tsc.c 34.1 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4
#include <linux/sched.h>
5
#include <linux/sched/clock.h>
A
Alok Kataria 已提交
6
#include <linux/init.h>
7
#include <linux/export.h>
A
Alok Kataria 已提交
8
#include <linux/timer.h>
A
Alok Kataria 已提交
9
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
10
#include <linux/cpufreq.h>
11 12 13
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
14
#include <linux/timex.h>
15
#include <linux/static_key.h>
A
Alok Kataria 已提交
16 17

#include <asm/hpet.h>
18 19 20 21
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
22
#include <asm/hypervisor.h>
23
#include <asm/nmi.h>
24
#include <asm/x86_init.h>
25
#include <asm/geode.h>
26
#include <asm/apic.h>
27
#include <asm/intel-family.h>
A
Alok Kataria 已提交
28

29
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
30
EXPORT_SYMBOL(cpu_khz);
31 32

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
33 34 35 36 37
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
38
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
39 40 41

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
42
   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
44

45
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46

47
int tsc_clocksource_reliable;
48

49 50 51 52 53
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;

54
struct cyc2ns {
55 56
	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
	seqcount_t	   seq;		/* 32 + 4    = 36 */
57

58
}; /* fits one cacheline */
59

60
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
61

62
void cyc2ns_read_begin(struct cyc2ns_data *data)
63
{
64
	int seq, idx;
65

66
	preempt_disable_notrace();
67

68 69 70
	do {
		seq = this_cpu_read(cyc2ns.seq.sequence);
		idx = seq & 1;
71

72 73 74
		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
75

76
	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 78
}

79
void cyc2ns_read_end(void)
80
{
81
	preempt_enable_notrace();
82 83 84 85
}

/*
 * Accelerators for sched_clock()
86 87 88 89 90 91 92 93 94 95 96 97
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
98 99 100
 *  into a shift. The larger SC is, the more accurate the conversion, but
 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 *  (64-bit result) can be used.
101
 *
102
 *  We can use khz divisor instead of mhz to keep a better precision.
103 104 105 106 107
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

108 109
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
110
	data->cyc2ns_mul = 0;
111
	data->cyc2ns_shift = 0;
112 113 114 115 116 117 118 119 120 121
	data->cyc2ns_offset = 0;
}

static void cyc2ns_init(int cpu)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	cyc2ns_data_init(&c2n->data[0]);
	cyc2ns_data_init(&c2n->data[1]);

122
	seqcount_init(&c2n->seq);
123 124
}

125 126
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
127
	struct cyc2ns_data data;
128 129
	unsigned long long ns;

130
	cyc2ns_read_begin(&data);
131

132 133
	ns = data.cyc2ns_offset;
	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
134

135
	cyc2ns_read_end();
136

137 138 139
	return ns;
}

P
Peter Zijlstra 已提交
140
static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
141
{
P
Peter Zijlstra 已提交
142
	unsigned long long ns_now;
143 144
	struct cyc2ns_data data;
	struct cyc2ns *c2n;
145
	unsigned long flags;
146 147 148 149

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

150
	if (!khz)
151 152
		goto done;

153 154
	ns_now = cycles_2_ns(tsc_now);

155 156 157 158 159
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
160
	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
161 162
			       NSEC_PER_MSEC, 0);

163 164 165 166 167 168
	/*
	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
	 * not expected to be greater than 31 due to the original published
	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
	 */
169 170 171
	if (data.cyc2ns_shift == 32) {
		data.cyc2ns_shift = 31;
		data.cyc2ns_mul >>= 1;
172 173
	}

174 175 176 177
	data.cyc2ns_offset = ns_now -
		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);

	c2n = per_cpu_ptr(&cyc2ns, cpu);
178

179 180 181 182
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[0] = data;
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[1] = data;
183

184
done:
185 186 187
	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}
P
Peter Zijlstra 已提交
188 189 190 191 192 193

static void set_cyc2ns_scale(unsigned long khz, int cpu)
{
	__set_cyc2ns_scale(khz, cpu, rdtsc());
}

A
Alok Kataria 已提交
194 195 196 197 198
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
199 200 201 202 203 204
	if (static_branch_likely(&__use_tsc)) {
		u64 tsc_now = rdtsc();

		/* return the value in ns */
		return cycles_2_ns(tsc_now);
	}
A
Alok Kataria 已提交
205 206 207 208 209 210 211

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
212
	 *   can achieve it. )
A
Alok Kataria 已提交
213 214
	 */

215 216
	/* No locking but a rare wrong value is not a big deal: */
	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
A
Alok Kataria 已提交
217 218
}

219 220 221 222 223 224 225 226
/*
 * Generate a sched_clock if you already have a TSC value.
 */
u64 native_sched_clock_from_tsc(u64 tsc)
{
	return cycles_2_ns(tsc);
}

A
Alok Kataria 已提交
227 228 229 230 231 232 233
/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
234

235
bool using_native_sched_clock(void)
236 237 238
{
	return pv_time_ops.sched_clock == native_sched_clock;
}
A
Alok Kataria 已提交
239 240 241
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
242

243
bool using_native_sched_clock(void) { return true; }
A
Alok Kataria 已提交
244 245 246 247 248 249 250 251 252 253 254
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
255
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
272

V
Venkatesh Pallipadi 已提交
273 274
static int no_sched_irq_time;

275 276 277 278
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
279 280
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
281 282
	if (!strcmp(str, "unstable"))
		mark_tsc_unstable("boot parameter");
283 284 285 286 287
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
288 289 290 291 292 293
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
294
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
295 296 297 298 299 300 301
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
302
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
303
		else
304
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
305 306 307 308 309 310 311
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

312 313
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
314
 */
315
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
316
{
317
	u64 tmp;
A
Alok Kataria 已提交
318

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
335

336 337 338 339 340 341 342 343 344 345 346 347 348
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

349
#define CAL_MS		10
350
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
351 352 353
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
354
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
355 356
#define CAL2_PIT_LOOPS	5000

357

358 359 360 361 362 363 364
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
365
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
366 367 368 369 370 371 372 373 374 375 376 377 378 379
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
380 381
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
402
	 * If we were not able to read the PIT more than loopmin
403 404 405 406 407
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
408
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
409 410 411 412
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
413
	do_div(delta, ms);
414 415 416
	return delta;
}

L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
452 453 454 455 456 457 458
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

459
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
460
{
461
	int count;
462
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
463

L
Linus Torvalds 已提交
464
	for (count = 0; count < 50000; count++) {
465
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
466
			break;
467
		prev_tsc = tsc;
468
		tsc = get_cycles();
L
Linus Torvalds 已提交
469
	}
470
	*deltap = get_cycles() - prev_tsc;
471 472 473 474 475 476 477
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
478 479 480
}

/*
481 482 483
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
484
 * more than 50ms on it.
L
Linus Torvalds 已提交
485
 */
486
#define MAX_QUICK_PIT_MS 50
487
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
488

L
Linus Torvalds 已提交
489 490
static unsigned long quick_pit_calibrate(void)
{
491 492 493 494
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
495
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
496 497
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
498 499 500 501 502 503 504 505 506
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
507 508
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
509 510 511 512
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

513 514 515 516 517 518
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
519
	pit_verify_msb(0);
520

521 522 523 524 525
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

526 527 528 529 530 531 532 533 534 535
			delta -= tsc;

			/*
			 * Extrapolate the error and fail fast if the error will
			 * never be below 500 ppm.
			 */
			if (i == 1 &&
			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
				return 0;

536 537 538
			/*
			 * Iterate until the error is less than 500 ppm
			 */
539 540 541 542 543 544 545 546 547 548 549 550 551
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
552 553
		}
	}
554
	pr_info("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
555
	return 0;
556 557 558 559 560 561 562 563 564

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
565
	 * reliable (within the error).
566 567 568 569 570 571 572
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
573
	pr_info("Fast TSC calibration using PIT\n");
574
	return delta;
L
Linus Torvalds 已提交
575
}
576

A
Alok Kataria 已提交
577
/**
578 579
 * native_calibrate_tsc
 * Determine TSC frequency via CPUID, else return 0.
A
Alok Kataria 已提交
580
 */
581
unsigned long native_calibrate_tsc(void)
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
{
	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
	unsigned int crystal_khz;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x15)
		return 0;

	eax_denominator = ebx_numerator = ecx_hz = edx = 0;

	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);

	if (ebx_numerator == 0 || eax_denominator == 0)
		return 0;

	crystal_khz = ecx_hz / 1000;

	if (crystal_khz == 0) {
		switch (boot_cpu_data.x86_model) {
604 605
		case INTEL_FAM6_SKYLAKE_MOBILE:
		case INTEL_FAM6_SKYLAKE_DESKTOP:
606 607
		case INTEL_FAM6_KABYLAKE_MOBILE:
		case INTEL_FAM6_KABYLAKE_DESKTOP:
608 609
			crystal_khz = 24000;	/* 24.0 MHz */
			break;
610
		case INTEL_FAM6_SKYLAKE_X:
611
		case INTEL_FAM6_ATOM_DENVERTON:
612 613
			crystal_khz = 25000;	/* 25.0 MHz */
			break;
614
		case INTEL_FAM6_ATOM_GOLDMONT:
615 616
			crystal_khz = 19200;	/* 19.2 MHz */
			break;
617 618 619
		}
	}

620 621 622 623 624 625 626
	/*
	 * TSC frequency determined by CPUID is a "hardware reported"
	 * frequency and is the most accurate one so far we have. This
	 * is considered a known frequency.
	 */
	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);

627 628 629 630 631 632 633
	/*
	 * For Atom SoCs TSC is the only reliable clocksource.
	 * Mark TSC reliable so no watchdog on it.
	 */
	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	return crystal_khz * ebx_numerator / eax_denominator;
}

static unsigned long cpu_khz_from_cpuid(void)
{
	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x16)
		return 0;

	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;

	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);

	return eax_base_mhz * 1000;
}

/**
 * native_calibrate_cpu - calibrate the cpu on boot
 */
unsigned long native_calibrate_cpu(void)
A
Alok Kataria 已提交
658
{
659
	u64 tsc1, tsc2, delta, ref1, ref2;
660
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
661
	unsigned long flags, latch, ms, fast_calibrate;
662
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
663

664 665 666 667
	fast_calibrate = cpu_khz_from_cpuid();
	if (fast_calibrate)
		return fast_calibrate;

668
	fast_calibrate = cpu_khz_from_msr();
669
	if (fast_calibrate)
670 671
		return fast_calibrate;

L
Linus Torvalds 已提交
672 673
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
674
	local_irq_restore(flags);
L
Linus Torvalds 已提交
675 676
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
677

678 679 680 681 682 683 684 685 686 687 688 689
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
690
	 * SMI/SMM disturbance happened between the two reads. If the
691 692 693 694 695 696 697 698 699 700 701
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
702 703 704 705 706 707 708

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
709
		unsigned long tsc_pit_khz;
710 711 712

		/*
		 * Read the start value and the reference count of
713 714 715
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
716
		 */
717
		local_irq_save(flags);
718
		tsc1 = tsc_read_refs(&ref1, hpet);
719
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
720
		tsc2 = tsc_read_refs(&ref2, hpet);
721 722
		local_irq_restore(flags);

723 724
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
725 726

		/* hpet or pmtimer available ? */
727
		if (ref1 == ref2)
728 729 730 731 732 733 734
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
735
		if (hpet)
736
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
737
		else
738
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
739 740

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
741 742 743 744 745 746 747 748 749 750 751 752

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
753 754
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
755
			return tsc_ref_min;
756 757
		}

758 759 760 761 762 763 764 765 766 767 768
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
769
	}
A
Alok Kataria 已提交
770 771

	/*
772
	 * Now check the results.
A
Alok Kataria 已提交
773
	 */
774 775
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
776
		pr_warn("Unable to calibrate against PIT\n");
777 778

		/* We don't have an alternative source, disable TSC */
779
		if (!hpet && !ref1 && !ref2) {
780
			pr_notice("No reference (HPET/PMTIMER) available\n");
781 782 783 784 785
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
786
			pr_warn("HPET/PMTIMER calibration failed\n");
787 788 789 790
			return 0;
		}

		/* Use the alternative source */
791 792
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
793 794 795

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
796

797
	/* We don't have an alternative source, use the PIT calibration value */
798
	if (!hpet && !ref1 && !ref2) {
799
		pr_info("Using PIT calibration value\n");
800
		return tsc_pit_min;
A
Alok Kataria 已提交
801 802
	}

803 804
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
805
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
806
		return tsc_pit_min;
A
Alok Kataria 已提交
807 808
	}

809 810 811
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
812
	 * running at double speed. At least we let the user know:
813
	 */
814 815 816
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
817
	return tsc_pit_min;
A
Alok Kataria 已提交
818 819 820 821 822 823 824
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

825
	if (!boot_cpu_has(X86_FEATURE_TSC))
A
Alok Kataria 已提交
826
		return -ENODEV;
827

828
	cpu_khz = x86_platform.calibrate_cpu();
829
	tsc_khz = x86_platform.calibrate_tsc();
830 831
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
832 833
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
834 835 836 837
	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
						    cpu_khz_old, cpu_khz);

	return 0;
A
Alok Kataria 已提交
838 839 840 841 842 843 844
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
845

846 847
static unsigned long long cyc2ns_suspend;

848
void tsc_save_sched_clock_state(void)
849
{
850
	if (!sched_clock_stable())
851 852 853 854 855 856 857 858 859 860 861 862 863
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
864
void tsc_restore_sched_clock_state(void)
865 866 867 868 869
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

870
	if (!sched_clock_stable())
871 872 873 874
		return;

	local_irq_save(flags);

875
	/*
876
	 * We're coming out of suspend, there's no concurrency yet; don't
877 878 879 880 881 882 883
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

884 885
	offset = cyc2ns_suspend - sched_clock();

886 887 888 889
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
890 891 892 893

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
915
	unsigned long *lpj;
A
Alok Kataria 已提交
916

917
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
918
#ifdef CONFIG_SMP
919
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
920 921 922 923 924 925 926 927 928
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
929
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
930
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
931 932 933 934 935

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

P
Peter Zijlstra 已提交
936 937
		set_cyc2ns_scale(tsc_khz, freq->cpu);
	}
A
Alok Kataria 已提交
938 939 940 941 942 943 944 945

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

946
static int __init cpufreq_register_tsc_scaling(void)
A
Alok Kataria 已提交
947
{
948
	if (!boot_cpu_has(X86_FEATURE_TSC))
949 950 951
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
952 953 954 955 956
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

957
core_initcall(cpufreq_register_tsc_scaling);
A
Alok Kataria 已提交
958 959

#endif /* CONFIG_CPU_FREQ */
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)


/*
 * If ART is present detect the numerator:denominator to convert to TSC
 */
static void detect_art(void)
{
	unsigned int unused[2];

	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
		return;

975
	/* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
976 977
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
978
	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
979 980
		return;

981 982 983 984
	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
	      &art_to_tsc_numerator, unused, unused+1);

	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
985 986
		return;

987 988
	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);

989 990 991 992 993
	/* Make this sticky over multiple CPU init calls */
	setup_force_cpu_cap(X86_FEATURE_ART);
}


994 995 996 997
/* clocksource code */

static struct clocksource clocksource_tsc;

998 999 1000 1001 1002
static void tsc_resume(struct clocksource *cs)
{
	tsc_verify_tsc_adjust(true);
}

1003
/*
1004
 * We used to compare the TSC to the cycle_last value in the clocksource
1005 1006 1007 1008 1009 1010 1011 1012 1013
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
1014 1015 1016 1017
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1018
 */
1019
static u64 read_tsc(struct clocksource *cs)
1020
{
1021
	return (u64)rdtsc_ordered();
1022 1023
}

1024 1025 1026 1027
static void tsc_cs_mark_unstable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;
1028

1029
	tsc_unstable = 1;
1030 1031
	if (using_native_sched_clock())
		clear_sched_clock_stable();
1032 1033 1034 1035
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to clocksource watchdog\n");
}

1036 1037 1038
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
1039 1040 1041 1042 1043 1044 1045
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
1046
	.archdata               = { .vclock_mode = VCLOCK_TSC },
1047
	.resume			= tsc_resume,
1048
	.mark_unstable		= tsc_cs_mark_unstable,
1049 1050 1051 1052
};

void mark_tsc_unstable(char *reason)
{
1053 1054 1055 1056 1057
	if (tsc_unstable)
		return;

	tsc_unstable = 1;
	if (using_native_sched_clock())
1058
		clear_sched_clock_stable();
1059 1060 1061 1062 1063 1064 1065 1066
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to %s\n", reason);
	/* Change only the rating, when not registered */
	if (clocksource_tsc.mult) {
		clocksource_mark_unstable(&clocksource_tsc);
	} else {
		clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
		clocksource_tsc.rating = 0;
1067 1068 1069 1070 1071
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1072 1073
static void __init check_system_tsc_reliable(void)
{
1074 1075 1076
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
	if (is_geode_lx()) {
		/* RTSC counts during suspend */
1077
#define RTSC_SUSP 0x100
1078
		unsigned long res_low, res_high;
1079

1080 1081 1082 1083 1084
		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
		/* Geode_LX - the OLPC CPU has a very reliable TSC */
		if (res_low & RTSC_SUSP)
			tsc_clocksource_reliable = 1;
	}
1085
#endif
1086 1087 1088
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1089 1090 1091 1092 1093

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1094
int unsynchronized_tsc(void)
1095
{
1096
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1097 1098
		return 1;

1099
#ifdef CONFIG_SMP
1100 1101 1102 1103 1104 1105
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1106 1107 1108

	if (tsc_clocksource_reliable)
		return 0;
1109 1110 1111 1112 1113 1114 1115
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1116
			return 1;
1117 1118
	}

1119
	return 0;
1120 1121
}

1122 1123 1124
/*
 * Convert ART to TSC given numerator/denominator found in detect_art()
 */
1125
struct system_counterval_t convert_art_to_tsc(u64 art)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
{
	u64 tmp, res, rem;

	rem = do_div(art, art_to_tsc_denominator);

	res = art * art_to_tsc_numerator;
	tmp = rem * art_to_tsc_numerator;

	do_div(tmp, art_to_tsc_denominator);
	res += tmp + art_to_tsc_offset;

	return (struct system_counterval_t) {.cs = art_related_clocksource,
			.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1153
 * If there are any calibration anomalies (too many SMIs, etc),
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1188
	if (ref_start == ref_stop)
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1207 1208 1209
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1210

1211 1212 1213
	/* Inform the TSC deadline clockevent devices about the recalibration */
	lapic_update_tsc_freq();

1214
out:
1215 1216
	if (boot_cpu_has(X86_FEATURE_ART))
		art_related_clocksource = &clocksource_tsc;
1217 1218 1219 1220 1221
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
1222
{
1223
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1224 1225
		return 0;

1226 1227
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1228 1229 1230 1231 1232
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
1233

1234 1235 1236
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1237
	/*
1238 1239
	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
	 * the refined calibration and directly register it as a clocksource.
1240
	 */
1241
	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1242 1243
		if (boot_cpu_has(X86_FEATURE_ART))
			art_related_clocksource = &clocksource_tsc;
1244 1245 1246 1247
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
		return 0;
	}

1248 1249
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1250
}
1251 1252 1253 1254 1255
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1256 1257 1258

void __init tsc_init(void)
{
P
Peter Zijlstra 已提交
1259
	u64 lpj, cyc;
1260 1261
	int cpu;

1262
	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1263
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1264
		return;
1265
	}
1266

1267
	cpu_khz = x86_platform.calibrate_cpu();
1268
	tsc_khz = x86_platform.calibrate_tsc();
1269 1270 1271 1272 1273 1274

	/*
	 * Trust non-zero tsc_khz as authorative,
	 * and use it to sanity check cpu_khz,
	 * which will be off if system timer is off.
	 */
1275 1276
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
1277 1278
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
1279

1280
	if (!tsc_khz) {
1281
		mark_tsc_unstable("could not calculate TSC khz");
1282
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1283 1284 1285
		return;
	}

1286 1287 1288
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
1289

1290 1291 1292
	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
	tsc_store_and_check_tsc_adjust(true);

1293 1294 1295 1296 1297 1298
	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
P
Peter Zijlstra 已提交
1299
	cyc = rdtsc();
1300 1301
	for_each_possible_cpu(cpu) {
		cyc2ns_init(cpu);
P
Peter Zijlstra 已提交
1302
		__set_cyc2ns_scale(tsc_khz, cpu, cyc);
1303
	}
1304 1305 1306 1307 1308

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
1309

1310
	tsc_disabled = 0;
1311
	static_branch_enable(&__use_tsc);
1312

V
Venkatesh Pallipadi 已提交
1313 1314 1315
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1316 1317 1318 1319
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1320 1321 1322 1323 1324
	use_tsc_delay();

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

1325
	check_system_tsc_reliable();
1326 1327

	detect_art();
1328 1329
}

1330 1331 1332 1333 1334 1335 1336
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1337
unsigned long calibrate_delay_is_known(void)
1338
{
1339
	int sibling, cpu = smp_processor_id();
1340
	struct cpumask *mask = topology_core_cpumask(cpu);
1341 1342 1343 1344

	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

1345 1346 1347 1348
	if (!mask)
		return 0;

	sibling = cpumask_any_but(mask, cpu);
1349 1350
	if (sibling < nr_cpu_ids)
		return cpu_data(sibling).loops_per_jiffy;
1351 1352 1353
	return 0;
}
#endif