tsc.c 35.9 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4
#include <linux/sched.h>
5
#include <linux/sched/clock.h>
A
Alok Kataria 已提交
6
#include <linux/init.h>
7
#include <linux/export.h>
A
Alok Kataria 已提交
8
#include <linux/timer.h>
A
Alok Kataria 已提交
9
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
10
#include <linux/cpufreq.h>
11 12 13
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
14
#include <linux/timex.h>
15
#include <linux/static_key.h>
A
Alok Kataria 已提交
16 17

#include <asm/hpet.h>
18 19 20 21
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
22
#include <asm/hypervisor.h>
23
#include <asm/nmi.h>
24
#include <asm/x86_init.h>
25
#include <asm/geode.h>
26
#include <asm/apic.h>
27
#include <asm/intel-family.h>
28
#include <asm/i8259.h>
A
Alok Kataria 已提交
29

30
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
31
EXPORT_SYMBOL(cpu_khz);
32 33

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
34 35 36 37 38
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
39
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
40 41 42

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
43
   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
44
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
45

46
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
47

48
int tsc_clocksource_reliable;
49

50 51 52 53 54
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;

55
struct cyc2ns {
56 57
	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
	seqcount_t	   seq;		/* 32 + 4    = 36 */
58

59
}; /* fits one cacheline */
60

61
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
62

63
void cyc2ns_read_begin(struct cyc2ns_data *data)
64
{
65
	int seq, idx;
66

67
	preempt_disable_notrace();
68

69 70 71
	do {
		seq = this_cpu_read(cyc2ns.seq.sequence);
		idx = seq & 1;
72

73 74 75
		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
76

77
	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
78 79
}

80
void cyc2ns_read_end(void)
81
{
82
	preempt_enable_notrace();
83 84 85 86
}

/*
 * Accelerators for sched_clock()
87 88 89 90 91 92 93 94 95 96 97 98
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
99 100 101
 *  into a shift. The larger SC is, the more accurate the conversion, but
 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 *  (64-bit result) can be used.
102
 *
103
 *  We can use khz divisor instead of mhz to keep a better precision.
104 105 106 107 108
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

109 110
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
111
	data->cyc2ns_mul = 0;
112
	data->cyc2ns_shift = 0;
113 114 115
	data->cyc2ns_offset = 0;
}

116
static void __init cyc2ns_init(int cpu)
117 118 119 120 121 122
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	cyc2ns_data_init(&c2n->data[0]);
	cyc2ns_data_init(&c2n->data[1]);

123
	seqcount_init(&c2n->seq);
124 125
}

126 127
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
128
	struct cyc2ns_data data;
129 130
	unsigned long long ns;

131
	cyc2ns_read_begin(&data);
132

133 134
	ns = data.cyc2ns_offset;
	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
135

136
	cyc2ns_read_end();
137

138 139 140
	return ns;
}

141
static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
142
{
P
Peter Zijlstra 已提交
143
	unsigned long long ns_now;
144 145
	struct cyc2ns_data data;
	struct cyc2ns *c2n;
146
	unsigned long flags;
147 148 149 150

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

151
	if (!khz)
152 153
		goto done;

154 155
	ns_now = cycles_2_ns(tsc_now);

156 157 158 159 160
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
161
	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
162 163
			       NSEC_PER_MSEC, 0);

164 165 166 167 168 169
	/*
	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
	 * not expected to be greater than 31 due to the original published
	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
	 */
170 171 172
	if (data.cyc2ns_shift == 32) {
		data.cyc2ns_shift = 31;
		data.cyc2ns_mul >>= 1;
173 174
	}

175 176 177 178
	data.cyc2ns_offset = ns_now -
		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);

	c2n = per_cpu_ptr(&cyc2ns, cpu);
179

180 181 182 183
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[0] = data;
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[1] = data;
184

185
done:
186
	sched_clock_idle_wakeup_event();
187 188
	local_irq_restore(flags);
}
P
Peter Zijlstra 已提交
189

A
Alok Kataria 已提交
190 191 192 193 194
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
195 196 197 198 199 200
	if (static_branch_likely(&__use_tsc)) {
		u64 tsc_now = rdtsc();

		/* return the value in ns */
		return cycles_2_ns(tsc_now);
	}
A
Alok Kataria 已提交
201 202 203 204 205 206 207

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
208
	 *   can achieve it. )
A
Alok Kataria 已提交
209 210
	 */

211 212
	/* No locking but a rare wrong value is not a big deal: */
	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
A
Alok Kataria 已提交
213 214
}

215 216 217 218 219 220 221 222
/*
 * Generate a sched_clock if you already have a TSC value.
 */
u64 native_sched_clock_from_tsc(u64 tsc)
{
	return cycles_2_ns(tsc);
}

A
Alok Kataria 已提交
223 224 225 226 227 228 229
/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
230

231
bool using_native_sched_clock(void)
232 233 234
{
	return pv_time_ops.sched_clock == native_sched_clock;
}
A
Alok Kataria 已提交
235 236 237
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
238

239
bool using_native_sched_clock(void) { return true; }
A
Alok Kataria 已提交
240 241 242 243 244 245 246 247 248 249 250
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
251
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
268

V
Venkatesh Pallipadi 已提交
269 270
static int no_sched_irq_time;

271 272 273 274
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
275 276
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
277 278
	if (!strcmp(str, "unstable"))
		mark_tsc_unstable("boot parameter");
279 280 281 282 283
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
284 285 286 287 288 289
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
290
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
291 292 293 294 295 296 297
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
298
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
299
		else
300
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
301 302 303 304 305 306 307
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

308 309
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
310
 */
311
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
312
{
313
	u64 tmp;
A
Alok Kataria 已提交
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
331

332 333 334 335 336 337 338 339 340 341 342 343 344
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

345
#define CAL_MS		10
346
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
347 348 349
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
350
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
351 352
#define CAL2_PIT_LOOPS	5000

353

354 355 356 357 358 359 360
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
361
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
362 363 364 365 366
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

367 368 369 370 371 372 373 374 375 376 377 378 379 380
	if (!has_legacy_pic()) {
		/*
		 * Relies on tsc_early_delay_calibrate() to have given us semi
		 * usable udelay(), wait for the same 50ms we would have with
		 * the PIT loop below.
		 */
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		return ULONG_MAX;
	}

381 382 383 384 385 386 387 388 389
	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
390 391
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
412
	 * If we were not able to read the PIT more than loopmin
413 414 415 416 417
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
418
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
419 420 421 422
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
423
	do_div(delta, ms);
424 425 426
	return delta;
}

L
Linus Torvalds 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
462 463 464 465 466 467 468
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

469
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
470
{
471
	int count;
472
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
473

L
Linus Torvalds 已提交
474
	for (count = 0; count < 50000; count++) {
475
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
476
			break;
477
		prev_tsc = tsc;
478
		tsc = get_cycles();
L
Linus Torvalds 已提交
479
	}
480
	*deltap = get_cycles() - prev_tsc;
481 482 483 484 485 486 487
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
488 489 490
}

/*
491 492 493
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
494
 * more than 50ms on it.
L
Linus Torvalds 已提交
495
 */
496
#define MAX_QUICK_PIT_MS 50
497
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
498

L
Linus Torvalds 已提交
499 500
static unsigned long quick_pit_calibrate(void)
{
501 502 503 504
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

505 506 507
	if (!has_legacy_pic())
		return 0;

L
Linus Torvalds 已提交
508
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
509 510
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
520 521
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
522 523 524 525
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

526 527 528 529 530 531
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
532
	pit_verify_msb(0);
533

534 535 536 537 538
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

539 540 541 542 543 544 545 546 547 548
			delta -= tsc;

			/*
			 * Extrapolate the error and fail fast if the error will
			 * never be below 500 ppm.
			 */
			if (i == 1 &&
			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
				return 0;

549 550 551
			/*
			 * Iterate until the error is less than 500 ppm
			 */
552 553 554 555 556 557 558 559 560 561 562 563 564
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
565 566
		}
	}
567
	pr_info("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
568
	return 0;
569 570 571 572 573 574 575 576 577

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
578
	 * reliable (within the error).
579 580 581 582 583 584 585
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
586
	pr_info("Fast TSC calibration using PIT\n");
587
	return delta;
L
Linus Torvalds 已提交
588
}
589

A
Alok Kataria 已提交
590
/**
591 592
 * native_calibrate_tsc
 * Determine TSC frequency via CPUID, else return 0.
A
Alok Kataria 已提交
593
 */
594
unsigned long native_calibrate_tsc(void)
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
{
	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
	unsigned int crystal_khz;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x15)
		return 0;

	eax_denominator = ebx_numerator = ecx_hz = edx = 0;

	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);

	if (ebx_numerator == 0 || eax_denominator == 0)
		return 0;

	crystal_khz = ecx_hz / 1000;

	if (crystal_khz == 0) {
		switch (boot_cpu_data.x86_model) {
617 618
		case INTEL_FAM6_SKYLAKE_MOBILE:
		case INTEL_FAM6_SKYLAKE_DESKTOP:
619 620
		case INTEL_FAM6_KABYLAKE_MOBILE:
		case INTEL_FAM6_KABYLAKE_DESKTOP:
621 622
			crystal_khz = 24000;	/* 24.0 MHz */
			break;
623
		case INTEL_FAM6_ATOM_DENVERTON:
624 625
			crystal_khz = 25000;	/* 25.0 MHz */
			break;
626
		case INTEL_FAM6_ATOM_GOLDMONT:
627 628
			crystal_khz = 19200;	/* 19.2 MHz */
			break;
629 630 631
		}
	}

632 633
	if (crystal_khz == 0)
		return 0;
634 635 636 637 638 639 640
	/*
	 * TSC frequency determined by CPUID is a "hardware reported"
	 * frequency and is the most accurate one so far we have. This
	 * is considered a known frequency.
	 */
	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);

641 642 643 644 645 646 647
	/*
	 * For Atom SoCs TSC is the only reliable clocksource.
	 * Mark TSC reliable so no watchdog on it.
	 */
	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	return crystal_khz * ebx_numerator / eax_denominator;
}

static unsigned long cpu_khz_from_cpuid(void)
{
	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x16)
		return 0;

	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;

	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);

	return eax_base_mhz * 1000;
}

/**
 * native_calibrate_cpu - calibrate the cpu on boot
 */
unsigned long native_calibrate_cpu(void)
A
Alok Kataria 已提交
672
{
673
	u64 tsc1, tsc2, delta, ref1, ref2;
674
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
675
	unsigned long flags, latch, ms, fast_calibrate;
676
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
677

678 679 680 681
	fast_calibrate = cpu_khz_from_cpuid();
	if (fast_calibrate)
		return fast_calibrate;

682
	fast_calibrate = cpu_khz_from_msr();
683
	if (fast_calibrate)
684 685
		return fast_calibrate;

L
Linus Torvalds 已提交
686 687
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
688
	local_irq_restore(flags);
L
Linus Torvalds 已提交
689 690
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
691

692 693 694 695 696 697 698 699 700 701 702 703
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
704
	 * SMI/SMM disturbance happened between the two reads. If the
705 706 707 708 709 710 711 712 713 714 715
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
716 717 718 719 720 721 722

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
723
		unsigned long tsc_pit_khz;
724 725 726

		/*
		 * Read the start value and the reference count of
727 728 729
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
730
		 */
731
		local_irq_save(flags);
732
		tsc1 = tsc_read_refs(&ref1, hpet);
733
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
734
		tsc2 = tsc_read_refs(&ref2, hpet);
735 736
		local_irq_restore(flags);

737 738
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
739 740

		/* hpet or pmtimer available ? */
741
		if (ref1 == ref2)
742 743 744 745 746 747 748
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
749
		if (hpet)
750
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
751
		else
752
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
753 754

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
755 756 757 758 759 760 761 762 763 764 765 766

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
767 768
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
769
			return tsc_ref_min;
770 771
		}

772 773 774 775 776 777 778 779 780 781 782
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
783
	}
A
Alok Kataria 已提交
784 785

	/*
786
	 * Now check the results.
A
Alok Kataria 已提交
787
	 */
788 789
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
790
		pr_warn("Unable to calibrate against PIT\n");
791 792

		/* We don't have an alternative source, disable TSC */
793
		if (!hpet && !ref1 && !ref2) {
794
			pr_notice("No reference (HPET/PMTIMER) available\n");
795 796 797 798 799
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
800
			pr_warn("HPET/PMTIMER calibration failed\n");
801 802 803 804
			return 0;
		}

		/* Use the alternative source */
805 806
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
807 808 809

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
810

811
	/* We don't have an alternative source, use the PIT calibration value */
812
	if (!hpet && !ref1 && !ref2) {
813
		pr_info("Using PIT calibration value\n");
814
		return tsc_pit_min;
A
Alok Kataria 已提交
815 816
	}

817 818
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
819
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
820
		return tsc_pit_min;
A
Alok Kataria 已提交
821 822
	}

823 824 825
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
826
	 * running at double speed. At least we let the user know:
827
	 */
828 829 830
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
831
	return tsc_pit_min;
A
Alok Kataria 已提交
832 833
}

834
void recalibrate_cpu_khz(void)
A
Alok Kataria 已提交
835 836 837 838
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

839
	if (!boot_cpu_has(X86_FEATURE_TSC))
840
		return;
841

842
	cpu_khz = x86_platform.calibrate_cpu();
843
	tsc_khz = x86_platform.calibrate_tsc();
844 845
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
846 847
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
848 849
	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
						    cpu_khz_old, cpu_khz);
A
Alok Kataria 已提交
850 851 852 853 854
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
855

856 857
static unsigned long long cyc2ns_suspend;

858
void tsc_save_sched_clock_state(void)
859
{
860
	if (!sched_clock_stable())
861 862 863 864 865 866 867 868 869 870 871 872 873
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
874
void tsc_restore_sched_clock_state(void)
875 876 877 878 879
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

880
	if (!sched_clock_stable())
881 882 883 884
		return;

	local_irq_save(flags);

885
	/*
886
	 * We're coming out of suspend, there's no concurrency yet; don't
887 888 889 890 891 892 893
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

894 895
	offset = cyc2ns_suspend - sched_clock();

896 897 898 899
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
900 901 902 903

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
924
	unsigned long *lpj;
A
Alok Kataria 已提交
925

926
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
927
#ifdef CONFIG_SMP
928
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
929 930 931 932 933 934 935 936 937
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
938
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
939
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
940 941 942 943 944

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

945
		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
P
Peter Zijlstra 已提交
946
	}
A
Alok Kataria 已提交
947 948 949 950 951 952 953 954

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

955
static int __init cpufreq_register_tsc_scaling(void)
A
Alok Kataria 已提交
956
{
957
	if (!boot_cpu_has(X86_FEATURE_TSC))
958 959 960
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
961 962 963 964 965
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

966
core_initcall(cpufreq_register_tsc_scaling);
A
Alok Kataria 已提交
967 968

#endif /* CONFIG_CPU_FREQ */
969

970 971 972 973 974 975 976
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)


/*
 * If ART is present detect the numerator:denominator to convert to TSC
 */
977
static void __init detect_art(void)
978 979 980 981 982 983
{
	unsigned int unused[2];

	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
		return;

984 985 986 987
	/*
	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
	 * and the TSC counter resets must not occur asynchronously.
	 */
988 989
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
990 991
	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
	    tsc_async_resets)
992 993
		return;

994 995 996 997
	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
	      &art_to_tsc_numerator, unused, unused+1);

	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
998 999
		return;

1000 1001
	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);

1002 1003 1004 1005 1006
	/* Make this sticky over multiple CPU init calls */
	setup_force_cpu_cap(X86_FEATURE_ART);
}


1007 1008
/* clocksource code */

1009 1010 1011 1012 1013
static void tsc_resume(struct clocksource *cs)
{
	tsc_verify_tsc_adjust(true);
}

1014
/*
1015
 * We used to compare the TSC to the cycle_last value in the clocksource
1016 1017 1018 1019 1020 1021 1022 1023 1024
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
1025 1026 1027 1028
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1029
 */
1030
static u64 read_tsc(struct clocksource *cs)
1031
{
1032
	return (u64)rdtsc_ordered();
1033 1034
}

1035 1036 1037 1038
static void tsc_cs_mark_unstable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;
1039

1040
	tsc_unstable = 1;
1041 1042
	if (using_native_sched_clock())
		clear_sched_clock_stable();
1043 1044 1045 1046
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to clocksource watchdog\n");
}

1047 1048 1049 1050 1051 1052 1053 1054 1055
static void tsc_cs_tick_stable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;

	if (using_native_sched_clock())
		sched_clock_tick_stable();
}

1056 1057 1058
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static struct clocksource clocksource_tsc_early = {
	.name                   = "tsc-early",
	.rating                 = 299,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
	.archdata               = { .vclock_mode = VCLOCK_TSC },
	.resume			= tsc_resume,
	.mark_unstable		= tsc_cs_mark_unstable,
	.tick_stable		= tsc_cs_tick_stable,
};

/*
 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
 * this one will immediately take over. We will only register if TSC has
 * been found good.
 */
1077 1078 1079 1080 1081 1082
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1083
				  CLOCK_SOURCE_VALID_FOR_HRES |
1084
				  CLOCK_SOURCE_MUST_VERIFY,
1085
	.archdata               = { .vclock_mode = VCLOCK_TSC },
1086
	.resume			= tsc_resume,
1087
	.mark_unstable		= tsc_cs_mark_unstable,
1088
	.tick_stable		= tsc_cs_tick_stable,
1089 1090 1091 1092
};

void mark_tsc_unstable(char *reason)
{
1093 1094 1095 1096 1097
	if (tsc_unstable)
		return;

	tsc_unstable = 1;
	if (using_native_sched_clock())
1098
		clear_sched_clock_stable();
1099 1100 1101 1102 1103 1104 1105 1106
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to %s\n", reason);
	/* Change only the rating, when not registered */
	if (clocksource_tsc.mult) {
		clocksource_mark_unstable(&clocksource_tsc);
	} else {
		clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
		clocksource_tsc.rating = 0;
1107 1108 1109 1110 1111
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1112 1113
static void __init check_system_tsc_reliable(void)
{
1114 1115 1116
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
	if (is_geode_lx()) {
		/* RTSC counts during suspend */
1117
#define RTSC_SUSP 0x100
1118
		unsigned long res_low, res_high;
1119

1120 1121 1122 1123 1124
		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
		/* Geode_LX - the OLPC CPU has a very reliable TSC */
		if (res_low & RTSC_SUSP)
			tsc_clocksource_reliable = 1;
	}
1125
#endif
1126 1127 1128
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1129 1130 1131 1132 1133

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1134
int unsynchronized_tsc(void)
1135
{
1136
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1137 1138
		return 1;

1139
#ifdef CONFIG_SMP
1140 1141 1142 1143 1144 1145
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1146 1147 1148

	if (tsc_clocksource_reliable)
		return 0;
1149 1150 1151 1152 1153 1154 1155
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1156
			return 1;
1157 1158
	}

1159
	return 0;
1160 1161
}

1162 1163 1164
/*
 * Convert ART to TSC given numerator/denominator found in detect_art()
 */
1165
struct system_counterval_t convert_art_to_tsc(u64 art)
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
{
	u64 tmp, res, rem;

	rem = do_div(art, art_to_tsc_denominator);

	res = art * art_to_tsc_numerator;
	tmp = rem * art_to_tsc_numerator;

	do_div(tmp, art_to_tsc_denominator);
	res += tmp + art_to_tsc_offset;

	return (struct system_counterval_t) {.cs = art_related_clocksource,
			.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1193
 * If there are any calibration anomalies (too many SMIs, etc),
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;
1204
	int cpu;
1205 1206

	/* Don't bother refining TSC on unstable systems */
1207 1208
	if (tsc_unstable)
		return;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1229
	if (ref_start == ref_stop)
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1248 1249 1250
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1251

1252 1253 1254
	/* Inform the TSC deadline clockevent devices about the recalibration */
	lapic_update_tsc_freq();

1255 1256
	/* Update the sched_clock() rate to match the clocksource one */
	for_each_possible_cpu(cpu)
1257
		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1258

1259
out:
1260 1261 1262
	if (tsc_unstable)
		return;

1263 1264
	if (boot_cpu_has(X86_FEATURE_ART))
		art_related_clocksource = &clocksource_tsc;
1265
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1266
	clocksource_unregister(&clocksource_tsc_early);
1267 1268 1269 1270
}


static int __init init_tsc_clocksource(void)
1271
{
1272
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1273 1274
		return 0;

1275 1276 1277
	if (check_tsc_unstable())
		return 0;

1278 1279
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1280

1281 1282 1283
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1284
	/*
1285 1286
	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
	 * the refined calibration and directly register it as a clocksource.
1287
	 */
1288
	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1289 1290
		if (boot_cpu_has(X86_FEATURE_ART))
			art_related_clocksource = &clocksource_tsc;
1291
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1292
		clocksource_unregister(&clocksource_tsc_early);
1293 1294 1295
		return 0;
	}

1296 1297
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1298
}
1299 1300 1301 1302 1303
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
void __init tsc_early_delay_calibrate(void)
{
	unsigned long lpj;

	if (!boot_cpu_has(X86_FEATURE_TSC))
		return;

	cpu_khz = x86_platform.calibrate_cpu();
	tsc_khz = x86_platform.calibrate_tsc();

	tsc_khz = tsc_khz ? : cpu_khz;
	if (!tsc_khz)
		return;

	lpj = tsc_khz * 1000;
	do_div(lpj, HZ);
	loops_per_jiffy = lpj;
}

1324 1325
void __init tsc_init(void)
{
P
Peter Zijlstra 已提交
1326
	u64 lpj, cyc;
1327 1328
	int cpu;

1329
	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1330
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1331
		return;
1332
	}
1333

1334
	cpu_khz = x86_platform.calibrate_cpu();
1335
	tsc_khz = x86_platform.calibrate_tsc();
1336 1337 1338 1339 1340 1341

	/*
	 * Trust non-zero tsc_khz as authorative,
	 * and use it to sanity check cpu_khz,
	 * which will be off if system timer is off.
	 */
1342 1343
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
1344 1345
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
1346

1347
	if (!tsc_khz) {
1348
		mark_tsc_unstable("could not calculate TSC khz");
1349
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1350 1351 1352
		return;
	}

1353 1354 1355
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
1356

1357 1358 1359 1360 1361 1362
	if (cpu_khz != tsc_khz) {
		pr_info("Detected %lu.%03lu MHz TSC",
			(unsigned long)tsc_khz / 1000,
			(unsigned long)tsc_khz % 1000);
	}

1363 1364 1365
	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
	tsc_store_and_check_tsc_adjust(true);

1366 1367 1368 1369 1370 1371
	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
P
Peter Zijlstra 已提交
1372
	cyc = rdtsc();
1373 1374
	for_each_possible_cpu(cpu) {
		cyc2ns_init(cpu);
1375
		set_cyc2ns_scale(tsc_khz, cpu, cyc);
1376
	}
1377 1378 1379 1380 1381

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
1382

1383
	tsc_disabled = 0;
1384
	static_branch_enable(&__use_tsc);
1385

V
Venkatesh Pallipadi 已提交
1386 1387 1388
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1389 1390 1391 1392
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1393 1394
	use_tsc_delay();

1395 1396
	check_system_tsc_reliable();

1397
	if (unsynchronized_tsc()) {
1398
		mark_tsc_unstable("TSCs unsynchronized");
1399 1400
		return;
	}
1401

1402
	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1403
	detect_art();
1404 1405
}

1406 1407 1408 1409 1410 1411 1412
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1413
unsigned long calibrate_delay_is_known(void)
1414
{
1415
	int sibling, cpu = smp_processor_id();
1416 1417
	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
	const struct cpumask *mask = topology_core_cpumask(cpu);
1418

1419
	if (tsc_disabled || !constant_tsc || !mask)
1420 1421 1422
		return 0;

	sibling = cpumask_any_but(mask, cpu);
1423 1424
	if (sibling < nr_cpu_ids)
		return cpu_data(sibling).loops_per_jiffy;
1425 1426 1427
	return 0;
}
#endif