tsc.c 36.8 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4
#include <linux/sched.h>
5
#include <linux/sched/clock.h>
A
Alok Kataria 已提交
6
#include <linux/init.h>
7
#include <linux/export.h>
A
Alok Kataria 已提交
8
#include <linux/timer.h>
A
Alok Kataria 已提交
9
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
10
#include <linux/cpufreq.h>
11 12 13
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
14
#include <linux/timex.h>
15
#include <linux/static_key.h>
A
Alok Kataria 已提交
16 17

#include <asm/hpet.h>
18 19 20 21
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
22
#include <asm/hypervisor.h>
23
#include <asm/nmi.h>
24
#include <asm/x86_init.h>
25
#include <asm/geode.h>
26
#include <asm/apic.h>
27
#include <asm/intel-family.h>
A
Alok Kataria 已提交
28

29
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
30
EXPORT_SYMBOL(cpu_khz);
31 32

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
33 34 35 36 37
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
38
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
39 40 41

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
42
   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
44

45
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46

47
int tsc_clocksource_reliable;
48

49 50 51 52 53
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Use a ring-buffer like data structure, where a writer advances the head by
 * writing a new data entry and a reader advances the tail when it observes a
 * new entry.
 *
 * Writers are made to wait on readers until there's space to write a new
 * entry.
 *
 * This means that we can always use an {offset, mul} pair to compute a ns
 * value that is 'roughly' in the right direction, even if we're writing a new
 * {offset, mul} pair during the clock read.
 *
 * The down-side is that we can no longer guarantee strict monotonicity anymore
 * (assuming the TSC was that to begin with), because while we compute the
 * intersection point of the two clock slopes and make sure the time is
 * continuous at the point of switching; we can no longer guarantee a reader is
 * strictly before or after the switch point.
 *
 * It does mean a reader no longer needs to disable IRQs in order to avoid
 * CPU-Freq updates messing with his times, and similarly an NMI reader will
 * no longer run the risk of hitting half-written state.
 */

struct cyc2ns {
	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
}; /* exactly fits one cacheline */

static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);

struct cyc2ns_data *cyc2ns_read_begin(void)
{
	struct cyc2ns_data *head;

	preempt_disable();

	head = this_cpu_read(cyc2ns.head);
	/*
	 * Ensure we observe the entry when we observe the pointer to it.
	 * matches the wmb from cyc2ns_write_end().
	 */
	smp_read_barrier_depends();
	head->__count++;
	barrier();

	return head;
}

void cyc2ns_read_end(struct cyc2ns_data *head)
{
	barrier();
	/*
	 * If we're the outer most nested read; update the tail pointer
	 * when we're done. This notifies possible pending writers
	 * that we've observed the head pointer and that the other
	 * entry is now free.
	 */
	if (!--head->__count) {
		/*
		 * x86-TSO does not reorder writes with older reads;
		 * therefore once this write becomes visible to another
		 * cpu, we must be finished reading the cyc2ns_data.
		 *
		 * matches with cyc2ns_write_begin().
		 */
		this_cpu_write(cyc2ns.tail, head);
	}
	preempt_enable();
}

/*
 * Begin writing a new @data entry for @cpu.
 *
 * Assumes some sort of write side lock; currently 'provided' by the assumption
 * that cpufreq will call its notifiers sequentially.
 */
static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
	struct cyc2ns_data *data = c2n->data;

	if (data == c2n->head)
		data++;

	/* XXX send an IPI to @cpu in order to guarantee a read? */

	/*
	 * When we observe the tail write from cyc2ns_read_end(),
	 * the cpu must be done with that entry and its safe
	 * to start writing to it.
	 */
	while (c2n->tail == data)
		cpu_relax();

	return data;
}

static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	/*
	 * Ensure the @data writes are visible before we publish the
	 * entry. Matches the data-depencency in cyc2ns_read_begin().
	 */
	smp_wmb();

	ACCESS_ONCE(c2n->head) = data;
}

/*
 * Accelerators for sched_clock()
167 168 169 170 171 172 173 174 175 176 177 178
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
179 180 181
 *  into a shift. The larger SC is, the more accurate the conversion, but
 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 *  (64-bit result) can be used.
182
 *
183
 *  We can use khz divisor instead of mhz to keep a better precision.
184 185 186 187 188
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

189 190
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
191
	data->cyc2ns_mul = 0;
192
	data->cyc2ns_shift = 0;
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	data->cyc2ns_offset = 0;
	data->__count = 0;
}

static void cyc2ns_init(int cpu)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	cyc2ns_data_init(&c2n->data[0]);
	cyc2ns_data_init(&c2n->data[1]);

	c2n->head = c2n->data;
	c2n->tail = c2n->data;
}

208 209
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
210 211 212 213 214 215 216 217 218 219
	struct cyc2ns_data *data, *tail;
	unsigned long long ns;

	/*
	 * See cyc2ns_read_*() for details; replicated in order to avoid
	 * an extra few instructions that came with the abstraction.
	 * Notable, it allows us to only do the __count and tail update
	 * dance when its actually needed.
	 */

220
	preempt_disable_notrace();
221 222 223 224 225
	data = this_cpu_read(cyc2ns.head);
	tail = this_cpu_read(cyc2ns.tail);

	if (likely(data == tail)) {
		ns = data->cyc2ns_offset;
226
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
227 228 229 230 231 232
	} else {
		data->__count++;

		barrier();

		ns = data->cyc2ns_offset;
233
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
234 235 236 237 238 239

		barrier();

		if (!--data->__count)
			this_cpu_write(cyc2ns.tail, data);
	}
240
	preempt_enable_notrace();
241

242 243 244
	return ns;
}

245
static void set_cyc2ns_scale(unsigned long khz, int cpu)
246
{
247 248 249
	unsigned long long tsc_now, ns_now;
	struct cyc2ns_data *data;
	unsigned long flags;
250 251 252 253

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

254
	if (!khz)
255 256 257
		goto done;

	data = cyc2ns_write_begin(cpu);
258

259
	tsc_now = rdtsc();
260 261
	ns_now = cycles_2_ns(tsc_now);

262 263 264 265 266
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
267
	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
268 269
			       NSEC_PER_MSEC, 0);

270 271 272 273 274 275 276 277 278 279 280
	/*
	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
	 * not expected to be greater than 31 due to the original published
	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
	 */
	if (data->cyc2ns_shift == 32) {
		data->cyc2ns_shift = 31;
		data->cyc2ns_mul >>= 1;
	}

281
	data->cyc2ns_offset = ns_now -
282
		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
283 284

	cyc2ns_write_end(cpu, data);
285

286
done:
287 288 289
	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}
A
Alok Kataria 已提交
290 291 292 293 294
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
295 296 297 298 299 300
	if (static_branch_likely(&__use_tsc)) {
		u64 tsc_now = rdtsc();

		/* return the value in ns */
		return cycles_2_ns(tsc_now);
	}
A
Alok Kataria 已提交
301 302 303 304 305 306 307

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
308
	 *   can achieve it. )
A
Alok Kataria 已提交
309 310
	 */

311 312
	/* No locking but a rare wrong value is not a big deal: */
	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
A
Alok Kataria 已提交
313 314
}

315 316 317 318 319 320 321 322
/*
 * Generate a sched_clock if you already have a TSC value.
 */
u64 native_sched_clock_from_tsc(u64 tsc)
{
	return cycles_2_ns(tsc);
}

A
Alok Kataria 已提交
323 324 325 326 327 328 329
/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
330 331 332 333 334

static inline bool using_native_sched_clock(void)
{
	return pv_time_ops.sched_clock == native_sched_clock;
}
A
Alok Kataria 已提交
335 336 337
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
338 339

static inline bool using_native_sched_clock(void) { return true; }
A
Alok Kataria 已提交
340 341 342 343 344 345 346 347 348 349 350
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
351
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
368

V
Venkatesh Pallipadi 已提交
369 370
static int no_sched_irq_time;

371 372 373 374
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
375 376
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
377 378 379 380 381
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
382 383 384 385 386 387
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
388
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
389 390 391 392 393 394 395
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
396
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
397
		else
398
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
399 400 401 402 403 404 405
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

406 407
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
408
 */
409
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
410
{
411
	u64 tmp;
A
Alok Kataria 已提交
412

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
429

430 431 432 433 434 435 436 437 438 439 440 441 442
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

443
#define CAL_MS		10
444
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
445 446 447
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
448
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
449 450
#define CAL2_PIT_LOOPS	5000

451

452 453 454 455 456 457 458
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
459
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
460 461 462 463 464 465 466 467 468 469 470 471 472 473
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
474 475
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
496
	 * If we were not able to read the PIT more than loopmin
497 498 499 500 501
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
502
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
503 504 505 506
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
507
	do_div(delta, ms);
508 509 510
	return delta;
}

L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
546 547 548 549 550 551 552
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

553
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
554
{
555
	int count;
556
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
557

L
Linus Torvalds 已提交
558
	for (count = 0; count < 50000; count++) {
559
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
560
			break;
561
		prev_tsc = tsc;
562
		tsc = get_cycles();
L
Linus Torvalds 已提交
563
	}
564
	*deltap = get_cycles() - prev_tsc;
565 566 567 568 569 570 571
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
572 573 574
}

/*
575 576 577
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
578
 * more than 50ms on it.
L
Linus Torvalds 已提交
579
 */
580
#define MAX_QUICK_PIT_MS 50
581
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
582

L
Linus Torvalds 已提交
583 584
static unsigned long quick_pit_calibrate(void)
{
585 586 587 588
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
589
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
590 591
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
592 593 594 595 596 597 598 599 600
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
601 602
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
603 604 605 606
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

607 608 609 610 611 612
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
613
	pit_verify_msb(0);
614

615 616 617 618 619
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

620 621 622 623 624 625 626 627 628 629
			delta -= tsc;

			/*
			 * Extrapolate the error and fail fast if the error will
			 * never be below 500 ppm.
			 */
			if (i == 1 &&
			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
				return 0;

630 631 632
			/*
			 * Iterate until the error is less than 500 ppm
			 */
633 634 635 636 637 638 639 640 641 642 643 644 645
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
646 647
		}
	}
648
	pr_info("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
649
	return 0;
650 651 652 653 654 655 656 657 658

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
659
	 * reliable (within the error).
660 661 662 663 664 665 666
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
667
	pr_info("Fast TSC calibration using PIT\n");
668
	return delta;
L
Linus Torvalds 已提交
669
}
670

A
Alok Kataria 已提交
671
/**
672 673
 * native_calibrate_tsc
 * Determine TSC frequency via CPUID, else return 0.
A
Alok Kataria 已提交
674
 */
675
unsigned long native_calibrate_tsc(void)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
	unsigned int crystal_khz;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x15)
		return 0;

	eax_denominator = ebx_numerator = ecx_hz = edx = 0;

	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);

	if (ebx_numerator == 0 || eax_denominator == 0)
		return 0;

	crystal_khz = ecx_hz / 1000;

	if (crystal_khz == 0) {
		switch (boot_cpu_data.x86_model) {
698 699
		case INTEL_FAM6_SKYLAKE_MOBILE:
		case INTEL_FAM6_SKYLAKE_DESKTOP:
700 701
		case INTEL_FAM6_KABYLAKE_MOBILE:
		case INTEL_FAM6_KABYLAKE_DESKTOP:
702 703
			crystal_khz = 24000;	/* 24.0 MHz */
			break;
704
		case INTEL_FAM6_SKYLAKE_X:
705
		case INTEL_FAM6_ATOM_DENVERTON:
706 707
			crystal_khz = 25000;	/* 25.0 MHz */
			break;
708
		case INTEL_FAM6_ATOM_GOLDMONT:
709 710
			crystal_khz = 19200;	/* 19.2 MHz */
			break;
711 712 713
		}
	}

714 715 716 717 718 719 720
	/*
	 * TSC frequency determined by CPUID is a "hardware reported"
	 * frequency and is the most accurate one so far we have. This
	 * is considered a known frequency.
	 */
	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);

721 722 723 724 725 726 727
	/*
	 * For Atom SoCs TSC is the only reliable clocksource.
	 * Mark TSC reliable so no watchdog on it.
	 */
	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	return crystal_khz * ebx_numerator / eax_denominator;
}

static unsigned long cpu_khz_from_cpuid(void)
{
	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x16)
		return 0;

	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;

	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);

	return eax_base_mhz * 1000;
}

/**
 * native_calibrate_cpu - calibrate the cpu on boot
 */
unsigned long native_calibrate_cpu(void)
A
Alok Kataria 已提交
752
{
753
	u64 tsc1, tsc2, delta, ref1, ref2;
754
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
755
	unsigned long flags, latch, ms, fast_calibrate;
756
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
757

758 759 760 761
	fast_calibrate = cpu_khz_from_cpuid();
	if (fast_calibrate)
		return fast_calibrate;

762
	fast_calibrate = cpu_khz_from_msr();
763
	if (fast_calibrate)
764 765
		return fast_calibrate;

L
Linus Torvalds 已提交
766 767
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
768
	local_irq_restore(flags);
L
Linus Torvalds 已提交
769 770
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
771

772 773 774 775 776 777 778 779 780 781 782 783
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
784
	 * SMI/SMM disturbance happened between the two reads. If the
785 786 787 788 789 790 791 792 793 794 795
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
796 797 798 799 800 801 802

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
803
		unsigned long tsc_pit_khz;
804 805 806

		/*
		 * Read the start value and the reference count of
807 808 809
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
810
		 */
811
		local_irq_save(flags);
812
		tsc1 = tsc_read_refs(&ref1, hpet);
813
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
814
		tsc2 = tsc_read_refs(&ref2, hpet);
815 816
		local_irq_restore(flags);

817 818
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
819 820

		/* hpet or pmtimer available ? */
821
		if (ref1 == ref2)
822 823 824 825 826 827 828
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
829
		if (hpet)
830
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
831
		else
832
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
833 834

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
835 836 837 838 839 840 841 842 843 844 845 846

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
847 848
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
849
			return tsc_ref_min;
850 851
		}

852 853 854 855 856 857 858 859 860 861 862
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
863
	}
A
Alok Kataria 已提交
864 865

	/*
866
	 * Now check the results.
A
Alok Kataria 已提交
867
	 */
868 869
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
870
		pr_warn("Unable to calibrate against PIT\n");
871 872

		/* We don't have an alternative source, disable TSC */
873
		if (!hpet && !ref1 && !ref2) {
874
			pr_notice("No reference (HPET/PMTIMER) available\n");
875 876 877 878 879
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
880
			pr_warn("HPET/PMTIMER calibration failed\n");
881 882 883 884
			return 0;
		}

		/* Use the alternative source */
885 886
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
887 888 889

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
890

891
	/* We don't have an alternative source, use the PIT calibration value */
892
	if (!hpet && !ref1 && !ref2) {
893
		pr_info("Using PIT calibration value\n");
894
		return tsc_pit_min;
A
Alok Kataria 已提交
895 896
	}

897 898
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
899
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
900
		return tsc_pit_min;
A
Alok Kataria 已提交
901 902
	}

903 904 905
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
906
	 * running at double speed. At least we let the user know:
907
	 */
908 909 910
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
911
	return tsc_pit_min;
A
Alok Kataria 已提交
912 913 914 915 916 917 918
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

919
	if (!boot_cpu_has(X86_FEATURE_TSC))
A
Alok Kataria 已提交
920
		return -ENODEV;
921

922
	cpu_khz = x86_platform.calibrate_cpu();
923
	tsc_khz = x86_platform.calibrate_tsc();
924 925
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
926 927
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
928 929 930 931
	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
						    cpu_khz_old, cpu_khz);

	return 0;
A
Alok Kataria 已提交
932 933 934 935 936 937 938
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
939

940 941
static unsigned long long cyc2ns_suspend;

942
void tsc_save_sched_clock_state(void)
943
{
944
	if (!sched_clock_stable())
945 946 947 948 949 950 951 952 953 954 955 956 957
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
958
void tsc_restore_sched_clock_state(void)
959 960 961 962 963
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

964
	if (!sched_clock_stable())
965 966 967 968
		return;

	local_irq_save(flags);

969
	/*
970
	 * We're coming out of suspend, there's no concurrency yet; don't
971 972 973 974 975 976 977
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

978 979
	offset = cyc2ns_suspend - sched_clock();

980 981 982 983
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
984 985 986 987

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
1009
	unsigned long *lpj;
A
Alok Kataria 已提交
1010

1011
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
1012
#ifdef CONFIG_SMP
1013
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1023
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1024
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
1025 1026 1027 1028 1029

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

P
Peter Zijlstra 已提交
1030 1031
		set_cyc2ns_scale(tsc_khz, freq->cpu);
	}
A
Alok Kataria 已提交
1032 1033 1034 1035 1036 1037 1038 1039

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

1040
static int __init cpufreq_register_tsc_scaling(void)
A
Alok Kataria 已提交
1041
{
1042
	if (!boot_cpu_has(X86_FEATURE_TSC))
1043 1044 1045
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
1046 1047 1048 1049 1050
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

1051
core_initcall(cpufreq_register_tsc_scaling);
A
Alok Kataria 已提交
1052 1053

#endif /* CONFIG_CPU_FREQ */
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)


/*
 * If ART is present detect the numerator:denominator to convert to TSC
 */
static void detect_art(void)
{
	unsigned int unused[2];

	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
		return;

1069
	/* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1070 1071
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1072
	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1073 1074
		return;

1075 1076 1077 1078
	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
	      &art_to_tsc_numerator, unused, unused+1);

	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1079 1080
		return;

1081 1082
	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);

1083 1084 1085 1086 1087
	/* Make this sticky over multiple CPU init calls */
	setup_force_cpu_cap(X86_FEATURE_ART);
}


1088 1089 1090 1091
/* clocksource code */

static struct clocksource clocksource_tsc;

1092 1093 1094 1095 1096
static void tsc_resume(struct clocksource *cs)
{
	tsc_verify_tsc_adjust(true);
}

1097
/*
1098
 * We used to compare the TSC to the cycle_last value in the clocksource
1099 1100 1101 1102 1103 1104 1105 1106 1107
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
1108 1109 1110 1111
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1112
 */
1113
static u64 read_tsc(struct clocksource *cs)
1114
{
1115
	return (u64)rdtsc_ordered();
1116 1117
}

1118 1119 1120 1121
static void tsc_cs_mark_unstable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;
1122

1123
	tsc_unstable = 1;
1124 1125
	if (using_native_sched_clock())
		clear_sched_clock_stable();
1126 1127 1128 1129
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to clocksource watchdog\n");
}

1130 1131 1132
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
1133 1134 1135 1136 1137 1138 1139
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
1140
	.archdata               = { .vclock_mode = VCLOCK_TSC },
1141
	.resume			= tsc_resume,
1142
	.mark_unstable		= tsc_cs_mark_unstable,
1143 1144 1145 1146
};

void mark_tsc_unstable(char *reason)
{
1147 1148 1149 1150 1151
	if (tsc_unstable)
		return;

	tsc_unstable = 1;
	if (using_native_sched_clock())
1152
		clear_sched_clock_stable();
1153 1154 1155 1156 1157 1158 1159 1160
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to %s\n", reason);
	/* Change only the rating, when not registered */
	if (clocksource_tsc.mult) {
		clocksource_mark_unstable(&clocksource_tsc);
	} else {
		clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
		clocksource_tsc.rating = 0;
1161 1162 1163 1164 1165
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1166 1167
static void __init check_system_tsc_reliable(void)
{
1168 1169 1170
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
	if (is_geode_lx()) {
		/* RTSC counts during suspend */
1171
#define RTSC_SUSP 0x100
1172
		unsigned long res_low, res_high;
1173

1174 1175 1176 1177 1178
		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
		/* Geode_LX - the OLPC CPU has a very reliable TSC */
		if (res_low & RTSC_SUSP)
			tsc_clocksource_reliable = 1;
	}
1179
#endif
1180 1181 1182
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1183 1184 1185 1186 1187

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1188
int unsynchronized_tsc(void)
1189
{
1190
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1191 1192
		return 1;

1193
#ifdef CONFIG_SMP
1194 1195 1196 1197 1198 1199
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1200 1201 1202

	if (tsc_clocksource_reliable)
		return 0;
1203 1204 1205 1206 1207 1208 1209
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1210
			return 1;
1211 1212
	}

1213
	return 0;
1214 1215
}

1216 1217 1218
/*
 * Convert ART to TSC given numerator/denominator found in detect_art()
 */
1219
struct system_counterval_t convert_art_to_tsc(u64 art)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
{
	u64 tmp, res, rem;

	rem = do_div(art, art_to_tsc_denominator);

	res = art * art_to_tsc_numerator;
	tmp = rem * art_to_tsc_numerator;

	do_div(tmp, art_to_tsc_denominator);
	res += tmp + art_to_tsc_offset;

	return (struct system_counterval_t) {.cs = art_related_clocksource,
			.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1247
 * If there are any calibration anomalies (too many SMIs, etc),
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1282
	if (ref_start == ref_stop)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1301 1302 1303
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1304

1305 1306 1307
	/* Inform the TSC deadline clockevent devices about the recalibration */
	lapic_update_tsc_freq();

1308
out:
1309 1310
	if (boot_cpu_has(X86_FEATURE_ART))
		art_related_clocksource = &clocksource_tsc;
1311 1312 1313 1314 1315
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
1316
{
1317
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1318 1319
		return 0;

1320 1321
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1322 1323 1324 1325 1326
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
1327

1328 1329 1330
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1331
	/*
1332 1333
	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
	 * the refined calibration and directly register it as a clocksource.
1334
	 */
1335
	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1336 1337
		if (boot_cpu_has(X86_FEATURE_ART))
			art_related_clocksource = &clocksource_tsc;
1338 1339 1340 1341
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
		return 0;
	}

1342 1343
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1344
}
1345 1346 1347 1348 1349
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1350 1351 1352 1353 1354 1355

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

1356
	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1357
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1358
		return;
1359
	}
1360

1361
	cpu_khz = x86_platform.calibrate_cpu();
1362
	tsc_khz = x86_platform.calibrate_tsc();
1363 1364 1365 1366 1367 1368

	/*
	 * Trust non-zero tsc_khz as authorative,
	 * and use it to sanity check cpu_khz,
	 * which will be off if system timer is off.
	 */
1369 1370
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
1371 1372
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
1373

1374
	if (!tsc_khz) {
1375
		mark_tsc_unstable("could not calculate TSC khz");
1376
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1377 1378 1379
		return;
	}

1380 1381 1382
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
1383

1384 1385 1386
	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
	tsc_store_and_check_tsc_adjust(true);

1387 1388 1389 1390 1391 1392
	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
1393 1394
	for_each_possible_cpu(cpu) {
		cyc2ns_init(cpu);
1395
		set_cyc2ns_scale(tsc_khz, cpu);
1396
	}
1397 1398 1399 1400 1401

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
1402

1403
	tsc_disabled = 0;
1404
	static_branch_enable(&__use_tsc);
1405

V
Venkatesh Pallipadi 已提交
1406 1407 1408
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1409 1410 1411 1412
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1413 1414 1415 1416 1417
	use_tsc_delay();

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

1418
	check_system_tsc_reliable();
1419 1420

	detect_art();
1421 1422
}

1423 1424 1425 1426 1427 1428 1429
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1430
unsigned long calibrate_delay_is_known(void)
1431
{
1432
	int sibling, cpu = smp_processor_id();
1433
	struct cpumask *mask = topology_core_cpumask(cpu);
1434 1435 1436 1437

	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

1438 1439 1440 1441
	if (!mask)
		return 0;

	sibling = cpumask_any_but(mask, cpu);
1442 1443
	if (sibling < nr_cpu_ids)
		return cpu_data(sibling).loops_per_jiffy;
1444 1445 1446
	return 0;
}
#endif