tsc.c 31.4 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4 5 6 7
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
8
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
9
#include <linux/cpufreq.h>
10 11 12
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
13
#include <linux/timex.h>
14
#include <linux/static_key.h>
A
Alok Kataria 已提交
15 16

#include <asm/hpet.h>
17 18 19 20
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
21
#include <asm/hypervisor.h>
22
#include <asm/nmi.h>
23
#include <asm/x86_init.h>
A
Alok Kataria 已提交
24

25
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
26
EXPORT_SYMBOL(cpu_khz);
27 28

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
29 30 31 32 33
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
34
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
35 36 37 38

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
39
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
40

41 42
static struct static_key __use_tsc = STATIC_KEY_INIT;

43
int tsc_clocksource_reliable;
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Use a ring-buffer like data structure, where a writer advances the head by
 * writing a new data entry and a reader advances the tail when it observes a
 * new entry.
 *
 * Writers are made to wait on readers until there's space to write a new
 * entry.
 *
 * This means that we can always use an {offset, mul} pair to compute a ns
 * value that is 'roughly' in the right direction, even if we're writing a new
 * {offset, mul} pair during the clock read.
 *
 * The down-side is that we can no longer guarantee strict monotonicity anymore
 * (assuming the TSC was that to begin with), because while we compute the
 * intersection point of the two clock slopes and make sure the time is
 * continuous at the point of switching; we can no longer guarantee a reader is
 * strictly before or after the switch point.
 *
 * It does mean a reader no longer needs to disable IRQs in order to avoid
 * CPU-Freq updates messing with his times, and similarly an NMI reader will
 * no longer run the risk of hitting half-written state.
 */

struct cyc2ns {
	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
}; /* exactly fits one cacheline */

static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);

struct cyc2ns_data *cyc2ns_read_begin(void)
{
	struct cyc2ns_data *head;

	preempt_disable();

	head = this_cpu_read(cyc2ns.head);
	/*
	 * Ensure we observe the entry when we observe the pointer to it.
	 * matches the wmb from cyc2ns_write_end().
	 */
	smp_read_barrier_depends();
	head->__count++;
	barrier();

	return head;
}

void cyc2ns_read_end(struct cyc2ns_data *head)
{
	barrier();
	/*
	 * If we're the outer most nested read; update the tail pointer
	 * when we're done. This notifies possible pending writers
	 * that we've observed the head pointer and that the other
	 * entry is now free.
	 */
	if (!--head->__count) {
		/*
		 * x86-TSO does not reorder writes with older reads;
		 * therefore once this write becomes visible to another
		 * cpu, we must be finished reading the cyc2ns_data.
		 *
		 * matches with cyc2ns_write_begin().
		 */
		this_cpu_write(cyc2ns.tail, head);
	}
	preempt_enable();
}

/*
 * Begin writing a new @data entry for @cpu.
 *
 * Assumes some sort of write side lock; currently 'provided' by the assumption
 * that cpufreq will call its notifiers sequentially.
 */
static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
	struct cyc2ns_data *data = c2n->data;

	if (data == c2n->head)
		data++;

	/* XXX send an IPI to @cpu in order to guarantee a read? */

	/*
	 * When we observe the tail write from cyc2ns_read_end(),
	 * the cpu must be done with that entry and its safe
	 * to start writing to it.
	 */
	while (c2n->tail == data)
		cpu_relax();

	return data;
}

static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	/*
	 * Ensure the @data writes are visible before we publish the
	 * entry. Matches the data-depencency in cyc2ns_read_begin().
	 */
	smp_wmb();

	ACCESS_ONCE(c2n->head) = data;
}

/*
 * Accelerators for sched_clock()
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */

181 182
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
183
	data->cyc2ns_mul = 0;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
	data->cyc2ns_offset = 0;
	data->__count = 0;
}

static void cyc2ns_init(int cpu)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	cyc2ns_data_init(&c2n->data[0]);
	cyc2ns_data_init(&c2n->data[1]);

	c2n->head = c2n->data;
	c2n->tail = c2n->data;
}

200 201
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
202 203 204 205 206 207 208 209 210 211
	struct cyc2ns_data *data, *tail;
	unsigned long long ns;

	/*
	 * See cyc2ns_read_*() for details; replicated in order to avoid
	 * an extra few instructions that came with the abstraction.
	 * Notable, it allows us to only do the __count and tail update
	 * dance when its actually needed.
	 */

212
	preempt_disable_notrace();
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	data = this_cpu_read(cyc2ns.head);
	tail = this_cpu_read(cyc2ns.tail);

	if (likely(data == tail)) {
		ns = data->cyc2ns_offset;
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
	} else {
		data->__count++;

		barrier();

		ns = data->cyc2ns_offset;
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);

		barrier();

		if (!--data->__count)
			this_cpu_write(cyc2ns.tail, data);
	}
232
	preempt_enable_notrace();
233

234 235 236 237 238
	return ns;
}

static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
{
239 240 241
	unsigned long long tsc_now, ns_now;
	struct cyc2ns_data *data;
	unsigned long flags;
242 243 244 245

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

246 247 248 249
	if (!cpu_khz)
		goto done;

	data = cyc2ns_write_begin(cpu);
250 251 252 253

	rdtscll(tsc_now);
	ns_now = cycles_2_ns(tsc_now);

254 255 256 257 258
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
259 260 261
	data->cyc2ns_mul =
		DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
				  cpu_khz);
262 263 264 265 266
	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
	data->cyc2ns_offset = ns_now -
		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);

	cyc2ns_write_end(cpu, data);
267

268
done:
269 270 271
	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}
A
Alok Kataria 已提交
272 273 274 275 276
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
277
	u64 tsc_now;
A
Alok Kataria 已提交
278 279 280 281 282 283 284

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
285
	 *   can achieve it. )
A
Alok Kataria 已提交
286
	 */
287
	if (!static_key_false(&__use_tsc)) {
A
Alok Kataria 已提交
288 289 290 291 292
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
293
	rdtscll(tsc_now);
A
Alok Kataria 已提交
294 295

	/* return the value in ns */
296
	return cycles_2_ns(tsc_now);
A
Alok Kataria 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

311 312 313 314 315 316
unsigned long long native_read_tsc(void)
{
	return __native_read_tsc();
}
EXPORT_SYMBOL(native_read_tsc);

A
Alok Kataria 已提交
317 318 319 320 321 322
int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

323 324 325 326 327 328
int check_tsc_disabled(void)
{
	return tsc_disabled;
}
EXPORT_SYMBOL_GPL(check_tsc_disabled);

A
Alok Kataria 已提交
329 330 331
#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
332
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
349

V
Venkatesh Pallipadi 已提交
350 351
static int no_sched_irq_time;

352 353 354 355
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
356 357
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
358 359 360 361 362
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
363 364 365 366 367 368
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
369
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
370 371 372 373 374 375 376
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
377
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
378
		else
379
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
380 381 382 383 384 385 386
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

387 388
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
389
 */
390
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
391
{
392
	u64 tmp;
A
Alok Kataria 已提交
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
410

411 412 413 414 415 416 417 418 419 420 421 422 423
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

424
#define CAL_MS		10
425
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
426 427 428
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
429
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
430 431
#define CAL2_PIT_LOOPS	5000

432

433 434 435 436 437 438 439
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
440
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
441 442 443 444 445 446 447 448 449 450 451 452 453 454
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
455 456
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
477
	 * If we were not able to read the PIT more than loopmin
478 479 480 481 482
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
483
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
484 485 486 487
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
488
	do_div(delta, ms);
489 490 491
	return delta;
}

L
Linus Torvalds 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
527 528 529 530 531 532 533
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

534
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
535
{
536
	int count;
537
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
538

L
Linus Torvalds 已提交
539
	for (count = 0; count < 50000; count++) {
540
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
541
			break;
542
		prev_tsc = tsc;
543
		tsc = get_cycles();
L
Linus Torvalds 已提交
544
	}
545
	*deltap = get_cycles() - prev_tsc;
546 547 548 549 550 551 552
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
553 554 555
}

/*
556 557 558
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
559
 * more than 50ms on it.
L
Linus Torvalds 已提交
560
 */
561
#define MAX_QUICK_PIT_MS 50
562
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
563

L
Linus Torvalds 已提交
564 565
static unsigned long quick_pit_calibrate(void)
{
566 567 568 569
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
570
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
571 572
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
573 574 575 576 577 578 579 580 581
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
582 583
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
584 585 586 587
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

588 589 590 591 592 593
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
594
	pit_verify_msb(0);
595

596 597 598 599 600 601 602 603 604
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

			/*
			 * Iterate until the error is less than 500 ppm
			 */
			delta -= tsc;
605 606 607 608 609 610 611 612 613 614 615 616 617
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
618 619
		}
	}
620
	pr_err("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
621
	return 0;
622 623 624 625 626 627 628 629 630

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
631
	 * reliable (within the error).
632 633 634 635 636 637 638
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
639
	pr_info("Fast TSC calibration using PIT\n");
640
	return delta;
L
Linus Torvalds 已提交
641
}
642

A
Alok Kataria 已提交
643
/**
644
 * native_calibrate_tsc - calibrate the tsc on boot
A
Alok Kataria 已提交
645
 */
646
unsigned long native_calibrate_tsc(void)
A
Alok Kataria 已提交
647
{
648
	u64 tsc1, tsc2, delta, ref1, ref2;
649
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
650
	unsigned long flags, latch, ms, fast_calibrate;
651
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
652

653 654
	/* Calibrate TSC using MSR for Intel Atom SoCs */
	local_irq_save(flags);
655
	fast_calibrate = try_msr_calibrate_tsc();
656
	local_irq_restore(flags);
657
	if (fast_calibrate)
658 659
		return fast_calibrate;

L
Linus Torvalds 已提交
660 661
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
662
	local_irq_restore(flags);
L
Linus Torvalds 已提交
663 664
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
665

666 667 668 669 670 671 672 673 674 675 676 677
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
678
	 * SMI/SMM disturbance happened between the two reads. If the
679 680 681 682 683 684 685 686 687 688 689
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
690 691 692 693 694 695 696

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
697
		unsigned long tsc_pit_khz;
698 699 700

		/*
		 * Read the start value and the reference count of
701 702 703
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
704
		 */
705
		local_irq_save(flags);
706
		tsc1 = tsc_read_refs(&ref1, hpet);
707
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
708
		tsc2 = tsc_read_refs(&ref2, hpet);
709 710
		local_irq_restore(flags);

711 712
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
713 714

		/* hpet or pmtimer available ? */
715
		if (ref1 == ref2)
716 717 718 719 720 721 722
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
723
		if (hpet)
724
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
725
		else
726
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
727 728

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
729 730 731 732 733 734 735 736 737 738 739 740

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
741 742
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
743
			return tsc_ref_min;
744 745
		}

746 747 748 749 750 751 752 753 754 755 756
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
757
	}
A
Alok Kataria 已提交
758 759

	/*
760
	 * Now check the results.
A
Alok Kataria 已提交
761
	 */
762 763
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
764
		pr_warn("Unable to calibrate against PIT\n");
765 766

		/* We don't have an alternative source, disable TSC */
767
		if (!hpet && !ref1 && !ref2) {
768
			pr_notice("No reference (HPET/PMTIMER) available\n");
769 770 771 772 773
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
774
			pr_warn("HPET/PMTIMER calibration failed\n");
775 776 777 778
			return 0;
		}

		/* Use the alternative source */
779 780
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
781 782 783

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
784

785
	/* We don't have an alternative source, use the PIT calibration value */
786
	if (!hpet && !ref1 && !ref2) {
787
		pr_info("Using PIT calibration value\n");
788
		return tsc_pit_min;
A
Alok Kataria 已提交
789 790
	}

791 792
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
793
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
794
		return tsc_pit_min;
A
Alok Kataria 已提交
795 796
	}

797 798 799
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
800
	 * running at double speed. At least we let the user know:
801
	 */
802 803 804
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
805
	return tsc_pit_min;
A
Alok Kataria 已提交
806 807 808 809 810 811 812 813
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
814
		tsc_khz = x86_platform.calibrate_tsc();
815
		cpu_khz = tsc_khz;
A
Alok Kataria 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
829

830 831
static unsigned long long cyc2ns_suspend;

832
void tsc_save_sched_clock_state(void)
833
{
834
	if (!sched_clock_stable())
835 836 837 838 839 840 841 842 843 844 845 846 847
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
848
void tsc_restore_sched_clock_state(void)
849 850 851 852 853
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

854
	if (!sched_clock_stable())
855 856 857 858
		return;

	local_irq_save(flags);

859 860 861 862 863 864 865 866 867
	/*
	 * We're comming out of suspend, there's no concurrency yet; don't
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

868 869
	offset = cyc2ns_suspend - sched_clock();

870 871 872 873
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
874 875 876 877

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
899
	unsigned long *lpj;
A
Alok Kataria 已提交
900 901 902 903

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

904
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
905
#ifdef CONFIG_SMP
906
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
907 908 909 910 911 912 913 914 915
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
916
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
917
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
918 919 920 921 922

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

P
Peter Zijlstra 已提交
923 924
		set_cyc2ns_scale(tsc_khz, freq->cpu);
	}
A
Alok Kataria 已提交
925 926 927 928 929 930 931 932 933 934

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
935 936 937 938
	if (!cpu_has_tsc)
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
939 940 941 942 943 944 945 946
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */
947 948 949 950 951 952

/* clocksource code */

static struct clocksource clocksource_tsc;

/*
953
 * We used to compare the TSC to the cycle_last value in the clocksource
954 955 956 957 958 959 960 961 962
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
963 964 965 966
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
967
 */
968
static cycle_t read_tsc(struct clocksource *cs)
969
{
970
	return (cycle_t)get_cycles();
971 972
}

973 974 975
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
976 977 978 979 980 981 982
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
983
	.archdata               = { .vclock_mode = VCLOCK_TSC },
984 985 986 987 988 989
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
990
		clear_sched_clock_stable();
V
Venkatesh Pallipadi 已提交
991
		disable_sched_clock_irqtime();
992
		pr_info("Marking TSC unstable due to %s\n", reason);
993 994
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
995 996 997
			clocksource_mark_unstable(&clocksource_tsc);
		else {
			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
998
			clocksource_tsc.rating = 0;
999
		}
1000 1001 1002 1003 1004
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1005 1006
static void __init check_system_tsc_reliable(void)
{
1007
#ifdef CONFIG_MGEODE_LX
1008
	/* RTSC counts during suspend */
1009 1010 1011 1012
#define RTSC_SUSP 0x100
	unsigned long res_low, res_high;

	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1013
	/* Geode_LX - the OLPC CPU has a very reliable TSC */
1014
	if (res_low & RTSC_SUSP)
1015
		tsc_clocksource_reliable = 1;
1016
#endif
1017 1018 1019
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1020 1021 1022 1023 1024

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1025
int unsynchronized_tsc(void)
1026 1027 1028 1029
{
	if (!cpu_has_tsc || tsc_unstable)
		return 1;

1030
#ifdef CONFIG_SMP
1031 1032 1033 1034 1035 1036
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1037 1038 1039

	if (tsc_clocksource_reliable)
		return 0;
1040 1041 1042 1043 1044 1045 1046
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1047
			return 1;
1048 1049
	}

1050
	return 0;
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1065
 * If there are any calibration anomalies (too many SMIs, etc),
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1100
	if (ref_start == ref_stop)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1119 1120 1121
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1122 1123 1124 1125 1126 1127 1128

out:
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
1129
{
1130
	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1131 1132
		return 0;

1133 1134
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1135 1136 1137 1138 1139
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
1140

1141 1142 1143
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1144 1145 1146 1147 1148 1149 1150 1151 1152
	/*
	 * Trust the results of the earlier calibration on systems
	 * exporting a reliable TSC.
	 */
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
		return 0;
	}

1153 1154
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1155
}
1156 1157 1158 1159 1160
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1161 1162 1163 1164 1165 1166

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

1167 1168
	x86_init.timers.tsc_pre_init();

1169 1170
	if (!cpu_has_tsc) {
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1171
		return;
1172
	}
1173

1174
	tsc_khz = x86_platform.calibrate_tsc();
1175
	cpu_khz = tsc_khz;
1176

1177
	if (!tsc_khz) {
1178
		mark_tsc_unstable("could not calculate TSC khz");
1179
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1180 1181 1182
		return;
	}

1183 1184 1185
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
1186 1187 1188 1189 1190 1191 1192

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
1193 1194
	for_each_possible_cpu(cpu) {
		cyc2ns_init(cpu);
1195
		set_cyc2ns_scale(cpu_khz, cpu);
1196
	}
1197 1198 1199 1200 1201

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
1202

1203
	tsc_disabled = 0;
1204
	static_key_slow_inc(&__use_tsc);
1205

V
Venkatesh Pallipadi 已提交
1206 1207 1208
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1209 1210 1211 1212
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1213 1214 1215 1216 1217
	use_tsc_delay();

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

1218
	check_system_tsc_reliable();
1219 1220
}

1221 1222 1223 1224 1225 1226 1227
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1228
unsigned long calibrate_delay_is_known(void)
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
{
	int i, cpu = smp_processor_id();

	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

	for_each_online_cpu(i)
		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
			return cpu_data(i).loops_per_jiffy;
	return 0;
}
#endif