk("Detected %lu.%03lu MHz processor.\n",
			(unsigned long)cpu_khz / 1000,
			(unsigned long)cpu_khz % 1000);

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
	for_each_possible_cpu(cpu)
		set_cyc2ns_scale(cpu_khz, cpu);

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
	tsc_disabled = 0;

V
Venkatesh Pallipadi 已提交
981 982 983
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

984 985 986 987
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

988 989 990 991 992
	use_tsc_delay();

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

993
	check_system_tsc_reliable();
994 995
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
unsigned long __cpuinit calibrate_delay_is_known(void)
{
	int i, cpu = smp_processor_id();

	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

	for_each_online_cpu(i)
		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
			return cpu_data(i).loops_per_jiffy;
	return 0;
}
#endif