tsc.c 36.9 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4
#include <linux/sched.h>
5
#include <linux/sched/clock.h>
A
Alok Kataria 已提交
6
#include <linux/init.h>
7
#include <linux/export.h>
A
Alok Kataria 已提交
8
#include <linux/timer.h>
A
Alok Kataria 已提交
9
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
10
#include <linux/cpufreq.h>
11 12 13
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
14
#include <linux/timex.h>
15
#include <linux/static_key.h>
A
Alok Kataria 已提交
16 17

#include <asm/hpet.h>
18 19 20 21
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
22
#include <asm/hypervisor.h>
23
#include <asm/nmi.h>
24
#include <asm/x86_init.h>
25
#include <asm/geode.h>
26
#include <asm/apic.h>
27
#include <asm/intel-family.h>
28
#include <asm/i8259.h>
A
Alok Kataria 已提交
29

30
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
31
EXPORT_SYMBOL(cpu_khz);
32 33

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
34 35
EXPORT_SYMBOL(tsc_khz);

36 37
#define KHZ	1000

A
Alok Kataria 已提交
38 39 40
/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
41
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
42

43
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
44

45
int tsc_clocksource_reliable;
46

47 48 49 50 51
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;

52
struct cyc2ns {
53 54
	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
	seqcount_t	   seq;		/* 32 + 4    = 36 */
55

56
}; /* fits one cacheline */
57

58
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
59

60
void cyc2ns_read_begin(struct cyc2ns_data *data)
61
{
62
	int seq, idx;
63

64
	preempt_disable_notrace();
65

66 67 68
	do {
		seq = this_cpu_read(cyc2ns.seq.sequence);
		idx = seq & 1;
69

70 71 72
		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
73

74
	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
75 76
}

77
void cyc2ns_read_end(void)
78
{
79
	preempt_enable_notrace();
80 81 82 83
}

/*
 * Accelerators for sched_clock()
84 85 86 87 88 89 90 91 92 93 94 95
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
96 97 98
 *  into a shift. The larger SC is, the more accurate the conversion, but
 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 *  (64-bit result) can be used.
99
 *
100
 *  We can use khz divisor instead of mhz to keep a better precision.
101 102 103 104 105
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

106 107
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
108
	data->cyc2ns_mul = 0;
109
	data->cyc2ns_shift = 0;
110 111 112
	data->cyc2ns_offset = 0;
}

113
static void __init cyc2ns_init(int cpu)
114 115 116 117 118 119
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	cyc2ns_data_init(&c2n->data[0]);
	cyc2ns_data_init(&c2n->data[1]);

120
	seqcount_init(&c2n->seq);
121 122
}

123 124
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
125
	struct cyc2ns_data data;
126 127
	unsigned long long ns;

128
	cyc2ns_read_begin(&data);
129

130 131
	ns = data.cyc2ns_offset;
	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
132

133
	cyc2ns_read_end();
134

135 136 137
	return ns;
}

138
static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
139
{
P
Peter Zijlstra 已提交
140
	unsigned long long ns_now;
141 142
	struct cyc2ns_data data;
	struct cyc2ns *c2n;
143
	unsigned long flags;
144 145 146 147

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

148
	if (!khz)
149 150
		goto done;

151 152
	ns_now = cycles_2_ns(tsc_now);

153 154 155 156 157
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
158
	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
159 160
			       NSEC_PER_MSEC, 0);

161 162 163 164 165 166
	/*
	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
	 * not expected to be greater than 31 due to the original published
	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
	 */
167 168 169
	if (data.cyc2ns_shift == 32) {
		data.cyc2ns_shift = 31;
		data.cyc2ns_mul >>= 1;
170 171
	}

172 173 174 175
	data.cyc2ns_offset = ns_now -
		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);

	c2n = per_cpu_ptr(&cyc2ns, cpu);
176

177 178 179 180
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[0] = data;
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[1] = data;
181

182
done:
183
	sched_clock_idle_wakeup_event();
184 185
	local_irq_restore(flags);
}
P
Peter Zijlstra 已提交
186

A
Alok Kataria 已提交
187 188 189 190 191
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
192 193 194 195 196 197
	if (static_branch_likely(&__use_tsc)) {
		u64 tsc_now = rdtsc();

		/* return the value in ns */
		return cycles_2_ns(tsc_now);
	}
A
Alok Kataria 已提交
198 199 200 201 202 203 204

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
205
	 *   can achieve it. )
A
Alok Kataria 已提交
206 207
	 */

208 209
	/* No locking but a rare wrong value is not a big deal: */
	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
A
Alok Kataria 已提交
210 211
}

212 213 214 215 216 217 218 219
/*
 * Generate a sched_clock if you already have a TSC value.
 */
u64 native_sched_clock_from_tsc(u64 tsc)
{
	return cycles_2_ns(tsc);
}

A
Alok Kataria 已提交
220 221 222 223 224 225 226
/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
227

228
bool using_native_sched_clock(void)
229 230 231
{
	return pv_time_ops.sched_clock == native_sched_clock;
}
A
Alok Kataria 已提交
232 233 234
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
235

236
bool using_native_sched_clock(void) { return true; }
A
Alok Kataria 已提交
237 238 239 240 241 242 243 244 245 246 247
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
248
	mark_tsc_unstable("boot parameter notsc");
A
Alok Kataria 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
264

V
Venkatesh Pallipadi 已提交
265 266
static int no_sched_irq_time;

267 268 269 270
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
271 272
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
273 274
	if (!strcmp(str, "unstable"))
		mark_tsc_unstable("boot parameter");
275 276 277 278 279
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
280 281 282 283 284 285
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
286
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
287 288 289 290 291 292 293
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
294
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
295
		else
296
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
297 298 299 300 301 302 303
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

304 305
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
306
 */
307
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
308
{
309
	u64 tmp;
A
Alok Kataria 已提交
310

311 312 313 314 315
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
316
	deltatsc = div64_u64(deltatsc, tmp);
317 318 319 320 321 322 323 324 325 326

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
327

328 329 330 331 332 333 334 335 336 337 338 339 340
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

341
#define CAL_MS		10
342
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
343 344 345
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
346
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
347 348
#define CAL2_PIT_LOOPS	5000

349

350 351 352 353 354 355 356
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
357
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
358 359 360 361 362
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

363 364 365 366 367 368 369 370 371 372 373 374 375 376
	if (!has_legacy_pic()) {
		/*
		 * Relies on tsc_early_delay_calibrate() to have given us semi
		 * usable udelay(), wait for the same 50ms we would have with
		 * the PIT loop below.
		 */
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		udelay(10 * USEC_PER_MSEC);
		return ULONG_MAX;
	}

377 378 379 380 381 382 383 384 385
	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
386 387
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
408
	 * If we were not able to read the PIT more than loopmin
409 410 411 412 413
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
414
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
415 416 417 418
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
419
	do_div(delta, ms);
420 421 422
	return delta;
}

L
Linus Torvalds 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
458 459 460 461 462 463 464
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

465
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
466
{
467
	int count;
468
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
469

L
Linus Torvalds 已提交
470
	for (count = 0; count < 50000; count++) {
471
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
472
			break;
473
		prev_tsc = tsc;
474
		tsc = get_cycles();
L
Linus Torvalds 已提交
475
	}
476
	*deltap = get_cycles() - prev_tsc;
477 478 479 480 481 482 483
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
484 485 486
}

/*
487 488 489
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
490
 * more than 50ms on it.
L
Linus Torvalds 已提交
491
 */
492
#define MAX_QUICK_PIT_MS 50
493
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
494

L
Linus Torvalds 已提交
495 496
static unsigned long quick_pit_calibrate(void)
{
497 498 499 500
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

501 502 503
	if (!has_legacy_pic())
		return 0;

L
Linus Torvalds 已提交
504
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
505 506
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
507 508 509 510 511 512 513 514 515
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
516 517
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
518 519 520 521
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

522 523 524 525 526 527
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
528
	pit_verify_msb(0);
529

530 531 532 533 534
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

535 536 537 538 539 540 541 542 543 544
			delta -= tsc;

			/*
			 * Extrapolate the error and fail fast if the error will
			 * never be below 500 ppm.
			 */
			if (i == 1 &&
			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
				return 0;

545 546 547
			/*
			 * Iterate until the error is less than 500 ppm
			 */
548 549 550 551 552 553 554 555 556 557 558 559 560
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
561 562
		}
	}
563
	pr_info("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
564
	return 0;
565 566 567 568 569 570 571 572 573

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
574
	 * reliable (within the error).
575 576 577 578 579 580 581
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
582
	pr_info("Fast TSC calibration using PIT\n");
583
	return delta;
L
Linus Torvalds 已提交
584
}
585

A
Alok Kataria 已提交
586
/**
587 588
 * native_calibrate_tsc
 * Determine TSC frequency via CPUID, else return 0.
A
Alok Kataria 已提交
589
 */
590
unsigned long native_calibrate_tsc(void)
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
{
	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
	unsigned int crystal_khz;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x15)
		return 0;

	eax_denominator = ebx_numerator = ecx_hz = edx = 0;

	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);

	if (ebx_numerator == 0 || eax_denominator == 0)
		return 0;

	crystal_khz = ecx_hz / 1000;

	if (crystal_khz == 0) {
		switch (boot_cpu_data.x86_model) {
613 614
		case INTEL_FAM6_SKYLAKE_MOBILE:
		case INTEL_FAM6_SKYLAKE_DESKTOP:
615 616
		case INTEL_FAM6_KABYLAKE_MOBILE:
		case INTEL_FAM6_KABYLAKE_DESKTOP:
617 618
			crystal_khz = 24000;	/* 24.0 MHz */
			break;
619
		case INTEL_FAM6_ATOM_DENVERTON:
620 621
			crystal_khz = 25000;	/* 25.0 MHz */
			break;
622
		case INTEL_FAM6_ATOM_GOLDMONT:
623 624
			crystal_khz = 19200;	/* 19.2 MHz */
			break;
625 626 627
		}
	}

628 629
	if (crystal_khz == 0)
		return 0;
630 631 632 633 634 635 636
	/*
	 * TSC frequency determined by CPUID is a "hardware reported"
	 * frequency and is the most accurate one so far we have. This
	 * is considered a known frequency.
	 */
	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);

637 638 639 640 641 642 643
	/*
	 * For Atom SoCs TSC is the only reliable clocksource.
	 * Mark TSC reliable so no watchdog on it.
	 */
	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	return crystal_khz * ebx_numerator / eax_denominator;
}

static unsigned long cpu_khz_from_cpuid(void)
{
	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x16)
		return 0;

	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;

	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);

	return eax_base_mhz * 1000;
}

/**
 * native_calibrate_cpu - calibrate the cpu on boot
 */
unsigned long native_calibrate_cpu(void)
A
Alok Kataria 已提交
668
{
669
	u64 tsc1, tsc2, delta, ref1, ref2;
670
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
671
	unsigned long flags, latch, ms, fast_calibrate;
672
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
673

674 675 676 677
	fast_calibrate = cpu_khz_from_cpuid();
	if (fast_calibrate)
		return fast_calibrate;

678
	fast_calibrate = cpu_khz_from_msr();
679
	if (fast_calibrate)
680 681
		return fast_calibrate;

L
Linus Torvalds 已提交
682 683
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
684
	local_irq_restore(flags);
L
Linus Torvalds 已提交
685 686
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
687

688 689 690 691 692 693 694 695 696 697 698 699
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
700
	 * SMI/SMM disturbance happened between the two reads. If the
701 702 703 704 705 706 707 708 709 710 711
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
712 713 714 715 716 717 718

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
719
		unsigned long tsc_pit_khz;
720 721 722

		/*
		 * Read the start value and the reference count of
723 724 725
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
726
		 */
727
		local_irq_save(flags);
728
		tsc1 = tsc_read_refs(&ref1, hpet);
729
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
730
		tsc2 = tsc_read_refs(&ref2, hpet);
731 732
		local_irq_restore(flags);

733 734
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
735 736

		/* hpet or pmtimer available ? */
737
		if (ref1 == ref2)
738 739 740 741 742 743 744
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
745
		if (hpet)
746
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
747
		else
748
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
749 750

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
751 752 753 754 755 756 757 758 759 760 761 762

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
763 764
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
765
			return tsc_ref_min;
766 767
		}

768 769 770 771 772 773 774 775 776 777 778
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
779
	}
A
Alok Kataria 已提交
780 781

	/*
782
	 * Now check the results.
A
Alok Kataria 已提交
783
	 */
784 785
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
786
		pr_warn("Unable to calibrate against PIT\n");
787 788

		/* We don't have an alternative source, disable TSC */
789
		if (!hpet && !ref1 && !ref2) {
790
			pr_notice("No reference (HPET/PMTIMER) available\n");
791 792 793 794 795
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
796
			pr_warn("HPET/PMTIMER calibration failed\n");
797 798 799 800
			return 0;
		}

		/* Use the alternative source */
801 802
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
803 804 805

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
806

807
	/* We don't have an alternative source, use the PIT calibration value */
808
	if (!hpet && !ref1 && !ref2) {
809
		pr_info("Using PIT calibration value\n");
810
		return tsc_pit_min;
A
Alok Kataria 已提交
811 812
	}

813 814
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
815
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
816
		return tsc_pit_min;
A
Alok Kataria 已提交
817 818
	}

819 820 821
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
822
	 * running at double speed. At least we let the user know:
823
	 */
824 825 826
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
827
	return tsc_pit_min;
A
Alok Kataria 已提交
828 829
}

830
void recalibrate_cpu_khz(void)
A
Alok Kataria 已提交
831 832 833 834
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

835
	if (!boot_cpu_has(X86_FEATURE_TSC))
836
		return;
837

838
	cpu_khz = x86_platform.calibrate_cpu();
839
	tsc_khz = x86_platform.calibrate_tsc();
840 841
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
842 843
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
844 845
	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
						    cpu_khz_old, cpu_khz);
A
Alok Kataria 已提交
846 847 848 849 850
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
851

852 853
static unsigned long long cyc2ns_suspend;

854
void tsc_save_sched_clock_state(void)
855
{
856
	if (!sched_clock_stable())
857 858 859 860 861 862 863 864 865 866 867 868 869
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
870
void tsc_restore_sched_clock_state(void)
871 872 873 874 875
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

876
	if (!sched_clock_stable())
877 878 879 880
		return;

	local_irq_save(flags);

881
	/*
882
	 * We're coming out of suspend, there's no concurrency yet; don't
883 884 885 886 887 888 889
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

890 891
	offset = cyc2ns_suspend - sched_clock();

892 893 894 895
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
896 897 898 899

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
920
	unsigned long *lpj;
A
Alok Kataria 已提交
921

922
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
923
#ifdef CONFIG_SMP
924
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
925 926 927 928 929 930 931 932 933
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
934
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
935
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
936 937 938 939 940

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

941
		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
P
Peter Zijlstra 已提交
942
	}
A
Alok Kataria 已提交
943 944 945 946 947 948 949 950

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

951
static int __init cpufreq_register_tsc_scaling(void)
A
Alok Kataria 已提交
952
{
953
	if (!boot_cpu_has(X86_FEATURE_TSC))
954 955 956
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
957 958 959 960 961
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

962
core_initcall(cpufreq_register_tsc_scaling);
A
Alok Kataria 已提交
963 964

#endif /* CONFIG_CPU_FREQ */
965

966 967 968 969 970 971 972
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)


/*
 * If ART is present detect the numerator:denominator to convert to TSC
 */
973
static void __init detect_art(void)
974 975 976 977 978 979
{
	unsigned int unused[2];

	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
		return;

980 981 982 983
	/*
	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
	 * and the TSC counter resets must not occur asynchronously.
	 */
984 985
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
986 987
	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
	    tsc_async_resets)
988 989
		return;

990 991 992 993
	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
	      &art_to_tsc_numerator, unused, unused+1);

	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
994 995
		return;

996 997
	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);

998 999 1000 1001 1002
	/* Make this sticky over multiple CPU init calls */
	setup_force_cpu_cap(X86_FEATURE_ART);
}


1003 1004
/* clocksource code */

1005 1006 1007 1008 1009
static void tsc_resume(struct clocksource *cs)
{
	tsc_verify_tsc_adjust(true);
}

1010
/*
1011
 * We used to compare the TSC to the cycle_last value in the clocksource
1012 1013 1014 1015 1016 1017 1018 1019 1020
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
1021 1022 1023 1024
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1025
 */
1026
static u64 read_tsc(struct clocksource *cs)
1027
{
1028
	return (u64)rdtsc_ordered();
1029 1030
}

1031 1032 1033 1034
static void tsc_cs_mark_unstable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;
1035

1036
	tsc_unstable = 1;
1037 1038
	if (using_native_sched_clock())
		clear_sched_clock_stable();
1039 1040 1041 1042
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to clocksource watchdog\n");
}

1043 1044 1045 1046 1047 1048 1049 1050 1051
static void tsc_cs_tick_stable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;

	if (using_native_sched_clock())
		sched_clock_tick_stable();
}

1052 1053 1054
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static struct clocksource clocksource_tsc_early = {
	.name                   = "tsc-early",
	.rating                 = 299,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
	.archdata               = { .vclock_mode = VCLOCK_TSC },
	.resume			= tsc_resume,
	.mark_unstable		= tsc_cs_mark_unstable,
	.tick_stable		= tsc_cs_tick_stable,
1066
	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1067 1068 1069 1070 1071 1072 1073
};

/*
 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
 * this one will immediately take over. We will only register if TSC has
 * been found good.
 */
1074 1075 1076 1077 1078 1079
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1080
				  CLOCK_SOURCE_VALID_FOR_HRES |
1081
				  CLOCK_SOURCE_MUST_VERIFY,
1082
	.archdata               = { .vclock_mode = VCLOCK_TSC },
1083
	.resume			= tsc_resume,
1084
	.mark_unstable		= tsc_cs_mark_unstable,
1085
	.tick_stable		= tsc_cs_tick_stable,
1086
	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1087 1088 1089 1090
};

void mark_tsc_unstable(char *reason)
{
1091 1092 1093 1094 1095
	if (tsc_unstable)
		return;

	tsc_unstable = 1;
	if (using_native_sched_clock())
1096
		clear_sched_clock_stable();
1097 1098
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to %s\n", reason);
1099 1100 1101

	clocksource_mark_unstable(&clocksource_tsc_early);
	clocksource_mark_unstable(&clocksource_tsc);
1102 1103 1104 1105
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1106 1107
static void __init check_system_tsc_reliable(void)
{
1108 1109 1110
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
	if (is_geode_lx()) {
		/* RTSC counts during suspend */
1111
#define RTSC_SUSP 0x100
1112
		unsigned long res_low, res_high;
1113

1114 1115 1116 1117 1118
		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
		/* Geode_LX - the OLPC CPU has a very reliable TSC */
		if (res_low & RTSC_SUSP)
			tsc_clocksource_reliable = 1;
	}
1119
#endif
1120 1121 1122
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1123 1124 1125 1126 1127

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1128
int unsynchronized_tsc(void)
1129
{
1130
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1131 1132
		return 1;

1133
#ifdef CONFIG_SMP
1134 1135 1136 1137 1138 1139
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1140 1141 1142

	if (tsc_clocksource_reliable)
		return 0;
1143 1144 1145 1146 1147 1148 1149
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1150
			return 1;
1151 1152
	}

1153
	return 0;
1154 1155
}

1156 1157 1158
/*
 * Convert ART to TSC given numerator/denominator found in detect_art()
 */
1159
struct system_counterval_t convert_art_to_tsc(u64 art)
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
{
	u64 tmp, res, rem;

	rem = do_div(art, art_to_tsc_denominator);

	res = art * art_to_tsc_numerator;
	tmp = rem * art_to_tsc_numerator;

	do_div(tmp, art_to_tsc_denominator);
	res += tmp + art_to_tsc_offset;

	return (struct system_counterval_t) {.cs = art_related_clocksource,
			.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**
 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
 *
 * PTM requires all timestamps to be in units of nanoseconds. When user
 * software requests a cross-timestamp, this function converts system timestamp
 * to TSC.
 *
 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
 * that this flag is set before conversion to TSC is attempted.
 *
 * Return:
 * struct system_counterval_t - system counter value with the pointer to the
 *	corresponding clocksource
 *	@cycles:	System counter value
 *	@cs:		Clocksource corresponding to system counter value. Used
 *			by timekeeping code to verify comparibility of two cycle
 *			values.
 */

struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
{
	u64 tmp, res, rem;

	rem = do_div(art_ns, USEC_PER_SEC);

	res = art_ns * tsc_khz;
	tmp = rem * tsc_khz;

	do_div(tmp, USEC_PER_SEC);
	res += tmp;

	return (struct system_counterval_t) { .cs = art_related_clocksource,
					      .cycles = res};
}
EXPORT_SYMBOL(convert_art_ns_to_tsc);


1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1226
 * If there are any calibration anomalies (too many SMIs, etc),
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;
1237
	int cpu;
1238 1239

	/* Don't bother refining TSC on unstable systems */
1240
	if (tsc_unstable)
1241
		goto unreg;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1262
	if (ref_start == ref_stop)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1281 1282 1283
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1284

1285 1286 1287
	/* Inform the TSC deadline clockevent devices about the recalibration */
	lapic_update_tsc_freq();

1288 1289
	/* Update the sched_clock() rate to match the clocksource one */
	for_each_possible_cpu(cpu)
1290
		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1291

1292
out:
1293
	if (tsc_unstable)
1294
		goto unreg;
1295

1296 1297
	if (boot_cpu_has(X86_FEATURE_ART))
		art_related_clocksource = &clocksource_tsc;
1298
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1299
unreg:
1300
	clocksource_unregister(&clocksource_tsc_early);
1301 1302 1303 1304
}


static int __init init_tsc_clocksource(void)
1305
{
1306
	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1307 1308
		return 0;

1309 1310
	if (tsc_unstable)
		goto unreg;
1311

1312 1313
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1314

1315 1316 1317
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1318
	/*
1319 1320
	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
	 * the refined calibration and directly register it as a clocksource.
1321
	 */
1322
	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1323 1324
		if (boot_cpu_has(X86_FEATURE_ART))
			art_related_clocksource = &clocksource_tsc;
1325
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1326
unreg:
1327
		clocksource_unregister(&clocksource_tsc_early);
1328 1329 1330
		return 0;
	}

1331 1332
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1333
}
1334 1335 1336 1337 1338
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1339

1340
static bool __init determine_cpu_tsc_frequencies(void)
1341
{
1342 1343
	/* Make sure that cpu and tsc are not already calibrated */
	WARN_ON(cpu_khz || tsc_khz);
1344

1345
	cpu_khz = x86_platform.calibrate_cpu();
1346
	tsc_khz = x86_platform.calibrate_tsc();
1347 1348 1349 1350 1351 1352

	/*
	 * Trust non-zero tsc_khz as authorative,
	 * and use it to sanity check cpu_khz,
	 * which will be off if system timer is off.
	 */
1353 1354
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
1355 1356
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
1357

1358 1359
	if (tsc_khz == 0)
		return false;
1360

1361
	pr_info("Detected %lu.%03lu MHz processor\n",
1362 1363
		(unsigned long)cpu_khz / KHZ,
		(unsigned long)cpu_khz % KHZ);
1364

1365 1366
	if (cpu_khz != tsc_khz) {
		pr_info("Detected %lu.%03lu MHz TSC",
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			(unsigned long)tsc_khz / KHZ,
			(unsigned long)tsc_khz % KHZ);
	}
	return true;
}

static unsigned long __init get_loops_per_jiffy(void)
{
	unsigned long lpj = tsc_khz * KHZ;

	do_div(lpj, HZ);
	return lpj;
}

void __init tsc_early_init(void)
{
	if (!boot_cpu_has(X86_FEATURE_TSC))
		return;
	if (!determine_cpu_tsc_frequencies())
		return;
	loops_per_jiffy = get_loops_per_jiffy();
}

void __init tsc_init(void)
{
	if (!boot_cpu_has(X86_FEATURE_TSC)) {
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
		return;
	}

	if (!tsc_khz) {
		/* We failed to determine frequencies earlier, try again */
		if (!determine_cpu_tsc_frequencies()) {
			mark_tsc_unstable("could not calculate TSC khz");
			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
			return;
		}
1404 1405
	}

1406 1407 1408
	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
	tsc_store_and_check_tsc_adjust(true);

1409 1410 1411 1412 1413 1414
	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
P
Peter Zijlstra 已提交
1415
	cyc = rdtsc();
1416 1417
	for_each_possible_cpu(cpu) {
		cyc2ns_init(cpu);
1418
		set_cyc2ns_scale(tsc_khz, cpu, cyc);
1419
	}
1420

1421
	static_branch_enable(&__use_tsc);
1422

V
Venkatesh Pallipadi 已提交
1423 1424 1425
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1426
	lpj_fine = get_loops_per_jiffy();
1427 1428
	use_tsc_delay();

1429 1430
	check_system_tsc_reliable();

1431
	if (unsynchronized_tsc()) {
1432
		mark_tsc_unstable("TSCs unsynchronized");
1433 1434
		return;
	}
1435

1436
	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1437
	detect_art();
1438 1439
}

1440 1441 1442 1443 1444 1445 1446
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1447
unsigned long calibrate_delay_is_known(void)
1448
{
1449
	int sibling, cpu = smp_processor_id();
1450 1451
	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
	const struct cpumask *mask = topology_core_cpumask(cpu);
1452

1453
	if (!constant_tsc || !mask)
1454 1455 1456
		return 0;

	sibling = cpumask_any_but(mask, cpu);
1457 1458
	if (sibling < nr_cpu_ids)
		return cpu_data(sibling).loops_per_jiffy;
1459 1460 1461
	return 0;
}
#endif