slab.c 111.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217 218 219 220
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
221 222
static int slab_early_init = 1;

223
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
224

225
static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 227 228 229 230 231
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
232
	parent->colour_next = 0;
233 234 235
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
236
	parent->num_slabs = 0;
237 238
}

A
Andrew Morton 已提交
239 240 241
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
242
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
243 244
	} while (0)

A
Andrew Morton 已提交
245 246
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
247 248 249 250
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
251

252
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
253
#define CFLGS_OFF_SLAB		(0x80000000UL)
254
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
255 256 257
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
258 259 260
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
261
 *
A
Adrian Bunk 已提交
262
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
263 264
 * which could lock up otherwise freeable slabs.
 */
265 266
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
267 268 269 270 271 272

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
273
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
274 275 276 277 278
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
279 280
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
281
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
282
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
283 284 285 286 287
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
288 289 290 291 292 293 294 295 296
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
297
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
298 299 300
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
301
#define	STATS_INC_NODEFREES(x)	do { } while (0)
302
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
303
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
312 313
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
314
 * 0		: objp
315
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
316 317
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
318
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
319
 * 		redzone word.
320
 * cachep->obj_offset: The real object.
321 322
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
323
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
324
 */
325
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
326
{
327
	return cachep->obj_offset;
L
Linus Torvalds 已提交
328 329
}

330
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
331 332
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
333 334
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
335 336
}

337
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
338 339 340
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
341
		return (unsigned long long *)(objp + cachep->size -
342
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
343
					      REDZONE_ALIGN);
344
	return (unsigned long long *) (objp + cachep->size -
345
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
346 347
}

348
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
349 350
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
351
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
352 353 354 355
}

#else

356
#define obj_offset(x)			0
357 358
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
359 360 361 362
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

363 364
#ifdef CONFIG_DEBUG_SLAB_LEAK

365
static inline bool is_store_user_clean(struct kmem_cache *cachep)
366
{
367 368
	return atomic_read(&cachep->store_user_clean) == 1;
}
369

370 371 372 373
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
374

375 376 377 378
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
379 380 381
}

#else
382
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
383 384 385

#endif

L
Linus Torvalds 已提交
386
/*
387 388
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
389
 */
390 391 392
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
393
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
394

395 396
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
397
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
398
	return page->slab_cache;
399 400
}

401
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
402 403
				 unsigned int idx)
{
404
	return page->s_mem + cache->size * idx;
405 406
}

407
/*
408 409 410
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
411 412 413
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
414
					const struct page *page, void *obj)
415
{
416
	u32 offset = (obj - page->s_mem);
417
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
418 419
}

420
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
421
/* internal cache of cache description objs */
422
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
423 424 425
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
426
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
427
	.name = "kmem_cache",
L
Linus Torvalds 已提交
428 429
};

430
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
431

432
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
433
{
434
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
435 436
}

A
Andrew Morton 已提交
437 438 439
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
440 441
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
442
{
443
	unsigned int num;
444
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
445

446 447 448 449 450 451
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
452 453 454 455 456
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
457 458 459 460 461 462
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
463
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
464
		num = slab_size / buffer_size;
465
		*left_over = slab_size % buffer_size;
466
	} else {
467
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
468 469
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
470
	}
471 472

	return num;
L
Linus Torvalds 已提交
473 474
}

475
#if DEBUG
476
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
477

A
Andrew Morton 已提交
478 479
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
480
{
481
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
482
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
483
	dump_stack();
484
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
485
}
486
#endif
L
Linus Torvalds 已提交
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

504 505 506 507 508 509 510 511 512 513 514
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

515 516 517 518 519 520 521
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
522
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
523 524 525

static void init_reap_node(int cpu)
{
526 527
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
528 529 530 531
}

static void next_reap_node(void)
{
532
	int node = __this_cpu_read(slab_reap_node);
533

534
	node = next_node_in(node, node_online_map);
535
	__this_cpu_write(slab_reap_node, node);
536 537 538 539 540 541 542
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
543 544 545 546 547 548 549
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
550
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
551
{
552
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
553 554 555 556 557 558

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
559
	if (keventd_up() && reap_work->work.func == NULL) {
560
		init_reap_node(cpu);
561
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
562 563
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
564 565 566
	}
}

567
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
568
{
569 570
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
571
	 * However, when such objects are allocated or transferred to another
572 573 574 575
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
576 577 578 579 580 581
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
582
	}
583 584 585 586 587
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
588
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
589 590 591 592 593
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
594 595
}

596 597
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
598
{
599 600 601
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
602

603 604
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
605

606 607 608
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
609

610
	slabs_destroy(cachep, &list);
611 612
}

613 614 615 616 617 618 619 620 621 622
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
623
	int nr = min3(from->avail, max, to->limit - to->avail);
624 625 626 627 628 629 630 631 632 633 634 635

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

636 637 638
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
639
#define reap_alien(cachep, n) do { } while (0)
640

J
Joonsoo Kim 已提交
641 642
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
643
{
644
	return NULL;
645 646
}

J
Joonsoo Kim 已提交
647
static inline void free_alien_cache(struct alien_cache **ac_ptr)
648 649 650 651 652 653 654 655 656 657 658 659 660 661
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

662
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
663 664 665 666 667
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
668 669
static inline gfp_t gfp_exact_node(gfp_t flags)
{
670
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
671 672
}

673 674
#else	/* CONFIG_NUMA */

675
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
676
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
677

J
Joonsoo Kim 已提交
678 679 680
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
681
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
682 683 684 685
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
686
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
687 688 689 690
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
691
{
J
Joonsoo Kim 已提交
692
	struct alien_cache **alc_ptr;
693
	size_t memsize = sizeof(void *) * nr_node_ids;
694 695 696 697
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
711 712
		}
	}
J
Joonsoo Kim 已提交
713
	return alc_ptr;
714 715
}

J
Joonsoo Kim 已提交
716
static void free_alien_cache(struct alien_cache **alc_ptr)
717 718 719
{
	int i;

J
Joonsoo Kim 已提交
720
	if (!alc_ptr)
721 722
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
723 724
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
725 726
}

727
static void __drain_alien_cache(struct kmem_cache *cachep,
728 729
				struct array_cache *ac, int node,
				struct list_head *list)
730
{
731
	struct kmem_cache_node *n = get_node(cachep, node);
732 733

	if (ac->avail) {
734
		spin_lock(&n->list_lock);
735 736 737 738 739
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
740 741
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
742

743
		free_block(cachep, ac->entry, ac->avail, node, list);
744
		ac->avail = 0;
745
		spin_unlock(&n->list_lock);
746 747 748
	}
}

749 750 751
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
752
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
753
{
754
	int node = __this_cpu_read(slab_reap_node);
755

756
	if (n->alien) {
J
Joonsoo Kim 已提交
757 758 759 760 761
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
762
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
763 764 765
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
766
				spin_unlock_irq(&alc->lock);
767
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
768
			}
769 770 771 772
		}
	}
}

A
Andrew Morton 已提交
773
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
774
				struct alien_cache **alien)
775
{
P
Pekka Enberg 已提交
776
	int i = 0;
J
Joonsoo Kim 已提交
777
	struct alien_cache *alc;
778 779 780 781
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
782 783
		alc = alien[i];
		if (alc) {
784 785
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
786
			ac = &alc->ac;
787
			spin_lock_irqsave(&alc->lock, flags);
788
			__drain_alien_cache(cachep, ac, i, &list);
789
			spin_unlock_irqrestore(&alc->lock, flags);
790
			slabs_destroy(cachep, &list);
791 792 793
		}
	}
}
794

795 796
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
797
{
798
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
799 800
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
801
	LIST_HEAD(list);
P
Pekka Enberg 已提交
802

803
	n = get_node(cachep, node);
804
	STATS_INC_NODEFREES(cachep);
805 806
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
807
		ac = &alien->ac;
808
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
809
		if (unlikely(ac->avail == ac->limit)) {
810
			STATS_INC_ACOVERFLOW(cachep);
811
			__drain_alien_cache(cachep, ac, page_node, &list);
812
		}
813
		ac->entry[ac->avail++] = objp;
814
		spin_unlock(&alien->lock);
815
		slabs_destroy(cachep, &list);
816
	} else {
817
		n = get_node(cachep, page_node);
818
		spin_lock(&n->list_lock);
819
		free_block(cachep, &objp, 1, page_node, &list);
820
		spin_unlock(&n->list_lock);
821
		slabs_destroy(cachep, &list);
822 823 824
	}
	return 1;
}
825 826 827 828 829 830 831 832 833 834 835 836 837 838

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
839 840

/*
841 842
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
843 844 845
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
846
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
847
}
848 849
#endif

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

890
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
891
/*
892
 * Allocates and initializes node for a node on each slab cache, used for
893
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
894
 * will be allocated off-node since memory is not yet online for the new node.
895
 * When hotplugging memory or a cpu, existing node are not replaced if
896 897
 * already in use.
 *
898
 * Must hold slab_mutex.
899
 */
900
static int init_cache_node_node(int node)
901
{
902
	int ret;
903 904
	struct kmem_cache *cachep;

905
	list_for_each_entry(cachep, &slab_caches, list) {
906 907 908
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
909
	}
910

911 912
	return 0;
}
913
#endif
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

964 965 966 967 968 969
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
970
	if (old_shared && force_change)
971 972
		synchronize_sched();

973 974 975 976 977 978 979 980
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

981 982
#ifdef CONFIG_SMP

983
static void cpuup_canceled(long cpu)
984 985
{
	struct kmem_cache *cachep;
986
	struct kmem_cache_node *n = NULL;
987
	int node = cpu_to_mem(cpu);
988
	const struct cpumask *mask = cpumask_of_node(node);
989

990
	list_for_each_entry(cachep, &slab_caches, list) {
991 992
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
993
		struct alien_cache **alien;
994
		LIST_HEAD(list);
995

996
		n = get_node(cachep, node);
997
		if (!n)
998
			continue;
999

1000
		spin_lock_irq(&n->list_lock);
1001

1002 1003
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1004 1005 1006 1007

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1008
			free_block(cachep, nc->entry, nc->avail, node, &list);
1009 1010
			nc->avail = 0;
		}
1011

1012
		if (!cpumask_empty(mask)) {
1013
			spin_unlock_irq(&n->list_lock);
1014
			goto free_slab;
1015 1016
		}

1017
		shared = n->shared;
1018 1019
		if (shared) {
			free_block(cachep, shared->entry,
1020
				   shared->avail, node, &list);
1021
			n->shared = NULL;
1022 1023
		}

1024 1025
		alien = n->alien;
		n->alien = NULL;
1026

1027
		spin_unlock_irq(&n->list_lock);
1028 1029 1030 1031 1032 1033

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1034 1035

free_slab:
1036
		slabs_destroy(cachep, &list);
1037 1038 1039 1040 1041 1042
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1043
	list_for_each_entry(cachep, &slab_caches, list) {
1044
		n = get_node(cachep, node);
1045
		if (!n)
1046
			continue;
1047
		drain_freelist(cachep, n, INT_MAX);
1048 1049 1050
	}
}

1051
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1052
{
1053
	struct kmem_cache *cachep;
1054
	int node = cpu_to_mem(cpu);
1055
	int err;
L
Linus Torvalds 已提交
1056

1057 1058 1059 1060
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1061
	 * kmem_cache_node and not this cpu's kmem_cache_node
1062
	 */
1063
	err = init_cache_node_node(node);
1064 1065
	if (err < 0)
		goto bad;
1066 1067 1068 1069 1070

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1071
	list_for_each_entry(cachep, &slab_caches, list) {
1072 1073 1074
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1075
	}
1076

1077 1078
	return 0;
bad:
1079
	cpuup_canceled(cpu);
1080 1081 1082
	return -ENOMEM;
}

1083
int slab_prepare_cpu(unsigned int cpu)
1084
{
1085
	int err;
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1110
#endif
1111 1112 1113 1114 1115

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1131

1132 1133 1134 1135 1136 1137
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1138
 * Must hold slab_mutex.
1139
 */
1140
static int __meminit drain_cache_node_node(int node)
1141 1142 1143 1144
{
	struct kmem_cache *cachep;
	int ret = 0;

1145
	list_for_each_entry(cachep, &slab_caches, list) {
1146
		struct kmem_cache_node *n;
1147

1148
		n = get_node(cachep, node);
1149
		if (!n)
1150 1151
			continue;

1152
		drain_freelist(cachep, n, INT_MAX);
1153

1154 1155
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1176
		mutex_lock(&slab_mutex);
1177
		ret = init_cache_node_node(nid);
1178
		mutex_unlock(&slab_mutex);
1179 1180
		break;
	case MEM_GOING_OFFLINE:
1181
		mutex_lock(&slab_mutex);
1182
		ret = drain_cache_node_node(nid);
1183
		mutex_unlock(&slab_mutex);
1184 1185 1186 1187 1188 1189 1190 1191
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1192
	return notifier_from_errno(ret);
1193 1194 1195
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1196
/*
1197
 * swap the static kmem_cache_node with kmalloced memory
1198
 */
1199
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1200
				int nodeid)
1201
{
1202
	struct kmem_cache_node *ptr;
1203

1204
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1205 1206
	BUG_ON(!ptr);

1207
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1208 1209 1210 1211 1212
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1213
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1214
	cachep->node[nodeid] = ptr;
1215 1216
}

1217
/*
1218 1219
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1220
 */
1221
static void __init set_up_node(struct kmem_cache *cachep, int index)
1222 1223 1224 1225
{
	int node;

	for_each_online_node(node) {
1226
		cachep->node[node] = &init_kmem_cache_node[index + node];
1227
		cachep->node[node]->next_reap = jiffies +
1228 1229
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1230 1231 1232
	}
}

A
Andrew Morton 已提交
1233 1234 1235
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1236 1237 1238
 */
void __init kmem_cache_init(void)
{
1239 1240
	int i;

1241 1242
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1243 1244
	kmem_cache = &kmem_cache_boot;

1245
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1246 1247
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1248
	for (i = 0; i < NUM_INIT_LISTS; i++)
1249
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1250

L
Linus Torvalds 已提交
1251 1252
	/*
	 * Fragmentation resistance on low memory - only use bigger
1253 1254
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1255
	 */
1256
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1257
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1258 1259 1260

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1261 1262 1263
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1264
	 *    Initially an __init data area is used for the head array and the
1265
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1266
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1267
	 * 2) Create the first kmalloc cache.
1268
	 *    The struct kmem_cache for the new cache is allocated normally.
1269 1270 1271
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1272
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1273
	 *    kmalloc cache with kmalloc allocated arrays.
1274
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1275 1276
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1277 1278
	 */

1279
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1280

E
Eric Dumazet 已提交
1281
	/*
1282
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1283
	 */
1284
	create_boot_cache(kmem_cache, "kmem_cache",
1285
		offsetof(struct kmem_cache, node) +
1286
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1287 1288
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1289
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1290

A
Andrew Morton 已提交
1291
	/*
1292 1293
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1294
	 */
1295
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1296
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1297
	slab_state = PARTIAL_NODE;
1298
	setup_kmalloc_cache_index_table();
1299

1300 1301
	slab_early_init = 0;

1302
	/* 5) Replace the bootstrap kmem_cache_node */
1303
	{
P
Pekka Enberg 已提交
1304 1305
		int nid;

1306
		for_each_online_node(nid) {
1307
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1308

1309
			init_list(kmalloc_caches[INDEX_NODE],
1310
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1311 1312
		}
	}
L
Linus Torvalds 已提交
1313

1314
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1315 1316 1317 1318 1319 1320
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1321
	slab_state = UP;
P
Peter Zijlstra 已提交
1322

1323
	/* 6) resize the head arrays to their final sizes */
1324 1325
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1326 1327
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1328
	mutex_unlock(&slab_mutex);
1329

1330 1331 1332
	/* Done! */
	slab_state = FULL;

1333 1334 1335
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1336
	 * node.
1337 1338 1339 1340
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1341 1342 1343
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348
	 */
}

static int __init cpucache_init(void)
{
1349
	int ret;
L
Linus Torvalds 已提交
1350

A
Andrew Morton 已提交
1351 1352
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1353
	 */
1354 1355 1356
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1357 1358

	/* Done! */
1359
	slab_state = FULL;
L
Linus Torvalds 已提交
1360 1361 1362 1363
	return 0;
}
__initcall(cpucache_init);

1364 1365 1366
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1367
#if DEBUG
1368
	struct kmem_cache_node *n;
1369
	struct page *page;
1370 1371
	unsigned long flags;
	int node;
1372 1373 1374 1375 1376
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1377

1378 1379 1380
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1381
		cachep->name, cachep->size, cachep->gfporder);
1382

1383
	for_each_kmem_cache_node(cachep, node, n) {
1384 1385
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;
1386 1387
		unsigned long num_slabs_partial = 0, num_slabs_free = 0;
		unsigned long num_slabs_full;
1388

1389
		spin_lock_irqsave(&n->list_lock, flags);
1390
		num_slabs = n->num_slabs;
1391 1392
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1393
			num_slabs_partial++;
1394
		}
1395
		list_for_each_entry(page, &n->slabs_free, lru)
1396
			num_slabs_free++;
1397

1398 1399
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1400 1401

		num_objs = num_slabs * cachep->num;
1402 1403 1404 1405 1406
		active_slabs = num_slabs - num_slabs_free;
		num_slabs_full = num_slabs -
			(num_slabs_partial + num_slabs_free);
		active_objs += (num_slabs_full * cachep->num);

1407
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1408 1409 1410
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1411
#endif
1412 1413
}

L
Linus Torvalds 已提交
1414
/*
W
Wang Sheng-Hui 已提交
1415 1416
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1417 1418 1419 1420 1421
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1422 1423
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1424 1425
{
	struct page *page;
1426
	int nr_pages;
1427

1428
	flags |= cachep->allocflags;
1429 1430
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1431

1432
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1433
	if (!page) {
1434
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1435
		return NULL;
1436
	}
L
Linus Torvalds 已提交
1437

1438 1439 1440 1441 1442
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1443
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1444
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1445 1446 1447 1448 1449
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1450

1451
	__SetPageSlab(page);
1452 1453
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1454
		SetPageSlabPfmemalloc(page);
1455

1456 1457 1458 1459 1460 1461 1462 1463
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1464

1465
	return page;
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470
}

/*
 * Interface to system's page release.
 */
1471
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1472
{
1473 1474
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1475

1476
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1477

1478 1479 1480 1481 1482 1483
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1484

1485
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1486
	__ClearPageSlabPfmemalloc(page);
1487
	__ClearPageSlab(page);
1488 1489
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1490

L
Linus Torvalds 已提交
1491 1492
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1493 1494
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1495 1496 1497 1498
}

static void kmem_rcu_free(struct rcu_head *head)
{
1499 1500
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1501

1502 1503 1504 1505
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1506 1507 1508
}

#if DEBUG
1509 1510 1511 1512 1513 1514 1515 1516
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1517 1518

#ifdef CONFIG_DEBUG_PAGEALLOC
1519
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1520
			    unsigned long caller)
L
Linus Torvalds 已提交
1521
{
1522
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1523

1524
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1525

P
Pekka Enberg 已提交
1526
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1527 1528
		return;

P
Pekka Enberg 已提交
1529 1530 1531 1532
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1533 1534 1535 1536 1537 1538 1539
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1540
				*addr++ = svalue;
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545 1546 1547
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1548
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1549
}
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1567 1568
#endif

1569
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1570
{
1571
	int size = cachep->object_size;
1572
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1573 1574

	memset(addr, val, size);
P
Pekka Enberg 已提交
1575
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1581 1582 1583
	unsigned char error = 0;
	int bad_count = 0;

1584
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1585 1586 1587 1588 1589 1590
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1591 1592
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1593 1594 1595 1596

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1597
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1598
#ifdef CONFIG_X86
1599
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1600
#else
1601
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1602 1603 1604
#endif
		}
	}
L
Linus Torvalds 已提交
1605 1606 1607 1608 1609
}
#endif

#if DEBUG

1610
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1616 1617 1618
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1619 1620 1621
	}

	if (cachep->flags & SLAB_STORE_USER) {
1622
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1623 1624
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1625
	}
1626
	realobj = (char *)objp + obj_offset(cachep);
1627
	size = cachep->object_size;
P
Pekka Enberg 已提交
1628
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1629 1630
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1631 1632
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1633 1634 1635 1636
		dump_line(realobj, i, limit);
	}
}

1637
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642
{
	char *realobj;
	int size, i;
	int lines = 0;

1643 1644 1645
	if (is_debug_pagealloc_cache(cachep))
		return;

1646
	realobj = (char *)objp + obj_offset(cachep);
1647
	size = cachep->object_size;
L
Linus Torvalds 已提交
1648

P
Pekka Enberg 已提交
1649
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1650
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1651
		if (i == size - 1)
L
Linus Torvalds 已提交
1652 1653 1654 1655 1656 1657
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1658 1659 1660
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1661 1662 1663
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1664
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1665
			limit = 16;
P
Pekka Enberg 已提交
1666 1667
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1680
		struct page *page = virt_to_head_page(objp);
1681
		unsigned int objnr;
L
Linus Torvalds 已提交
1682

1683
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1684
		if (objnr) {
1685
			objp = index_to_obj(cachep, page, objnr - 1);
1686
			realobj = (char *)objp + obj_offset(cachep);
1687
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1688 1689
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1690
		if (objnr + 1 < cachep->num) {
1691
			objp = index_to_obj(cachep, page, objnr + 1);
1692
			realobj = (char *)objp + obj_offset(cachep);
1693
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698 1699
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1700
#if DEBUG
1701 1702
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1703 1704
{
	int i;
1705 1706 1707 1708 1709 1710

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1711
	for (i = 0; i < cachep->num; i++) {
1712
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1713 1714 1715

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1716
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1717 1718 1719
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1720
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1721
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1722
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1723 1724
		}
	}
1725
}
L
Linus Torvalds 已提交
1726
#else
1727 1728
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1729 1730
{
}
L
Linus Torvalds 已提交
1731 1732
#endif

1733 1734 1735
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1736
 * @page: page pointer being destroyed
1737
 *
W
Wang Sheng-Hui 已提交
1738 1739 1740
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1741
 */
1742
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1743
{
1744
	void *freelist;
1745

1746 1747
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1748 1749 1750
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1751
		kmem_freepages(cachep, page);
1752 1753

	/*
1754
	 * From now on, we don't use freelist
1755 1756 1757
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1758
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1759 1760
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1771
/**
1772 1773 1774 1775 1776 1777
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1778 1779 1780 1781 1782
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1783
static size_t calculate_slab_order(struct kmem_cache *cachep,
1784
				size_t size, unsigned long flags)
1785 1786
{
	size_t left_over = 0;
1787
	int gfporder;
1788

1789
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1790 1791 1792
		unsigned int num;
		size_t remainder;

1793
		num = cache_estimate(gfporder, size, flags, &remainder);
1794 1795
		if (!num)
			continue;
1796

1797 1798 1799 1800
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1801
		if (flags & CFLGS_OFF_SLAB) {
1802 1803 1804 1805 1806 1807 1808 1809
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1810
			/*
1811
			 * Needed to avoid possible looping condition
1812
			 * in cache_grow_begin()
1813
			 */
1814 1815
			if (OFF_SLAB(freelist_cache))
				continue;
1816

1817 1818 1819
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1820
		}
1821

1822
		/* Found something acceptable - save it away */
1823
		cachep->num = num;
1824
		cachep->gfporder = gfporder;
1825 1826
		left_over = remainder;

1827 1828 1829 1830 1831 1832 1833 1834
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1835 1836 1837 1838
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1839
		if (gfporder >= slab_max_order)
1840 1841
			break;

1842 1843 1844
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1845
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1846 1847 1848 1849 1850
			break;
	}
	return left_over;
}

1851 1852 1853 1854 1855 1856 1857 1858
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1859
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1872
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1873
{
1874
	if (slab_state >= FULL)
1875
		return enable_cpucache(cachep, gfp);
1876

1877 1878 1879 1880
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1881
	if (slab_state == DOWN) {
1882 1883
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1884
	} else if (slab_state == PARTIAL) {
1885 1886
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1887
	} else {
1888
		int node;
1889

1890 1891 1892 1893 1894
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1895 1896
		}
	}
1897

1898
	cachep->node[numa_mem_id()]->next_reap =
1899 1900
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1901 1902 1903 1904 1905 1906 1907

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1908
	return 0;
1909 1910
}

J
Joonsoo Kim 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1960 1961 1962 1963 1964 1965 1966 1967
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1968 1969
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
2010
/**
2011
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2012
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2013 2014 2015 2016
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2017
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2031
int
2032
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2033
{
2034
	size_t ralign = BYTES_PER_WORD;
2035
	gfp_t gfp;
2036
	int err;
2037
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2047 2048
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2049
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2055 2056
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2057 2058 2059
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2060 2061 2062
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2063 2064
	}

D
David Woodhouse 已提交
2065 2066 2067 2068 2069 2070 2071
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2072

2073
	/* 3) caller mandated alignment */
2074 2075
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2076
	}
2077 2078
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2079
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2080
	/*
2081
	 * 4) Store it.
L
Linus Torvalds 已提交
2082
	 */
2083
	cachep->align = ralign;
2084 2085 2086 2087
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2088

2089 2090 2091 2092 2093
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2094 2095
#if DEBUG

2096 2097 2098 2099
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2100 2101
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2102 2103
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2104 2105
	}
	if (flags & SLAB_STORE_USER) {
2106
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2107 2108
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2109
		 */
D
David Woodhouse 已提交
2110 2111 2112 2113
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2114
	}
2115 2116
#endif

A
Alexander Potapenko 已提交
2117 2118
	kasan_cache_create(cachep, &size, &flags);

2119 2120 2121 2122 2123 2124 2125 2126 2127
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2128 2129 2130 2131 2132 2133 2134
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2135
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2147 2148 2149
	}
#endif

2150 2151 2152 2153 2154
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2155
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2156
		flags |= CFLGS_OFF_SLAB;
2157
		goto done;
2158
	}
L
Linus Torvalds 已提交
2159

2160 2161
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2162

2163
	return -E2BIG;
L
Linus Torvalds 已提交
2164

2165 2166
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2167
	cachep->flags = flags;
2168
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2169
	if (flags & SLAB_CACHE_DMA)
2170
		cachep->allocflags |= GFP_DMA;
2171
	cachep->size = size;
2172
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2187 2188
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2189
	}
L
Linus Torvalds 已提交
2190

2191 2192
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2193
		__kmem_cache_release(cachep);
2194
		return err;
2195
	}
L
Linus Torvalds 已提交
2196

2197
	return 0;
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2211 2212 2213 2214 2215
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2216
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2217 2218 2219
{
#ifdef CONFIG_SMP
	check_irq_off();
2220
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2221 2222
#endif
}
2223

2224
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2225 2226 2227
{
#ifdef CONFIG_SMP
	check_irq_off();
2228
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2229 2230 2231
#endif
}

L
Linus Torvalds 已提交
2232 2233 2234
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2235
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2236
#define check_spinlock_acquired(x) do { } while(0)
2237
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2238 2239
#endif

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2256

L
Linus Torvalds 已提交
2257 2258
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2259
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2260
	struct array_cache *ac;
2261
	int node = numa_mem_id();
2262
	struct kmem_cache_node *n;
2263
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2264 2265

	check_irq_off();
2266
	ac = cpu_cache_get(cachep);
2267 2268
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2269
	free_block(cachep, ac->entry, ac->avail, node, &list);
2270
	spin_unlock(&n->list_lock);
2271
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2272 2273 2274
	ac->avail = 0;
}

2275
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2276
{
2277
	struct kmem_cache_node *n;
2278
	int node;
2279
	LIST_HEAD(list);
2280

2281
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2282
	check_irq_on();
2283 2284
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2285
			drain_alien_cache(cachep, n->alien);
2286

2287 2288 2289 2290 2291 2292 2293
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2294 2295
}

2296 2297 2298 2299 2300 2301 2302
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2303
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2304
{
2305 2306
	struct list_head *p;
	int nr_freed;
2307
	struct page *page;
L
Linus Torvalds 已提交
2308

2309
	nr_freed = 0;
2310
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2311

2312 2313 2314 2315
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2316 2317
			goto out;
		}
L
Linus Torvalds 已提交
2318

2319 2320
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2321
		n->num_slabs--;
2322 2323 2324 2325
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2326 2327
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2328
		slab_destroy(cache, page);
2329
		nr_freed++;
L
Linus Torvalds 已提交
2330
	}
2331 2332
out:
	return nr_freed;
L
Linus Torvalds 已提交
2333 2334
}

2335
int __kmem_cache_shrink(struct kmem_cache *cachep)
2336
{
2337 2338
	int ret = 0;
	int node;
2339
	struct kmem_cache_node *n;
2340 2341 2342 2343

	drain_cpu_caches(cachep);

	check_irq_on();
2344
	for_each_kmem_cache_node(cachep, node, n) {
2345
		drain_freelist(cachep, n, INT_MAX);
2346

2347 2348
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2349 2350 2351 2352
	}
	return (ret ? 1 : 0);
}

2353
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2354
{
2355
	return __kmem_cache_shrink(cachep);
2356 2357 2358
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2359
{
2360
	int i;
2361
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2362

T
Thomas Garnier 已提交
2363 2364
	cache_random_seq_destroy(cachep);

2365
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2366

2367
	/* NUMA: free the node structures */
2368 2369 2370 2371 2372
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2373
	}
L
Linus Torvalds 已提交
2374 2375
}

2376 2377
/*
 * Get the memory for a slab management obj.
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2389
 */
2390
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2391 2392
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2393
{
2394
	void *freelist;
2395
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2396

2397 2398 2399
	page->s_mem = addr + colour_off;
	page->active = 0;

2400 2401 2402
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2403
		/* Slab management obj is off-slab. */
2404
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2405
					      local_flags, nodeid);
2406
		if (!freelist)
L
Linus Torvalds 已提交
2407 2408
			return NULL;
	} else {
2409 2410 2411
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2412
	}
2413

2414
	return freelist;
L
Linus Torvalds 已提交
2415 2416
}

2417
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2418
{
2419
	return ((freelist_idx_t *)page->freelist)[idx];
2420 2421 2422
}

static inline void set_free_obj(struct page *page,
2423
					unsigned int idx, freelist_idx_t val)
2424
{
2425
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2426 2427
}

2428
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2429
{
2430
#if DEBUG
L
Linus Torvalds 已提交
2431 2432 2433
	int i;

	for (i = 0; i < cachep->num; i++) {
2434
		void *objp = index_to_obj(cachep, page, i);
2435

L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442 2443
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2444 2445 2446
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2447
		 */
A
Alexander Potapenko 已提交
2448 2449 2450
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2451
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2452 2453 2454
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2455 2456 2457

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2458
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2459
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2460
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2461
		}
2462 2463 2464 2465 2466
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2467
	}
L
Linus Torvalds 已提交
2468
#endif
2469 2470
}

T
Thomas Garnier 已提交
2471 2472 2473 2474 2475
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2476
		unsigned int *list;
T
Thomas Garnier 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		unsigned int count;
		unsigned int rand;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2495
	rand = get_random_int();
T
Thomas Garnier 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
		state->pos = 0;
		state->rand = rand;
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
	return (state->list[state->pos++] + state->rand) % state->count;
}

2517 2518 2519 2520 2521 2522 2523
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2524 2525 2526 2527 2528 2529
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2530
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2555 2556 2557 2558 2559 2560 2561 2562 2563
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2582 2583 2584 2585
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2586
	void *objp;
T
Thomas Garnier 已提交
2587
	bool shuffled;
2588 2589 2590

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2591 2592 2593 2594
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2595 2596 2597 2598
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2599
	for (i = 0; i < cachep->num; i++) {
2600 2601 2602
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2603
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2604 2605 2606 2607 2608
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2609

T
Thomas Garnier 已提交
2610 2611
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2612 2613 2614
	}
}

2615
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2616
{
2617
	void *objp;
2618

2619
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2620
	page->active++;
2621

2622 2623 2624 2625 2626
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2627 2628 2629
	return objp;
}

2630 2631
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2632
{
2633
	unsigned int objnr = obj_to_index(cachep, page, objp);
2634
#if DEBUG
J
Joonsoo Kim 已提交
2635
	unsigned int i;
2636 2637

	/* Verify double free bug */
2638
	for (i = page->active; i < cachep->num; i++) {
2639
		if (get_free_obj(page, i) == objnr) {
2640
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2641
			       cachep->name, objp);
2642 2643
			BUG();
		}
2644 2645
	}
#endif
2646
	page->active--;
2647 2648 2649
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2650
	set_free_obj(page, page->active, objnr);
2651 2652
}

2653 2654 2655
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2656
 * virtual address for kfree, ksize, and slab debugging.
2657
 */
2658
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2659
			   void *freelist)
L
Linus Torvalds 已提交
2660
{
2661
	page->slab_cache = cache;
2662
	page->freelist = freelist;
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2669 2670
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2671
{
2672
	void *freelist;
P
Pekka Enberg 已提交
2673 2674
	size_t offset;
	gfp_t local_flags;
2675
	int page_node;
2676
	struct kmem_cache_node *n;
2677
	struct page *page;
L
Linus Torvalds 已提交
2678

A
Andrew Morton 已提交
2679 2680 2681
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2682
	 */
2683
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2684
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2685 2686 2687 2688
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2689
	}
C
Christoph Lameter 已提交
2690
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2691 2692

	check_irq_off();
2693
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2694 2695
		local_irq_enable();

A
Andrew Morton 已提交
2696 2697 2698
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2699
	 */
2700
	page = kmem_getpages(cachep, local_flags, nodeid);
2701
	if (!page)
L
Linus Torvalds 已提交
2702 2703
		goto failed;

2704 2705
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2718
	/* Get slab management. */
2719
	freelist = alloc_slabmgmt(cachep, page, offset,
2720
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2721
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2722 2723
		goto opps1;

2724
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2725

A
Alexander Potapenko 已提交
2726
	kasan_poison_slab(page);
2727
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2728

2729
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2730 2731
		local_irq_disable();

2732 2733
	return page;

A
Andrew Morton 已提交
2734
opps1:
2735
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2736
failed:
2737
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2738
		local_irq_disable();
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
	if (!page->active)
		list_add_tail(&page->lru, &(n->slabs_free));
	else
		fixup_slab_list(cachep, n, page, &list);
2760 2761

	n->num_slabs++;
2762 2763 2764 2765 2766
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2779
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2780 2781
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2782 2783 2784
	}
}

2785 2786
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2787
	unsigned long long redzone1, redzone2;
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2803 2804
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2805 2806
}

2807
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2808
				   unsigned long caller)
L
Linus Torvalds 已提交
2809 2810
{
	unsigned int objnr;
2811
	struct page *page;
L
Linus Torvalds 已提交
2812

2813 2814
	BUG_ON(virt_to_cache(objp) != cachep);

2815
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2816
	kfree_debugcheck(objp);
2817
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2818 2819

	if (cachep->flags & SLAB_RED_ZONE) {
2820
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2821 2822 2823
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2824 2825
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2826
		*dbg_userword(cachep, objp) = (void *)caller;
2827
	}
L
Linus Torvalds 已提交
2828

2829
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2830 2831

	BUG_ON(objnr >= cachep->num);
2832
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2833 2834 2835

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2836
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2861
static inline void fixup_slab_list(struct kmem_cache *cachep,
2862 2863
				struct kmem_cache_node *n, struct page *page,
				void **list)
2864 2865 2866
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2867
	if (page->active == cachep->num) {
2868
		list_add(&page->lru, &n->slabs_full);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2882 2883 2884
		list_add(&page->lru, &n->slabs_partial);
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

2936 2937 2938
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

2939 2940 2941
	return page;
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2994
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2995 2996
{
	int batchcount;
2997
	struct kmem_cache_node *n;
2998
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2999
	int node;
3000
	void *list = NULL;
3001
	struct page *page;
P
Pekka Enberg 已提交
3002

L
Linus Torvalds 已提交
3003
	check_irq_off();
3004
	node = numa_mem_id();
3005

3006
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3007 3008
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3009 3010 3011 3012
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3013 3014 3015
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3016
	n = get_node(cachep, node);
3017

3018
	BUG_ON(ac->avail > 0 || !n);
3019 3020 3021 3022
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3023
	spin_lock(&n->list_lock);
3024
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3025

3026
	/* See if we can refill from the shared array */
3027 3028
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3029
		goto alloc_done;
3030
	}
3031

L
Linus Torvalds 已提交
3032 3033
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3034
		page = get_first_slab(n, false);
3035 3036
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3037 3038

		check_spinlock_acquired(cachep);
3039

3040
		batchcount = alloc_block(cachep, ac, page, batchcount);
3041
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3042 3043
	}

A
Andrew Morton 已提交
3044
must_grow:
3045
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3046
alloc_done:
3047
	spin_unlock(&n->list_lock);
3048
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3049

3050
direct_grow:
L
Linus Torvalds 已提交
3051
	if (unlikely(!ac->avail)) {
3052 3053 3054 3055 3056 3057 3058 3059
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3060
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3061

3062 3063 3064 3065
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3066
		ac = cpu_cache_get(cachep);
3067 3068 3069
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3070

3071
		if (!ac->avail)
L
Linus Torvalds 已提交
3072 3073 3074
			return NULL;
	}
	ac->touched = 1;
3075

3076
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3077 3078
}

A
Andrew Morton 已提交
3079 3080
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3081
{
3082
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3083 3084 3085
}

#if DEBUG
A
Andrew Morton 已提交
3086
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3087
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3088
{
P
Pekka Enberg 已提交
3089
	if (!objp)
L
Linus Torvalds 已提交
3090
		return objp;
P
Pekka Enberg 已提交
3091
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3092
		check_poison_obj(cachep, objp);
3093
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3094 3095 3096
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3097
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3098 3099

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3100 3101
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3102
			slab_error(cachep, "double free, or memory outside object was overwritten");
3103 3104 3105
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3106 3107 3108 3109
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3110

3111
	objp += obj_offset(cachep);
3112
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3113
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3114 3115
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3116
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3117
		       objp, (int)ARCH_SLAB_MINALIGN);
3118
	}
L
Linus Torvalds 已提交
3119 3120 3121 3122 3123 3124
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3125
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3126
{
P
Pekka Enberg 已提交
3127
	void *objp;
L
Linus Torvalds 已提交
3128 3129
	struct array_cache *ac;

3130
	check_irq_off();
3131

3132
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3133 3134
	if (likely(ac->avail)) {
		ac->touched = 1;
3135
		objp = ac->entry[--ac->avail];
3136

3137 3138
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3139
	}
3140 3141

	STATS_INC_ALLOCMISS(cachep);
3142
	objp = cache_alloc_refill(cachep, flags);
3143 3144 3145 3146 3147 3148 3149
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3150 3151 3152 3153 3154
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3155 3156
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3157 3158 3159
	return objp;
}

3160
#ifdef CONFIG_NUMA
3161
/*
3162
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3163 3164 3165 3166 3167 3168 3169 3170
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3171
	if (in_interrupt() || (flags & __GFP_THISNODE))
3172
		return NULL;
3173
	nid_alloc = nid_here = numa_mem_id();
3174
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3175
		nid_alloc = cpuset_slab_spread_node();
3176
	else if (current->mempolicy)
3177
		nid_alloc = mempolicy_slab_node();
3178
	if (nid_alloc != nid_here)
3179
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3180 3181 3182
	return NULL;
}

3183 3184
/*
 * Fallback function if there was no memory available and no objects on a
3185
 * certain node and fall back is permitted. First we scan all the
3186
 * available node for available objects. If that fails then we
3187 3188 3189
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3190
 */
3191
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3192
{
3193
	struct zonelist *zonelist;
3194
	struct zoneref *z;
3195 3196
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3197
	void *obj = NULL;
3198
	struct page *page;
3199
	int nid;
3200
	unsigned int cpuset_mems_cookie;
3201 3202 3203 3204

	if (flags & __GFP_THISNODE)
		return NULL;

3205
retry_cpuset:
3206
	cpuset_mems_cookie = read_mems_allowed_begin();
3207
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3208

3209 3210 3211 3212 3213
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3214 3215
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3216

3217
		if (cpuset_zone_allowed(zone, flags) &&
3218 3219
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3220
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3221
					gfp_exact_node(flags), nid);
3222 3223 3224
				if (obj)
					break;
		}
3225 3226
	}

3227
	if (!obj) {
3228 3229 3230 3231 3232 3233
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3234 3235 3236 3237
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3238 3239
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3240

3241
			/*
3242 3243
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3244
			 */
3245 3246
			if (!obj)
				goto retry;
3247
		}
3248
	}
3249

3250
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3251
		goto retry_cpuset;
3252 3253 3254
	return obj;
}

3255 3256
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3257
 */
3258
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3259
				int nodeid)
3260
{
3261
	struct page *page;
3262
	struct kmem_cache_node *n;
3263
	void *obj = NULL;
3264
	void *list = NULL;
P
Pekka Enberg 已提交
3265

3266
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3267
	n = get_node(cachep, nodeid);
3268
	BUG_ON(!n);
P
Pekka Enberg 已提交
3269

3270
	check_irq_off();
3271
	spin_lock(&n->list_lock);
3272
	page = get_first_slab(n, false);
3273 3274
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3275 3276 3277 3278 3279 3280 3281

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3282
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3283

3284
	obj = slab_get_obj(cachep, page);
3285
	n->free_objects--;
P
Pekka Enberg 已提交
3286

3287
	fixup_slab_list(cachep, n, page, &list);
3288

3289
	spin_unlock(&n->list_lock);
3290
	fixup_objfreelist_debug(cachep, &list);
3291
	return obj;
3292

A
Andrew Morton 已提交
3293
must_grow:
3294
	spin_unlock(&n->list_lock);
3295
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3296 3297 3298 3299
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3300
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3301

3302
	return obj ? obj : fallback_alloc(cachep, flags);
3303
}
3304 3305

static __always_inline void *
3306
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3307
		   unsigned long caller)
3308 3309 3310
{
	unsigned long save_flags;
	void *ptr;
3311
	int slab_node = numa_mem_id();
3312

3313
	flags &= gfp_allowed_mask;
3314 3315
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3316 3317
		return NULL;

3318 3319 3320
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3321
	if (nodeid == NUMA_NO_NODE)
3322
		nodeid = slab_node;
3323

3324
	if (unlikely(!get_node(cachep, nodeid))) {
3325 3326 3327 3328 3329
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3330
	if (nodeid == slab_node) {
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3347 3348
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3349

3350
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3351 3352 3353 3354 3355 3356 3357 3358
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3359
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3370 3371
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3387
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3388 3389 3390 3391
{
	unsigned long save_flags;
	void *objp;

3392
	flags &= gfp_allowed_mask;
3393 3394
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3395 3396
		return NULL;

3397 3398 3399 3400 3401 3402 3403
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3404 3405
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3406

3407
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3408 3409
	return objp;
}
3410 3411

/*
3412
 * Caller needs to acquire correct kmem_cache_node's list_lock
3413
 * @list: List of detached free slabs should be freed by caller
3414
 */
3415 3416
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3417 3418
{
	int i;
3419
	struct kmem_cache_node *n = get_node(cachep, node);
3420 3421 3422
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3423 3424

	for (i = 0; i < nr_objects; i++) {
3425
		void *objp;
3426
		struct page *page;
L
Linus Torvalds 已提交
3427

3428 3429
		objp = objpp[i];

3430 3431
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3432
		check_spinlock_acquired_node(cachep, node);
3433
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3434 3435 3436
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3437 3438 3439
		if (page->active == 0)
			list_add(&page->lru, &n->slabs_free);
		else {
L
Linus Torvalds 已提交
3440 3441 3442 3443
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3444
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3445 3446
		}
	}
3447 3448 3449 3450 3451

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3452
		list_move(&page->lru, list);
3453
		n->num_slabs--;
3454
	}
L
Linus Torvalds 已提交
3455 3456
}

3457
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3458 3459
{
	int batchcount;
3460
	struct kmem_cache_node *n;
3461
	int node = numa_mem_id();
3462
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3463 3464

	batchcount = ac->batchcount;
3465

L
Linus Torvalds 已提交
3466
	check_irq_off();
3467
	n = get_node(cachep, node);
3468 3469 3470
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3471
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3472 3473 3474
		if (max) {
			if (batchcount > max)
				batchcount = max;
3475
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3476
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3477 3478 3479 3480 3481
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3482
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3483
free_done:
L
Linus Torvalds 已提交
3484 3485 3486
#if STATS
	{
		int i = 0;
3487
		struct page *page;
L
Linus Torvalds 已提交
3488

3489
		list_for_each_entry(page, &n->slabs_free, lru) {
3490
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495 3496

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3497
	spin_unlock(&n->list_lock);
3498
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3499
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3500
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3501 3502 3503
}

/*
A
Andrew Morton 已提交
3504 3505
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3506
 */
3507
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3508
				unsigned long caller)
L
Linus Torvalds 已提交
3509
{
3510 3511 3512 3513 3514 3515
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3516

3517 3518 3519 3520
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3521

L
Linus Torvalds 已提交
3522
	check_irq_off();
3523
	kmemleak_free_recursive(objp, cachep->flags);
3524
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3525

3526
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3527

3528 3529 3530 3531 3532 3533 3534
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3535
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3536 3537
		return;

3538
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3544

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3565
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3566
{
3567
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3568

3569
	kasan_slab_alloc(cachep, ret, flags);
3570
	trace_kmem_cache_alloc(_RET_IP_, ret,
3571
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3572 3573

	return ret;
L
Linus Torvalds 已提交
3574 3575 3576
}
EXPORT_SYMBOL(kmem_cache_alloc);

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3587
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3588
			  void **p)
3589
{
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3608 3609
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3620
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3621 3622 3623
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3624 3625 3626
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3627
#ifdef CONFIG_TRACING
3628
void *
3629
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3630
{
3631 3632
	void *ret;

3633
	ret = slab_alloc(cachep, flags, _RET_IP_);
3634

3635
	kasan_kmalloc(cachep, ret, size, flags);
3636
	trace_kmalloc(_RET_IP_, ret,
3637
		      size, cachep->size, flags);
3638
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3639
}
3640
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3641 3642
#endif

L
Linus Torvalds 已提交
3643
#ifdef CONFIG_NUMA
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3655 3656
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3657
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3658

3659
	kasan_slab_alloc(cachep, ret, flags);
3660
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3661
				    cachep->object_size, cachep->size,
3662
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3663 3664

	return ret;
3665
}
L
Linus Torvalds 已提交
3666 3667
EXPORT_SYMBOL(kmem_cache_alloc_node);

3668
#ifdef CONFIG_TRACING
3669
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3670
				  gfp_t flags,
3671 3672
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3673
{
3674 3675
	void *ret;

3676
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3677 3678

	kasan_kmalloc(cachep, ret, size, flags);
3679
	trace_kmalloc_node(_RET_IP_, ret,
3680
			   size, cachep->size,
3681 3682
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3683
}
3684
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3685 3686
#endif

3687
static __always_inline void *
3688
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3689
{
3690
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3691
	void *ret;
3692

3693
	cachep = kmalloc_slab(size, flags);
3694 3695
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3696
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3697
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3698 3699

	return ret;
3700
}
3701 3702 3703

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3704
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3705
}
3706
EXPORT_SYMBOL(__kmalloc_node);
3707 3708

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709
		int node, unsigned long caller)
3710
{
3711
	return __do_kmalloc_node(size, flags, node, caller);
3712 3713 3714
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3715 3716

/**
3717
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3718
 * @size: how many bytes of memory are required.
3719
 * @flags: the type of memory to allocate (see kmalloc).
3720
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3721
 */
3722
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723
					  unsigned long caller)
L
Linus Torvalds 已提交
3724
{
3725
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3726
	void *ret;
L
Linus Torvalds 已提交
3727

3728
	cachep = kmalloc_slab(size, flags);
3729 3730
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3731
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3732

3733
	kasan_kmalloc(cachep, ret, size, flags);
3734
	trace_kmalloc(caller, ret,
3735
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3736 3737

	return ret;
3738 3739 3740 3741
}

void *__kmalloc(size_t size, gfp_t flags)
{
3742
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3743 3744 3745
}
EXPORT_SYMBOL(__kmalloc);

3746
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747
{
3748
	return __do_kmalloc(size, flags, caller);
3749 3750
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3751

L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3760
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3761 3762
{
	unsigned long flags;
3763 3764 3765
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3766 3767

	local_irq_save(flags);
3768
	debug_check_no_locks_freed(objp, cachep->object_size);
3769
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3770
		debug_check_no_obj_freed(objp, cachep->object_size);
3771
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3772
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3773

3774
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3775 3776 3777
}
EXPORT_SYMBOL(kmem_cache_free);

3778 3779 3780 3781 3782 3783 3784 3785 3786
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3787 3788 3789 3790
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3804 3805 3806 3807
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3808 3809
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3810 3811 3812 3813 3814
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3815
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3816 3817
	unsigned long flags;

3818 3819
	trace_kfree(_RET_IP_, objp);

3820
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3821 3822 3823
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3824
	c = virt_to_cache(objp);
3825 3826 3827
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3828
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3829 3830 3831 3832
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3833
/*
3834
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3835
 */
3836
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3837
{
3838
	int ret;
3839
	int node;
3840
	struct kmem_cache_node *n;
3841

3842
	for_each_online_node(node) {
3843 3844
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3845 3846 3847
			goto fail;

	}
3848

3849
	return 0;
3850

A
Andrew Morton 已提交
3851
fail:
3852
	if (!cachep->list.next) {
3853 3854 3855
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3856 3857
			n = get_node(cachep, node);
			if (n) {
3858 3859 3860
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3861
				cachep->node[node] = NULL;
3862 3863 3864 3865
			}
			node--;
		}
	}
3866
	return -ENOMEM;
3867 3868
}

3869
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3870
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3871
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3872
{
3873 3874
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3875

3876 3877
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3878 3879
		return -ENOMEM;

3880 3881 3882
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3883

L
Linus Torvalds 已提交
3884 3885 3886
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3887
	cachep->shared = shared;
L
Linus Torvalds 已提交
3888

3889
	if (!prev)
3890
		goto setup_node;
3891 3892

	for_each_online_cpu(cpu) {
3893
		LIST_HEAD(list);
3894 3895
		int node;
		struct kmem_cache_node *n;
3896
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3897

3898
		node = cpu_to_mem(cpu);
3899 3900
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3901
		free_block(cachep, ac->entry, ac->avail, node, &list);
3902
		spin_unlock_irq(&n->list_lock);
3903
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3904
	}
3905 3906
	free_percpu(prev);

3907 3908
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3909 3910
}

G
Glauber Costa 已提交
3911 3912 3913 3914
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3915
	struct kmem_cache *c;
G
Glauber Costa 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3925 3926 3927 3928
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3929 3930 3931 3932 3933
	}

	return ret;
}

3934
/* Called with slab_mutex held always */
3935
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3936 3937
{
	int err;
G
Glauber Costa 已提交
3938 3939 3940 3941
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3942
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3943 3944 3945
	if (err)
		goto end;

G
Glauber Costa 已提交
3946 3947 3948 3949 3950 3951
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3952

G
Glauber Costa 已提交
3953 3954
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3955 3956
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3957 3958
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3959
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3960 3961 3962 3963
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3964
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3965
		limit = 1;
3966
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3967
		limit = 8;
3968
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3969
		limit = 24;
3970
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3971 3972 3973 3974
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3975 3976
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982 3983 3984
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3985
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3986 3987 3988
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3989 3990 3991
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3992 3993 3994 3995
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3996 3997 3998
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3999
end:
L
Linus Torvalds 已提交
4000
	if (err)
4001
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4002
		       cachep->name, -err);
4003
	return err;
L
Linus Torvalds 已提交
4004 4005
}

4006
/*
4007 4008
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4009
 * if drain_array() is used on the shared array.
4010
 */
4011
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4012
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4013
{
4014
	LIST_HEAD(list);
4015 4016 4017

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4018

4019 4020
	if (!ac || !ac->avail)
		return;
4021 4022

	if (ac->touched) {
L
Linus Torvalds 已提交
4023
		ac->touched = 0;
4024
		return;
L
Linus Torvalds 已提交
4025
	}
4026 4027 4028 4029 4030 4031

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4032 4033 4034 4035
}

/**
 * cache_reap - Reclaim memory from caches.
4036
 * @w: work descriptor
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4043 4044
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4045
 */
4046
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4047
{
4048
	struct kmem_cache *searchp;
4049
	struct kmem_cache_node *n;
4050
	int node = numa_mem_id();
4051
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4052

4053
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4054
		/* Give up. Setup the next iteration. */
4055
		goto out;
L
Linus Torvalds 已提交
4056

4057
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4058 4059
		check_irq_on();

4060
		/*
4061
		 * We only take the node lock if absolutely necessary and we
4062 4063 4064
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4065
		n = get_node(searchp, node);
4066

4067
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4068

4069
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4070

4071 4072 4073 4074
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4075
		if (time_after(n->next_reap, jiffies))
4076
			goto next;
L
Linus Torvalds 已提交
4077

4078
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4079

4080
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4081

4082 4083
		if (n->free_touched)
			n->free_touched = 0;
4084 4085
		else {
			int freed;
L
Linus Torvalds 已提交
4086

4087
			freed = drain_freelist(searchp, n, (n->free_limit +
4088 4089 4090
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4091
next:
L
Linus Torvalds 已提交
4092 4093 4094
		cond_resched();
	}
	check_irq_on();
4095
	mutex_unlock(&slab_mutex);
4096
	next_reap_node();
4097
out:
A
Andrew Morton 已提交
4098
	/* Set up the next iteration */
4099
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4100 4101
}

4102
#ifdef CONFIG_SLABINFO
4103
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4104
{
4105
	struct page *page;
P
Pekka Enberg 已提交
4106 4107 4108 4109
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4110 4111
	unsigned long num_slabs_partial = 0, num_slabs_free = 0;
	unsigned long num_slabs_full = 0;
4112
	const char *name;
L
Linus Torvalds 已提交
4113
	char *error = NULL;
4114
	int node;
4115
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4116 4117 4118

	active_objs = 0;
	num_slabs = 0;
4119
	for_each_kmem_cache_node(cachep, node, n) {
4120

4121
		check_irq_on();
4122
		spin_lock_irq(&n->list_lock);
4123

4124 4125
		num_slabs += n->num_slabs;

4126 4127
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4128
				error = "slabs_partial accounting error";
4129
			if (!page->active && !error)
4130
				error = "slabs_partial accounting error";
4131
			active_objs += page->active;
4132
			num_slabs_partial++;
4133
		}
4134

4135 4136
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4137
				error = "slabs_free accounting error";
4138
			num_slabs_free++;
4139
		}
4140

4141 4142 4143
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4144

4145
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4146
	}
P
Pekka Enberg 已提交
4147
	num_objs = num_slabs * cachep->num;
4148 4149 4150 4151
	active_slabs = num_slabs - num_slabs_free;
	num_slabs_full = num_slabs - (num_slabs_partial + num_slabs_free);
	active_objs += (num_slabs_full * cachep->num);

4152
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4153 4154
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4155
	name = cachep->name;
L
Linus Torvalds 已提交
4156
	if (error)
4157
		pr_err("slab: cache %s error: %s\n", name, error);
L
Linus Torvalds 已提交
4158

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4173
#if STATS
4174
	{			/* node stats */
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4182
		unsigned long node_frees = cachep->node_frees;
4183
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4184

J
Joe Perches 已提交
4185
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4186 4187 4188
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4198
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4211
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4212
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4213
{
P
Pekka Enberg 已提交
4214
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4215
	int limit, batchcount, shared, res;
4216
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4217

L
Linus Torvalds 已提交
4218 4219 4220 4221
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4222
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4233
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4234
	res = -EINVAL;
4235
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4236
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4237 4238
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4239
				res = 0;
L
Linus Torvalds 已提交
4240
			} else {
4241
				res = do_tune_cpucache(cachep, limit,
4242 4243
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4244 4245 4246 4247
			}
			break;
		}
	}
4248
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4249 4250 4251 4252
	if (res >= 0)
		res = count;
	return res;
}
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4286 4287
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4288 4289
{
	void *p;
4290 4291
	int i, j;
	unsigned long v;
4292

4293 4294
	if (n[0] == n[1])
		return;
4295
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4306
			continue;
4307

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4318 4319 4320 4321 4322 4323 4324 4325
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4326
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4327

4328
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4329
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4330
		if (modname[0])
4331 4332 4333 4334 4335 4336 4337 4338 4339
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4340
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4341
	struct page *page;
4342
	struct kmem_cache_node *n;
4343
	const char *name;
4344
	unsigned long *x = m->private;
4345 4346 4347 4348 4349 4350 4351 4352
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4364

4365
		for_each_kmem_cache_node(cachep, node, n) {
4366

4367 4368
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4369

4370 4371 4372 4373 4374 4375 4376
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4377 4378

	name = cachep->name;
4379
	if (x[0] == x[1]) {
4380
		/* Increase the buffer size */
4381
		mutex_unlock(&slab_mutex);
4382
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4383 4384
		if (!m->private) {
			/* Too bad, we are really out */
4385
			m->private = x;
4386
			mutex_lock(&slab_mutex);
4387 4388
			return -ENOMEM;
		}
4389 4390
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4391
		mutex_lock(&slab_mutex);
4392 4393 4394 4395
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4396 4397 4398
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4399 4400
		seq_putc(m, '\n');
	}
4401

4402 4403 4404
	return 0;
}

4405
static const struct seq_operations slabstats_op = {
4406
	.start = slab_start,
4407 4408
	.next = slab_next,
	.stop = slab_stop,
4409 4410
	.show = leaks_show,
};
4411 4412 4413

static int slabstats_open(struct inode *inode, struct file *file)
{
4414 4415 4416 4417 4418 4419 4420 4421 4422
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4437
#endif
4438 4439 4440
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4441 4442
#endif

K
Kees Cook 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
		return NULL;

	return cachep->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4485
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4486
{
A
Alexander Potapenko 已提交
4487 4488
	size_t size;

4489 4490
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4491
		return 0;
L
Linus Torvalds 已提交
4492

A
Alexander Potapenko 已提交
4493 4494 4495 4496
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4497
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4498 4499

	return size;
L
Linus Torvalds 已提交
4500
}
K
Kirill A. Shutemov 已提交
4501
EXPORT_SYMBOL(ksize);