mmu.c 155.0 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/sched/signal.h>
40
#include <linux/uaccess.h>
41
#include <linux/hash.h>
42
#include <linux/kern_levels.h>
A
Avi Kivity 已提交
43

A
Avi Kivity 已提交
44
#include <asm/page.h>
45
#include <asm/pat.h>
A
Avi Kivity 已提交
46
#include <asm/cmpxchg.h>
47
#include <asm/io.h>
48
#include <asm/vmx.h>
49
#include <asm/kvm_page_track.h>
50
#include "trace.h"
A
Avi Kivity 已提交
51

52 53 54 55 56 57 58
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
59
bool tdp_enabled = false;
60

61 62 63 64
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
65 66 67
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
68
};
69

70
#undef MMU_DEBUG
71 72

#ifdef MMU_DEBUG
73 74
static bool dbg = 0;
module_param(dbg, bool, 0644);
75 76 77

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
#define MMU_WARN_ON(x) WARN_ON(x)
79 80 81
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
82
#define MMU_WARN_ON(x) do { } while (0)
83
#endif
A
Avi Kivity 已提交
84

85 86
#define PTE_PREFETCH_NUM		8

87
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
88 89 90 91 92
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
93
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
94 95 96 97 98 99 100 101

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
102
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
103

104 105 106
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
107 108 109 110 111

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


112
#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
A
Avi Kivity 已提交
113 114
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 116 117 118 119 120
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121 122 123 124

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 126 127
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128

129
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
131

132 133 134 135 136
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

137 138 139 140
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

141 142
#include <trace/events/kvm.h>

143 144 145
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

146 147
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148

149 150
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

151 152 153
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

168 169 170
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
171 172
};

173 174 175 176
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
177
	int level;
178 179 180
	unsigned index;
};

181 182 183 184 185 186 187 188 189 190 191
static const union kvm_mmu_page_role mmu_base_role_mask = {
	.cr0_wp = 1,
	.cr4_pae = 1,
	.nxe = 1,
	.smep_andnot_wp = 1,
	.smap_andnot_wp = 1,
	.smm = 1,
	.guest_mode = 1,
	.ad_disabled = 1,
};

192 193 194 195 196 197 198
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
199 200 201 202
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

203 204 205 206 207 208
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

209
static struct kmem_cache *pte_list_desc_cache;
210
static struct kmem_cache *mmu_page_header_cache;
211
static struct percpu_counter kvm_total_used_mmu_pages;
212

S
Sheng Yang 已提交
213 214 215 216 217
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
218
static u64 __read_mostly shadow_mmio_mask;
219
static u64 __read_mostly shadow_mmio_value;
220
static u64 __read_mostly shadow_present_mask;
221
static u64 __read_mostly shadow_me_mask;
222

223
/*
224 225 226
 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 * tracking.
227 228 229 230 231 232 233 234 235 236 237 238 239 240
 */
static u64 __read_mostly shadow_acc_track_mask;
static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

241 242 243 244 245 246 247 248 249 250 251
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

252 253 254 255 256 257 258 259 260 261 262
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;


263
static void mmu_spte_set(u64 *sptep, u64 spte);
264 265
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
266

267
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
268
{
269 270
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
271
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
272 273 274
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

static inline bool spte_ad_enabled(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return !(spte & shadow_acc_track_value);
}

static inline u64 spte_shadow_accessed_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

298 299
static inline bool is_access_track_spte(u64 spte)
{
300
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
301 302
}

303
/*
304 305 306 307 308 309 310
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
311
 */
312
#define MMIO_SPTE_GEN_LOW_SHIFT		2
313 314
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

315 316 317
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
318
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
319 320 321 322 323

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
324
	WARN_ON(gen & ~MMIO_GEN_MASK);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

342
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
343
{
344
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
345 346
}

347
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
348
			   unsigned access)
349
{
350
	unsigned int gen = kvm_current_mmio_generation(vcpu);
351
	u64 mask = generation_mmio_spte_mask(gen);
352
	u64 gpa = gfn << PAGE_SHIFT;
353

354
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
355 356 357 358
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
359

360
	trace_mark_mmio_spte(sptep, gfn, access, gen);
361
	mmu_spte_set(sptep, mask);
362 363 364 365
}

static bool is_mmio_spte(u64 spte)
{
366
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
367 368 369 370
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
371
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
372 373 374 375 376

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
377 378 379 380
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
381
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
382
	return (spte & ~mask) & ~PAGE_MASK;
383 384
}

385
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
386
			  kvm_pfn_t pfn, unsigned access)
387 388
{
	if (unlikely(is_noslot_pfn(pfn))) {
389
		mark_mmio_spte(vcpu, sptep, gfn, access);
390 391 392 393 394
		return true;
	}

	return false;
}
395

396
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
397
{
398 399
	unsigned int kvm_gen, spte_gen;

400
	kvm_gen = kvm_current_mmio_generation(vcpu);
401 402 403 404
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
405 406
}

407 408 409 410 411 412 413
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
414
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
415
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
416
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
417
{
418 419
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
420
	BUG_ON(acc_track_mask & shadow_acc_track_value);
421

S
Sheng Yang 已提交
422 423 424 425 426
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
427
	shadow_present_mask = p_mask;
428
	shadow_acc_track_mask = acc_track_mask;
429
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
430 431 432
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

433
static void kvm_mmu_reset_all_pte_masks(void)
434
{
435 436
	u8 low_phys_bits;

437 438 439 440 441 442 443 444
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
445 446 447 448 449 450

	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
	 */
451
	low_phys_bits = boot_cpu_data.x86_phys_bits;
452
	if (boot_cpu_data.x86_phys_bits <
453
	    52 - shadow_nonpresent_or_rsvd_mask_len) {
454 455 456 457
		shadow_nonpresent_or_rsvd_mask =
			rsvd_bits(boot_cpu_data.x86_phys_bits -
				  shadow_nonpresent_or_rsvd_mask_len,
				  boot_cpu_data.x86_phys_bits - 1);
458 459 460 461
		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
	}
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
462 463
}

A
Avi Kivity 已提交
464 465 466 467 468
static int is_cpuid_PSE36(void)
{
	return 1;
}

469 470
static int is_nx(struct kvm_vcpu *vcpu)
{
471
	return vcpu->arch.efer & EFER_NX;
472 473
}

474 475
static int is_shadow_present_pte(u64 pte)
{
476
	return (pte != 0) && !is_mmio_spte(pte);
477 478
}

M
Marcelo Tosatti 已提交
479 480 481 482 483
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

484 485 486 487
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
488
	if (is_large_pte(pte))
489 490 491 492
		return 1;
	return 0;
}

493 494 495 496 497
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
498
static kvm_pfn_t spte_to_pfn(u64 pte)
499
{
500
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
501 502
}

503 504 505 506 507 508 509
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

510
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
511
static void __set_spte(u64 *sptep, u64 spte)
512
{
513
	WRITE_ONCE(*sptep, spte);
514 515
}

516
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
517
{
518
	WRITE_ONCE(*sptep, spte);
519 520 521 522 523 524
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
525 526 527

static u64 __get_spte_lockless(u64 *sptep)
{
528
	return READ_ONCE(*sptep);
529
}
530
#else
531 532 533 534 535 536 537
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
538

539 540 541 542 543 544 545 546 547 548 549 550
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

551 552 553
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
554

555 556 557 558 559 560 561 562 563 564 565 566
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

567
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
568 569
}

570 571 572 573 574 575 576
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

577
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
578 579 580 581 582 583 584 585

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
586
	count_spte_clear(sptep, spte);
587 588 589 590 591 592 593 594 595 596 597
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
598 599
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
600
	count_spte_clear(sptep, spte);
601 602 603

	return orig.spte;
}
604 605 606 607

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
608 609 610 611 612 613 614 615 616 617 618 619 620 621
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
645 646
#endif

647
static bool spte_can_locklessly_be_made_writable(u64 spte)
648
{
649 650
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
651 652
}

653 654
static bool spte_has_volatile_bits(u64 spte)
{
655 656 657
	if (!is_shadow_present_pte(spte))
		return false;

658
	/*
659
	 * Always atomically update spte if it can be updated
660 661 662 663
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
664 665
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
666 667
		return true;

668
	if (spte_ad_enabled(spte)) {
669 670 671 672
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
673

674
	return false;
675 676
}

677
static bool is_accessed_spte(u64 spte)
678
{
679 680 681 682
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
683 684
}

685
static bool is_dirty_spte(u64 spte)
686
{
687 688 689
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
690 691
}

692 693 694 695 696 697 698 699 700 701 702 703
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

704 705 706
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
707
 */
708
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
709
{
710
	u64 old_spte = *sptep;
711

712
	WARN_ON(!is_shadow_present_pte(new_spte));
713

714 715
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
716
		return old_spte;
717
	}
718

719
	if (!spte_has_volatile_bits(old_spte))
720
		__update_clear_spte_fast(sptep, new_spte);
721
	else
722
		old_spte = __update_clear_spte_slow(sptep, new_spte);
723

724 725
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

748 749
	/*
	 * For the spte updated out of mmu-lock is safe, since
750
	 * we always atomically update it, see the comments in
751 752
	 * spte_has_volatile_bits().
	 */
753
	if (spte_can_locklessly_be_made_writable(old_spte) &&
754
	      !is_writable_pte(new_spte))
755
		flush = true;
756

757
	/*
758
	 * Flush TLB when accessed/dirty states are changed in the page tables,
759 760 761
	 * to guarantee consistency between TLB and page tables.
	 */

762 763
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
764
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
765 766 767 768
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
769
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
770
	}
771

772
	return flush;
773 774
}

775 776 777 778
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
779
 * Returns non-zero if the PTE was previously valid.
780 781 782
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
783
	kvm_pfn_t pfn;
784 785 786
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
787
		__update_clear_spte_fast(sptep, 0ull);
788
	else
789
		old_spte = __update_clear_spte_slow(sptep, 0ull);
790

791
	if (!is_shadow_present_pte(old_spte))
792 793 794
		return 0;

	pfn = spte_to_pfn(old_spte);
795 796 797 798 799 800

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
801
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
802

803
	if (is_accessed_spte(old_spte))
804
		kvm_set_pfn_accessed(pfn);
805 806

	if (is_dirty_spte(old_spte))
807
		kvm_set_pfn_dirty(pfn);
808

809 810 811 812 813 814 815 816 817 818
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
819
	__update_clear_spte_fast(sptep, 0ull);
820 821
}

822 823 824 825 826
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

827 828
static u64 mark_spte_for_access_track(u64 spte)
{
829
	if (spte_ad_enabled(spte))
830 831
		return spte & ~shadow_accessed_mask;

832
	if (is_access_track_spte(spte))
833 834 835
		return spte;

	/*
836 837 838
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

855 856 857 858 859 860 861
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

862
	WARN_ON_ONCE(spte_ad_enabled(spte));
863 864 865 866 867 868 869 870 871 872
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

873 874 875 876 877 878 879 880
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

881
	if (spte_ad_enabled(spte)) {
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

899 900
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
901 902 903 904 905
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
906

907 908 909 910
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
911
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
912 913 914 915
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
916 917
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
918
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
919 920
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
921
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
922
	local_irq_enable();
923 924
}

925
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
926
				  struct kmem_cache *base_cache, int min)
927 928 929 930
{
	void *obj;

	if (cache->nobjs >= min)
931
		return 0;
932
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
933
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
934
		if (!obj)
935
			return -ENOMEM;
936 937
		cache->objects[cache->nobjs++] = obj;
	}
938
	return 0;
939 940
}

941 942 943 944 945
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

946 947
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
948 949
{
	while (mc->nobjs)
950
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
951 952
}

A
Avi Kivity 已提交
953
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
954
				       int min)
A
Avi Kivity 已提交
955
{
956
	void *page;
A
Avi Kivity 已提交
957 958 959 960

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
961
		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
A
Avi Kivity 已提交
962 963
		if (!page)
			return -ENOMEM;
964
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
965 966 967 968 969 970 971
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
972
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
973 974
}

975
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
976
{
977 978
	int r;

979
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
980
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
981 982
	if (r)
		goto out;
983
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
984 985
	if (r)
		goto out;
986
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
987
				   mmu_page_header_cache, 4);
988 989
out:
	return r;
990 991 992 993
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
994 995
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
996
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
997 998
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
999 1000
}

1001
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1002 1003 1004 1005 1006 1007 1008 1009
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

1010
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1011
{
1012
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1013 1014
}

1015
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1016
{
1017
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
1036
/*
1037 1038
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1039
 */
1040 1041 1042
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1043 1044 1045
{
	unsigned long idx;

1046
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1047
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1073
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1074
{
1075
	struct kvm_memslots *slots;
1076
	struct kvm_memory_slot *slot;
1077
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1078

1079
	kvm->arch.indirect_shadow_pages++;
1080
	gfn = sp->gfn;
1081 1082
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1083 1084 1085 1086 1087 1088

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1089
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1090 1091
}

1092
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1093
{
1094
	struct kvm_memslots *slots;
1095
	struct kvm_memory_slot *slot;
1096
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1097

1098
	kvm->arch.indirect_shadow_pages--;
1099
	gfn = sp->gfn;
1100 1101
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1102 1103 1104 1105
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1106
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1107 1108
}

1109 1110
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
1111
{
1112
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
1113 1114

	if (slot) {
1115
		linfo = lpage_info_slot(gfn, slot, level);
1116
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
1117 1118
	}

1119
	return true;
M
Marcelo Tosatti 已提交
1120 1121
}

1122 1123
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1124 1125 1126 1127
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1128
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1129 1130
}

1131
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
1132
{
J
Joerg Roedel 已提交
1133
	unsigned long page_size;
1134
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1135

J
Joerg Roedel 已提交
1136
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
1137

1138
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1139 1140 1141 1142 1143 1144
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1145
	return ret;
M
Marcelo Tosatti 已提交
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1159 1160 1161
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1162 1163
{
	struct kvm_memory_slot *slot;
1164

1165
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1166
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1167 1168 1169 1170 1171
		slot = NULL;

	return slot;
}

1172 1173
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1174 1175
{
	int host_level, level, max_level;
1176 1177
	struct kvm_memory_slot *slot;

1178 1179
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1180

1181 1182
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1183 1184 1185
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1186 1187 1188 1189 1190
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1191
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1192 1193

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1194
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1195 1196 1197
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1198 1199
}

1200
/*
1201
 * About rmap_head encoding:
1202
 *
1203 1204
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1205
 * pte_list_desc containing more mappings.
1206 1207 1208 1209
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1210
 */
1211
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1212
			struct kvm_rmap_head *rmap_head)
1213
{
1214
	struct pte_list_desc *desc;
1215
	int i, count = 0;
1216

1217
	if (!rmap_head->val) {
1218
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1219 1220
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1221 1222
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1223
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1224
		desc->sptes[1] = spte;
1225
		rmap_head->val = (unsigned long)desc | 1;
1226
		++count;
1227
	} else {
1228
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1229
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1230
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1231
			desc = desc->more;
1232
			count += PTE_LIST_EXT;
1233
		}
1234 1235
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1236 1237
			desc = desc->more;
		}
A
Avi Kivity 已提交
1238
		for (i = 0; desc->sptes[i]; ++i)
1239
			++count;
A
Avi Kivity 已提交
1240
		desc->sptes[i] = spte;
1241
	}
1242
	return count;
1243 1244
}

1245
static void
1246 1247 1248
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1249 1250 1251
{
	int j;

1252
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1253
		;
A
Avi Kivity 已提交
1254 1255
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1256 1257 1258
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1259
		rmap_head->val = (unsigned long)desc->sptes[0];
1260 1261 1262 1263
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1264
			rmap_head->val = (unsigned long)desc->more | 1;
1265
	mmu_free_pte_list_desc(desc);
1266 1267
}

1268
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1269
{
1270 1271
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1272 1273
	int i;

1274
	if (!rmap_head->val) {
1275
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1276
		BUG();
1277
	} else if (!(rmap_head->val & 1)) {
1278
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1279
		if ((u64 *)rmap_head->val != spte) {
1280
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1281 1282
			BUG();
		}
1283
		rmap_head->val = 0;
1284
	} else {
1285
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1286
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1287 1288
		prev_desc = NULL;
		while (desc) {
1289
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1290
				if (desc->sptes[i] == spte) {
1291 1292
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1293 1294
					return;
				}
1295
			}
1296 1297 1298
			prev_desc = desc;
			desc = desc->more;
		}
1299
		pr_err("pte_list_remove: %p many->many\n", spte);
1300 1301 1302 1303
		BUG();
	}
}

1304 1305
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1306
{
1307
	unsigned long idx;
1308

1309
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1310
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1311 1312
}

1313 1314
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1315
{
1316
	struct kvm_memslots *slots;
1317 1318
	struct kvm_memory_slot *slot;

1319 1320
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1321
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1322 1323
}

1324 1325 1326 1327 1328 1329 1330 1331
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1332 1333 1334
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1335
	struct kvm_rmap_head *rmap_head;
1336 1337 1338

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1339 1340
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1341 1342 1343 1344 1345 1346
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1347
	struct kvm_rmap_head *rmap_head;
1348 1349 1350

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1351 1352
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1372 1373
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1374
{
1375 1376
	u64 *sptep;

1377
	if (!rmap_head->val)
1378 1379
		return NULL;

1380
	if (!(rmap_head->val & 1)) {
1381
		iter->desc = NULL;
1382 1383
		sptep = (u64 *)rmap_head->val;
		goto out;
1384 1385
	}

1386
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1387
	iter->pos = 0;
1388 1389 1390 1391
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1401 1402
	u64 *sptep;

1403 1404 1405 1406 1407
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1408
				goto out;
1409 1410 1411 1412 1413 1414 1415
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1416 1417
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1418 1419 1420 1421
		}
	}

	return NULL;
1422 1423 1424
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1425 1426
}

1427 1428
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1429
	     _spte_; _spte_ = rmap_get_next(_iter_))
1430

1431
static void drop_spte(struct kvm *kvm, u64 *sptep)
1432
{
1433
	if (mmu_spte_clear_track_bits(sptep))
1434
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1435 1436
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1458
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1459
 * spte write-protection is caused by protecting shadow page table.
1460
 *
T
Tiejun Chen 已提交
1461
 * Note: write protection is difference between dirty logging and spte
1462 1463 1464 1465 1466
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1467
 *
1468
 * Return true if tlb need be flushed.
1469
 */
1470
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1471 1472 1473
{
	u64 spte = *sptep;

1474
	if (!is_writable_pte(spte) &&
1475
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1476 1477 1478 1479
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1480 1481
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1482
	spte = spte & ~PT_WRITABLE_MASK;
1483

1484
	return mmu_spte_update(sptep, spte);
1485 1486
}

1487 1488
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1489
				 bool pt_protect)
1490
{
1491 1492
	u64 *sptep;
	struct rmap_iterator iter;
1493
	bool flush = false;
1494

1495
	for_each_rmap_spte(rmap_head, &iter, sptep)
1496
		flush |= spte_write_protect(sptep, pt_protect);
1497

1498
	return flush;
1499 1500
}

1501
static bool spte_clear_dirty(u64 *sptep)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static bool wrprot_ad_disabled_spte(u64 *sptep)
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
	if (was_writable)
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1528
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1529 1530 1531 1532 1533
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1534
	for_each_rmap_spte(rmap_head, &iter, sptep)
1535 1536 1537 1538
		if (spte_ad_enabled(*sptep))
			flush |= spte_clear_dirty(sptep);
		else
			flush |= wrprot_ad_disabled_spte(sptep);
1539 1540 1541 1542

	return flush;
}

1543
static bool spte_set_dirty(u64 *sptep)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1554
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1555 1556 1557 1558 1559
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1560
	for_each_rmap_spte(rmap_head, &iter, sptep)
1561 1562
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1563 1564 1565 1566

	return flush;
}

1567
/**
1568
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1569 1570 1571 1572 1573 1574 1575 1576
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1577
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1578 1579
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1580
{
1581
	struct kvm_rmap_head *rmap_head;
1582

1583
	while (mask) {
1584 1585 1586
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1587

1588 1589 1590
		/* clear the first set bit */
		mask &= mask - 1;
	}
1591 1592
}

1593
/**
1594 1595
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1607
	struct kvm_rmap_head *rmap_head;
1608 1609

	while (mask) {
1610 1611 1612
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1613 1614 1615 1616 1617 1618 1619

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1634 1635 1636 1637 1638
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1639 1640
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1656 1657
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1658
{
1659
	struct kvm_rmap_head *rmap_head;
1660
	int i;
1661
	bool write_protected = false;
1662

1663
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1664
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1665
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1666 1667 1668
	}

	return write_protected;
1669 1670
}

1671 1672 1673 1674 1675 1676 1677 1678
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1679
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1680
{
1681 1682
	u64 *sptep;
	struct rmap_iterator iter;
1683
	bool flush = false;
1684

1685
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1686
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1687 1688

		drop_spte(kvm, sptep);
1689
		flush = true;
1690
	}
1691

1692 1693 1694
	return flush;
}

1695
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1696 1697 1698
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1699
	return kvm_zap_rmapp(kvm, rmap_head);
1700 1701
}

1702
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1703 1704
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1705
{
1706 1707
	u64 *sptep;
	struct rmap_iterator iter;
1708
	int need_flush = 0;
1709
	u64 new_spte;
1710
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1711
	kvm_pfn_t new_pfn;
1712 1713 1714

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1715

1716
restart:
1717
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1718
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1719
			    sptep, *sptep, gfn, level);
1720

1721
		need_flush = 1;
1722

1723
		if (pte_write(*ptep)) {
1724
			drop_spte(kvm, sptep);
1725
			goto restart;
1726
		} else {
1727
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1728 1729 1730 1731
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1732 1733

			new_spte = mark_spte_for_access_track(new_spte);
1734 1735 1736

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1737 1738
		}
	}
1739

1740 1741 1742 1743 1744 1745
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1756
	struct kvm_rmap_head *rmap;
1757 1758 1759
	int level;

	/* private field. */
1760
	struct kvm_rmap_head *end_rmap;
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1814 1815 1816 1817 1818
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1819
					       struct kvm_rmap_head *rmap_head,
1820
					       struct kvm_memory_slot *slot,
1821 1822
					       gfn_t gfn,
					       int level,
1823
					       unsigned long data))
1824
{
1825
	struct kvm_memslots *slots;
1826
	struct kvm_memory_slot *memslot;
1827 1828
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1829
	int i;
1830

1831 1832 1833 1834 1835
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1856 1857
	}

1858
	return ret;
1859 1860
}

1861 1862
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1863 1864
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1865
					 struct kvm_memory_slot *slot,
1866
					 gfn_t gfn, int level,
1867 1868 1869
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1870 1871
}

1872 1873 1874 1875 1876
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1877 1878
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1879
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1880 1881
}

1882
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1883 1884
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1885
{
1886
	u64 *sptep;
1887
	struct rmap_iterator uninitialized_var(iter);
1888 1889
	int young = 0;

1890 1891
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1892

1893
	trace_kvm_age_page(gfn, level, slot, young);
1894 1895 1896
	return young;
}

1897
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1898 1899
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1900
{
1901 1902
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1903

1904 1905 1906 1907
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1908 1909
}

1910 1911
#define RMAP_RECYCLE_THRESHOLD 1000

1912
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1913
{
1914
	struct kvm_rmap_head *rmap_head;
1915 1916 1917
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1918

1919
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1920

1921
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1922 1923 1924
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1925
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1926
{
A
Andres Lagar-Cavilla 已提交
1927
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1928 1929
}

A
Andrea Arcangeli 已提交
1930 1931 1932 1933 1934
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1935
#ifdef MMU_DEBUG
1936
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1937
{
1938 1939 1940
	u64 *pos;
	u64 *end;

1941
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1942
		if (is_shadow_present_pte(*pos)) {
1943
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1944
			       pos, *pos);
A
Avi Kivity 已提交
1945
			return 0;
1946
		}
A
Avi Kivity 已提交
1947 1948
	return 1;
}
1949
#endif
A
Avi Kivity 已提交
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1963
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1964
{
1965
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1966
	hlist_del(&sp->hash_link);
1967 1968
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1969 1970
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1971
	kmem_cache_free(mmu_page_header_cache, sp);
1972 1973
}

1974 1975
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1976
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1977 1978
}

1979
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1980
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1981 1982 1983 1984
{
	if (!parent_pte)
		return;

1985
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1986 1987
}

1988
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1989 1990
				       u64 *parent_pte)
{
1991
	pte_list_remove(parent_pte, &sp->parent_ptes);
1992 1993
}

1994 1995 1996 1997
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1998
	mmu_spte_clear_no_track(parent_pte);
1999 2000
}

2001
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2002
{
2003
	struct kvm_mmu_page *sp;
2004

2005 2006
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2007
	if (!direct)
2008
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2009
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2010 2011 2012 2013 2014 2015

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
2016 2017 2018
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2019 2020
}

2021
static void mark_unsync(u64 *spte);
2022
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2023
{
2024 2025 2026 2027 2028 2029
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2030 2031
}

2032
static void mark_unsync(u64 *spte)
2033
{
2034
	struct kvm_mmu_page *sp;
2035
	unsigned int index;
2036

2037
	sp = page_header(__pa(spte));
2038 2039
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2040
		return;
2041
	if (sp->unsync_children++)
2042
		return;
2043
	kvm_mmu_mark_parents_unsync(sp);
2044 2045
}

2046
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2047
			       struct kvm_mmu_page *sp)
2048
{
2049
	return 0;
2050 2051
}

2052
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
M
Marcelo Tosatti 已提交
2053 2054 2055
{
}

2056 2057
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2058
				 const void *pte)
2059 2060 2061 2062
{
	WARN_ON(1);
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2073 2074
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2075
{
2076
	int i;
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2089 2090 2091 2092 2093 2094 2095
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2096 2097 2098 2099
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2100

2101
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2102
		struct kvm_mmu_page *child;
2103 2104
		u64 ent = sp->spt[i];

2105 2106 2107 2108
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2109 2110 2111 2112 2113 2114 2115 2116

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2117 2118 2119 2120
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2121
				nr_unsync_leaf += ret;
2122
			} else
2123 2124 2125 2126 2127 2128
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2129
			clear_unsync_child_bit(sp, i);
2130 2131
	}

2132 2133 2134
	return nr_unsync_leaf;
}

2135 2136
#define INVALID_INDEX (-1)

2137 2138 2139
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2140
	pvec->nr = 0;
2141 2142 2143
	if (!sp->unsync_children)
		return 0;

2144
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2145
	return __mmu_unsync_walk(sp, pvec);
2146 2147 2148 2149 2150
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2151
	trace_kvm_mmu_sync_page(sp);
2152 2153 2154 2155
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2156 2157 2158 2159
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2160

2161 2162 2163 2164 2165 2166
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
2167
 * for_each_valid_sp() has skipped that kind of pages.
2168
 */
2169
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2170 2171
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2172 2173
		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
		} else
2174 2175

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2176 2177
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2178

2179
/* @sp->gfn should be write-protected at the call site */
2180 2181
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2182
{
2183 2184
	if (sp->role.cr4_pae != !!is_pae(vcpu)
	    || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2185
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2186
		return false;
2187 2188
	}

2189
	return true;
2190 2191
}

2192 2193 2194
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2195
{
2196 2197 2198 2199
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
2200

2201 2202 2203 2204
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2205 2206
}

2207 2208 2209 2210 2211 2212 2213
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2214 2215 2216 2217 2218
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2219
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2220
			 struct list_head *invalid_list)
2221
{
2222 2223
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2224 2225
}

2226
/* @gfn should be write-protected at the call site */
2227 2228
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2229 2230
{
	struct kvm_mmu_page *s;
2231
	bool ret = false;
2232

2233
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2234
		if (!s->unsync)
2235 2236 2237
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2238
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2239 2240
	}

2241
	return ret;
2242 2243
}

2244
struct mmu_page_path {
2245 2246
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2247 2248
};

2249
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2250
		for (i = mmu_pages_first(&pvec, &parents);	\
2251 2252 2253
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2254 2255 2256
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2257 2258 2259 2260 2261
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2262 2263
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2264

P
Paolo Bonzini 已提交
2265 2266 2267
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2268

P
Paolo Bonzini 已提交
2269
		parents->parent[level-2] = sp;
2270 2271 2272 2273 2274
	}

	return n;
}

P
Paolo Bonzini 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2284 2285
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2299
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2300
{
2301 2302 2303 2304 2305 2306 2307 2308 2309
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2310
		WARN_ON(idx == INVALID_INDEX);
2311
		clear_unsync_child_bit(sp, idx);
2312
		level++;
P
Paolo Bonzini 已提交
2313
	} while (!sp->unsync_children);
2314
}
2315

2316 2317 2318 2319 2320 2321 2322
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2323
	LIST_HEAD(invalid_list);
2324
	bool flush = false;
2325 2326

	while (mmu_unsync_walk(parent, &pages)) {
2327
		bool protected = false;
2328 2329

		for_each_sp(pages, sp, parents, i)
2330
			protected |= rmap_write_protect(vcpu, sp->gfn);
2331

2332
		if (protected) {
2333
			kvm_flush_remote_tlbs(vcpu->kvm);
2334 2335
			flush = false;
		}
2336

2337
		for_each_sp(pages, sp, parents, i) {
2338
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2339 2340
			mmu_pages_clear_parents(&parents);
		}
2341 2342 2343 2344 2345
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2346
	}
2347 2348

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2349 2350
}

2351 2352
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2353
	atomic_set(&sp->write_flooding_count,  0);
2354 2355 2356 2357 2358 2359 2360 2361 2362
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2363 2364 2365 2366
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2367
					     int direct,
2368
					     unsigned access)
2369 2370 2371
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2372 2373
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2374
	bool flush = false;
2375
	int collisions = 0;
2376
	LIST_HEAD(invalid_list);
2377

2378
	role = vcpu->arch.mmu.base_role;
2379
	role.level = level;
2380
	role.direct = direct;
2381
	if (role.direct)
2382
		role.cr4_pae = 0;
2383
	role.access = access;
2384 2385
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2386 2387 2388 2389
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2390 2391 2392 2393 2394 2395
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2396 2397
		if (!need_sync && sp->unsync)
			need_sync = true;
2398

2399 2400
		if (sp->role.word != role.word)
			continue;
2401

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2412

2413
		if (sp->unsync_children)
2414
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2415

2416
		__clear_sp_write_flooding_count(sp);
2417
		trace_kvm_mmu_get_page(sp, false);
2418
		goto out;
2419
	}
2420

A
Avi Kivity 已提交
2421
	++vcpu->kvm->stat.mmu_cache_miss;
2422 2423 2424

	sp = kvm_mmu_alloc_page(vcpu, direct);

2425 2426
	sp->gfn = gfn;
	sp->role = role;
2427 2428
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2429
	if (!direct) {
2430 2431 2432 2433 2434 2435 2436 2437
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2438
			kvm_flush_remote_tlbs(vcpu->kvm);
2439 2440

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2441
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2442
	}
2443
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2444
	clear_page(sp->spt);
A
Avi Kivity 已提交
2445
	trace_kvm_mmu_get_page(sp, true);
2446 2447

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2448 2449 2450
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2451
	return sp;
2452 2453
}

2454 2455 2456
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2457 2458
{
	iterator->addr = addr;
2459
	iterator->shadow_addr = root;
2460
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2461

2462 2463
	if (iterator->level == PT64_ROOT_4LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2464 2465 2466
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2467
	if (iterator->level == PT32E_ROOT_LEVEL) {
2468 2469 2470 2471 2472 2473
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
		BUG_ON(root != vcpu->arch.mmu.root_hpa);

2474 2475 2476 2477 2478 2479 2480 2481 2482
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2483 2484 2485 2486 2487 2488 2489
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
				    addr);
}

2490 2491 2492 2493
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2494

2495 2496 2497 2498 2499
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2500 2501
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2502
{
2503
	if (is_last_spte(spte, iterator->level)) {
2504 2505 2506 2507
		iterator->level = 0;
		return;
	}

2508
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2509 2510 2511
	--iterator->level;
}

2512 2513
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2514
	__shadow_walk_next(iterator, *iterator->sptep);
2515 2516
}

2517 2518
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2519 2520 2521
{
	u64 spte;

2522
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2523

2524
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2525
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2526 2527 2528 2529 2530

	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2531

2532
	mmu_spte_set(sptep, spte);
2533 2534 2535 2536 2537

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2538 2539
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2557
		drop_parent_pte(child, sptep);
2558 2559 2560 2561
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2562
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2563 2564 2565 2566 2567 2568 2569
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2570
		if (is_last_spte(pte, sp->role.level)) {
2571
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2572 2573 2574
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2575
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2576
			drop_parent_pte(child, spte);
2577
		}
X
Xiao Guangrong 已提交
2578 2579 2580 2581
		return true;
	}

	if (is_mmio_spte(pte))
2582
		mmu_spte_clear_no_track(spte);
2583

X
Xiao Guangrong 已提交
2584
	return false;
2585 2586
}

2587
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2588
					 struct kvm_mmu_page *sp)
2589
{
2590 2591
	unsigned i;

2592 2593
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2594 2595
}

2596
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2597
{
2598 2599
	u64 *sptep;
	struct rmap_iterator iter;
2600

2601
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2602
		drop_parent_pte(sp, sptep);
2603 2604
}

2605
static int mmu_zap_unsync_children(struct kvm *kvm,
2606 2607
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2608
{
2609 2610 2611
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2612

2613
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2614
		return 0;
2615 2616 2617 2618 2619

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2620
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2621
			mmu_pages_clear_parents(&parents);
2622
			zapped++;
2623 2624 2625 2626
		}
	}

	return zapped;
2627 2628
}

2629 2630
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2631
{
2632
	int ret;
A
Avi Kivity 已提交
2633

2634
	trace_kvm_mmu_prepare_zap_page(sp);
2635
	++kvm->stat.mmu_shadow_zapped;
2636
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2637
	kvm_mmu_page_unlink_children(kvm, sp);
2638
	kvm_mmu_unlink_parents(kvm, sp);
2639

2640
	if (!sp->role.invalid && !sp->role.direct)
2641
		unaccount_shadowed(kvm, sp);
2642

2643 2644
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2645
	if (!sp->root_count) {
2646 2647
		/* Count self */
		ret++;
2648
		list_move(&sp->link, invalid_list);
2649
		kvm_mod_used_mmu_pages(kvm, -1);
2650
	} else {
A
Avi Kivity 已提交
2651
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2652 2653 2654 2655 2656 2657 2658

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2659
	}
2660 2661

	sp->role.invalid = 1;
2662
	return ret;
2663 2664
}

2665 2666 2667
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2668
	struct kvm_mmu_page *sp, *nsp;
2669 2670 2671 2672

	if (list_empty(invalid_list))
		return;

2673
	/*
2674 2675 2676 2677 2678 2679 2680
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2681 2682
	 */
	kvm_flush_remote_tlbs(kvm);
2683

2684
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2685
		WARN_ON(!sp->role.invalid || sp->root_count);
2686
		kvm_mmu_free_page(sp);
2687
	}
2688 2689
}

2690 2691 2692 2693 2694 2695 2696 2697
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2698 2699
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2700
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2701 2702
}

2703 2704
/*
 * Changing the number of mmu pages allocated to the vm
2705
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2706
 */
2707
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2708
{
2709
	LIST_HEAD(invalid_list);
2710

2711 2712
	spin_lock(&kvm->mmu_lock);

2713
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2714 2715 2716 2717
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2718

2719
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2720
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2721 2722
	}

2723
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2724 2725

	spin_unlock(&kvm->mmu_lock);
2726 2727
}

2728
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2729
{
2730
	struct kvm_mmu_page *sp;
2731
	LIST_HEAD(invalid_list);
2732 2733
	int r;

2734
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2735
	r = 0;
2736
	spin_lock(&kvm->mmu_lock);
2737
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2738
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2739 2740
			 sp->role.word);
		r = 1;
2741
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2742
	}
2743
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2744 2745
	spin_unlock(&kvm->mmu_lock);

2746
	return r;
2747
}
2748
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2749

2750
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2751 2752 2753 2754 2755 2756 2757 2758
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2759 2760
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2761
{
2762
	struct kvm_mmu_page *sp;
2763

2764 2765
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2766

2767
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2768
		if (!can_unsync)
2769
			return true;
2770

2771 2772
		if (sp->unsync)
			continue;
2773

2774 2775
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2776
	}
2777

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2817
	return false;
2818 2819
}

D
Dan Williams 已提交
2820
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2821 2822
{
	if (pfn_valid(pfn))
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2835 2836 2837 2838

	return true;
}

2839 2840 2841 2842
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
2843
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2844
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2845
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2846
		    bool can_unsync, bool host_writable)
2847
{
2848
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2849
	int ret = 0;
2850
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
2851

2852
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2853 2854
		return 0;

2855 2856 2857 2858
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;

2859 2860 2861 2862 2863 2864
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2865
	spte |= shadow_present_mask;
2866
	if (!speculative)
2867
		spte |= spte_shadow_accessed_mask(spte);
2868

S
Sheng Yang 已提交
2869 2870 2871 2872
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2873

2874
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2875
		spte |= shadow_user_mask;
2876

2877
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2878
		spte |= PT_PAGE_SIZE_MASK;
2879
	if (tdp_enabled)
2880
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2881
			kvm_is_mmio_pfn(pfn));
2882

2883
	if (host_writable)
2884
		spte |= SPTE_HOST_WRITEABLE;
2885 2886
	else
		pte_access &= ~ACC_WRITE_MASK;
2887

2888 2889 2890
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

2891
	spte |= (u64)pfn << PAGE_SHIFT;
2892

2893
	if (pte_access & ACC_WRITE_MASK) {
2894

X
Xiao Guangrong 已提交
2895
		/*
2896 2897 2898 2899
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2900
		 */
2901
		if (level > PT_PAGE_TABLE_LEVEL &&
2902
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2903
			goto done;
2904

2905
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2906

2907 2908 2909 2910 2911 2912
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2913
		if (!can_unsync && is_writable_pte(*sptep))
2914 2915
			goto set_pte;

2916
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2917
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2918
				 __func__, gfn);
2919
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
2920
			pte_access &= ~ACC_WRITE_MASK;
2921
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2922 2923 2924
		}
	}

2925
	if (pte_access & ACC_WRITE_MASK) {
2926
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2927
		spte |= spte_shadow_dirty_mask(spte);
2928
	}
2929

2930 2931 2932
	if (speculative)
		spte = mark_spte_for_access_track(spte);

2933
set_pte:
2934
	if (mmu_spte_update(sptep, spte))
2935
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
A
Avi Kivity 已提交
2936
done:
M
Marcelo Tosatti 已提交
2937 2938 2939
	return ret;
}

2940 2941 2942
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
		       	bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2943 2944
{
	int was_rmapped = 0;
2945
	int rmap_count;
2946
	int set_spte_ret;
2947
	int ret = RET_PF_RETRY;
2948
	bool flush = false;
M
Marcelo Tosatti 已提交
2949

2950 2951
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2952

2953
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2954 2955 2956 2957
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2958 2959
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2960
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2961
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2962 2963

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2964
			drop_parent_pte(child, sptep);
2965
			flush = true;
A
Avi Kivity 已提交
2966
		} else if (pfn != spte_to_pfn(*sptep)) {
2967
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2968
				 spte_to_pfn(*sptep), pfn);
2969
			drop_spte(vcpu->kvm, sptep);
2970
			flush = true;
2971 2972
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2973
	}
2974

2975 2976 2977
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2978
		if (write_fault)
2979
			ret = RET_PF_EMULATE;
2980
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2981
	}
2982
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2983
		kvm_flush_remote_tlbs(vcpu->kvm);
M
Marcelo Tosatti 已提交
2984

2985
	if (unlikely(is_mmio_spte(*sptep)))
2986
		ret = RET_PF_EMULATE;
2987

A
Avi Kivity 已提交
2988
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2989
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2990
		 is_large_pte(*sptep)? "2MB" : "4kB",
2991
		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2992
		 *sptep, sptep);
A
Avi Kivity 已提交
2993
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2994 2995
		++vcpu->kvm->stat.lpages;

2996 2997 2998 2999 3000 3001
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3002
	}
3003

X
Xiao Guangrong 已提交
3004
	kvm_release_pfn_clean(pfn);
3005

3006
	return ret;
3007 3008
}

D
Dan Williams 已提交
3009
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3010 3011 3012 3013
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3014
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3015
	if (!slot)
3016
		return KVM_PFN_ERR_FAULT;
3017

3018
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3019 3020 3021 3022 3023 3024 3025
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3026
	struct kvm_memory_slot *slot;
3027 3028 3029 3030 3031
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3032 3033
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3034 3035
		return -1;

3036
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3037 3038 3039 3040
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
3041 3042
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3059
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3074 3075
	sp = page_header(__pa(sptep));

3076
	/*
3077 3078 3079
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3080
	 */
3081
	if (sp_ad_disabled(sp))
3082 3083 3084 3085 3086 3087 3088 3089
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3090
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
3091
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3092
{
3093
	struct kvm_shadow_walk_iterator iterator;
3094
	struct kvm_mmu_page *sp;
3095
	int emulate = 0;
3096
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
3097

3098 3099 3100
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

3101
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3102
		if (iterator.level == level) {
3103 3104 3105
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
3106
			direct_pte_prefetch(vcpu, iterator.sptep);
3107 3108
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
3109 3110
		}

3111
		drop_large_spte(vcpu, iterator.sptep);
3112
		if (!is_shadow_present_pte(*iterator.sptep)) {
3113 3114 3115 3116
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
3117
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3118
					      iterator.level - 1, 1, ACC_ALL);
3119

3120
			link_shadow_page(vcpu, iterator.sptep, sp);
3121 3122
		}
	}
3123
	return emulate;
A
Avi Kivity 已提交
3124 3125
}

H
Huang Ying 已提交
3126
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3127
{
H
Huang Ying 已提交
3128 3129
	siginfo_t info;

3130
	clear_siginfo(&info);
H
Huang Ying 已提交
3131 3132 3133 3134 3135
	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
3136

H
Huang Ying 已提交
3137
	send_sig_info(SIGBUS, &info, tsk);
3138 3139
}

D
Dan Williams 已提交
3140
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3141
{
X
Xiao Guangrong 已提交
3142 3143 3144 3145 3146 3147
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3148
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3149

3150
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3151
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3152
		return RET_PF_RETRY;
3153
	}
3154

3155
	return -EFAULT;
3156 3157
}

3158
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
3159 3160
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
3161
{
D
Dan Williams 已提交
3162
	kvm_pfn_t pfn = *pfnp;
3163 3164 3165 3166 3167 3168 3169 3170 3171
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
3172
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3173
	    level == PT_PAGE_TABLE_LEVEL &&
3174
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3175
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
3194
			kvm_get_pfn(pfn);
3195 3196 3197 3198 3199
			*pfnp = pfn;
		}
	}
}

3200
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
3201
				kvm_pfn_t pfn, unsigned access, int *ret_val)
3202 3203
{
	/* The pfn is invalid, report the error! */
3204
	if (unlikely(is_error_pfn(pfn))) {
3205
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3206
		return true;
3207 3208
	}

3209
	if (unlikely(is_noslot_pfn(pfn)))
3210 3211
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

3212
	return false;
3213 3214
}

3215
static bool page_fault_can_be_fast(u32 error_code)
3216
{
3217 3218 3219 3220 3221 3222 3223
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3224 3225 3226 3227 3228
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3229
	/*
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3241 3242
	 */

3243 3244 3245
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3246 3247
}

3248 3249 3250 3251
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3252
static bool
3253
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3254
			u64 *sptep, u64 old_spte, u64 new_spte)
3255 3256 3257 3258 3259
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3272
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3273 3274
		return false;

3275
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3276 3277 3278 3279 3280 3281 3282
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3283 3284 3285 3286

	return true;
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3299 3300 3301 3302 3303 3304 3305 3306 3307
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3308
	struct kvm_mmu_page *sp;
3309
	bool fault_handled = false;
3310
	u64 spte = 0ull;
3311
	uint retry_count = 0;
3312

3313 3314 3315
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

3316
	if (!page_fault_can_be_fast(error_code))
3317 3318 3319 3320
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3321
	do {
3322
		u64 new_spte;
3323

3324 3325 3326 3327 3328
		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
			if (!is_shadow_present_pte(spte) ||
			    iterator.level < level)
				break;

3329 3330 3331
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3332

3333
		/*
3334 3335 3336 3337 3338
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3339 3340 3341 3342
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3343 3344 3345 3346
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3347

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3362 3363

			/*
3364 3365 3366 3367 3368 3369 3370 3371 3372
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3373
			 */
3374
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3375
				break;
3376
		}
3377

3378
		/* Verify that the fault can be handled in the fast path */
3379 3380
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3381 3382 3383 3384 3385 3386 3387 3388
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
		 * Documentation/virtual/kvm/locking.txt to get more detail.
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3389
							iterator.sptep, spte,
3390
							new_spte);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3401

X
Xiao Guangrong 已提交
3402
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3403
			      spte, fault_handled);
3404 3405
	walk_shadow_page_lockless_end(vcpu);

3406
	return fault_handled;
3407 3408
}

3409
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3410
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3411
static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3412

3413 3414
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3415 3416
{
	int r;
3417
	int level;
3418
	bool force_pt_level = false;
D
Dan Williams 已提交
3419
	kvm_pfn_t pfn;
3420
	unsigned long mmu_seq;
3421
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3422

3423
	level = mapping_level(vcpu, gfn, &force_pt_level);
3424 3425 3426 3427 3428 3429 3430 3431
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3432

3433
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3434
	}
M
Marcelo Tosatti 已提交
3435

3436
	if (fast_page_fault(vcpu, v, level, error_code))
3437
		return RET_PF_RETRY;
3438

3439
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3440
	smp_rmb();
3441

3442
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3443
		return RET_PF_RETRY;
3444

3445 3446
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3447

3448
	spin_lock(&vcpu->kvm->mmu_lock);
3449
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3450
		goto out_unlock;
3451 3452
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3453 3454
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3455
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3456 3457
	spin_unlock(&vcpu->kvm->mmu_lock);

3458
	return r;
3459 3460 3461 3462

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
3463
	return RET_PF_RETRY;
3464 3465
}

3466 3467
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3468
{
3469
	struct kvm_mmu_page *sp;
3470

3471
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3472
		return;
3473

3474 3475 3476 3477
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3478

3479 3480 3481
	*root_hpa = INVALID_PAGE;
}

3482 3483
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
3484 3485 3486 3487
{
	int i;
	LIST_HEAD(invalid_list);
	struct kvm_mmu *mmu = &vcpu->arch.mmu;
3488
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3489

3490
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3491

3492
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3493 3494 3495 3496 3497 3498 3499 3500 3501
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3502 3503

	spin_lock(&vcpu->kvm->mmu_lock);
3504

3505 3506 3507 3508
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3509

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3523
	}
3524

3525
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3526
	spin_unlock(&vcpu->kvm->mmu_lock);
3527
}
3528
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3529

3530 3531 3532 3533 3534
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3535
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3536 3537 3538 3539 3540 3541
		ret = 1;
	}

	return ret;
}

3542 3543 3544
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3545
	unsigned i;
3546

3547
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3548
		spin_lock(&vcpu->kvm->mmu_lock);
3549 3550
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3551
			return -ENOSPC;
3552
		}
3553 3554
		sp = kvm_mmu_get_page(vcpu, 0, 0,
				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3555 3556 3557 3558 3559 3560 3561
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3562
			MMU_WARN_ON(VALID_PAGE(root));
3563
			spin_lock(&vcpu->kvm->mmu_lock);
3564 3565
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3566
				return -ENOSPC;
3567
			}
3568
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3569
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3570 3571 3572 3573 3574
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3575
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3576 3577 3578 3579 3580 3581 3582
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3583
{
3584
	struct kvm_mmu_page *sp;
3585 3586 3587
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3588

3589
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3590

3591 3592 3593 3594 3595 3596 3597
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3598
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3599
		hpa_t root = vcpu->arch.mmu.root_hpa;
3600

3601
		MMU_WARN_ON(VALID_PAGE(root));
3602

3603
		spin_lock(&vcpu->kvm->mmu_lock);
3604 3605
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3606
			return -ENOSPC;
3607
		}
3608 3609
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3610 3611
		root = __pa(sp->spt);
		++sp->root_count;
3612
		spin_unlock(&vcpu->kvm->mmu_lock);
3613
		vcpu->arch.mmu.root_hpa = root;
3614
		return 0;
3615
	}
3616

3617 3618
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3619 3620
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3621
	 */
3622
	pm_mask = PT_PRESENT_MASK;
3623
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3624 3625
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3626
	for (i = 0; i < 4; ++i) {
3627
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3628

3629
		MMU_WARN_ON(VALID_PAGE(root));
3630
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3631
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3632
			if (!(pdptr & PT_PRESENT_MASK)) {
3633
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3634 3635
				continue;
			}
A
Avi Kivity 已提交
3636
			root_gfn = pdptr >> PAGE_SHIFT;
3637 3638
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3639
		}
3640
		spin_lock(&vcpu->kvm->mmu_lock);
3641 3642
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3643
			return -ENOSPC;
3644
		}
3645 3646
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3647 3648
		root = __pa(sp->spt);
		++sp->root_count;
3649 3650
		spin_unlock(&vcpu->kvm->mmu_lock);

3651
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3652
	}
3653
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3654 3655 3656 3657 3658

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3659
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3680
	return 0;
3681 3682
}

3683 3684 3685 3686 3687 3688 3689 3690
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3691
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3692 3693 3694 3695
{
	int i;
	struct kvm_mmu_page *sp;

3696 3697 3698
	if (vcpu->arch.mmu.direct_map)
		return;

3699 3700
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3701

3702
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3703

3704
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3705
		hpa_t root = vcpu->arch.mmu.root_hpa;
3706

3707
		sp = page_header(root);
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3726
		mmu_sync_children(vcpu, sp);
3727

3728
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3729
		spin_unlock(&vcpu->kvm->mmu_lock);
3730 3731
		return;
	}
3732 3733 3734 3735

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3736 3737 3738
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3739
		if (root && VALID_PAGE(root)) {
3740 3741 3742 3743 3744 3745
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

3746
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3747
	spin_unlock(&vcpu->kvm->mmu_lock);
3748
}
N
Nadav Har'El 已提交
3749
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3750

3751
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3752
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3753
{
3754 3755
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3756 3757 3758
	return vaddr;
}

3759
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3760 3761
					 u32 access,
					 struct x86_exception *exception)
3762
{
3763 3764
	if (exception)
		exception->error_code = 0;
3765
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3766 3767
}

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3787
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3788
{
3789 3790 3791 3792 3793 3794 3795
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3796 3797 3798 3799 3800 3801
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3802 3803 3804
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3805 3806
{
	struct kvm_shadow_walk_iterator iterator;
3807
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3808 3809
	int root, leaf;
	bool reserved = false;
3810

3811
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3812
		goto exit;
3813

3814
	walk_shadow_page_lockless_begin(vcpu);
3815

3816 3817
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3818 3819 3820 3821 3822
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3823
		leaf--;
3824

3825 3826
		if (!is_shadow_present_pte(spte))
			break;
3827 3828

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3829
						    iterator.level);
3830 3831
	}

3832 3833
	walk_shadow_page_lockless_end(vcpu);

3834 3835 3836
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3837
		while (root > leaf) {
3838 3839 3840 3841 3842 3843 3844 3845
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3846 3847
}

P
Paolo Bonzini 已提交
3848
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3849 3850
{
	u64 spte;
3851
	bool reserved;
3852

3853
	if (mmio_info_in_cache(vcpu, addr, direct))
3854
		return RET_PF_EMULATE;
3855

3856
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3857
	if (WARN_ON(reserved))
3858
		return -EINVAL;
3859 3860 3861 3862 3863

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3864
		if (!check_mmio_spte(vcpu, spte))
3865
			return RET_PF_INVALID;
3866

3867 3868
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3869 3870

		trace_handle_mmio_page_fault(addr, gfn, access);
3871
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3872
		return RET_PF_EMULATE;
3873 3874 3875 3876 3877 3878
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3879
	return RET_PF_RETRY;
3880 3881
}

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3919
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3920
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3921
{
3922
	gfn_t gfn = gva >> PAGE_SHIFT;
3923
	int r;
A
Avi Kivity 已提交
3924

3925
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3926

3927
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3928
		return RET_PF_EMULATE;
3929

3930 3931 3932
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3933

3934
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3935 3936


3937
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3938
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3939 3940
}

3941
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3942 3943
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3944

3945
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3946
	arch.gfn = gfn;
3947
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3948
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3949

3950
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3951 3952
}

3953
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3954
{
3955
	if (unlikely(!lapic_in_kernel(vcpu) ||
3956 3957
		     kvm_event_needs_reinjection(vcpu) ||
		     vcpu->arch.exception.pending))
3958 3959
		return false;

3960
	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3961 3962
		return false;

3963 3964 3965
	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3966
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3967
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3968
{
3969
	struct kvm_memory_slot *slot;
3970 3971
	bool async;

3972 3973 3974 3975 3976 3977 3978 3979
	/*
	 * Don't expose private memslots to L2.
	 */
	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		*pfn = KVM_PFN_NOSLOT;
		return false;
	}

3980
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3981 3982
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3983 3984 3985
	if (!async)
		return false; /* *pfn has correct page already */

3986
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3987
		trace_kvm_try_async_get_page(gva, gfn);
3988 3989 3990 3991 3992 3993 3994 3995
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3996
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3997 3998 3999
	return false;
}

4000
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4001
				u64 fault_address, char *insn, int insn_len)
4002 4003 4004
{
	int r = 1;

P
Paolo Bonzini 已提交
4005
	vcpu->arch.l1tf_flush_l1d = true;
4006 4007 4008 4009
	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

4010
		if (kvm_event_needs_reinjection(vcpu))
4011 4012 4013 4014 4015 4016 4017
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
4018
		kvm_async_pf_task_wait(fault_address, 0);
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
4042
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4043
			  bool prefault)
4044
{
D
Dan Williams 已提交
4045
	kvm_pfn_t pfn;
4046
	int r;
4047
	int level;
4048
	bool force_pt_level;
M
Marcelo Tosatti 已提交
4049
	gfn_t gfn = gpa >> PAGE_SHIFT;
4050
	unsigned long mmu_seq;
4051 4052
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
4053

4054
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4055

4056
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4057
		return RET_PF_EMULATE;
4058

4059 4060 4061 4062
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

4063 4064 4065
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
4066
	if (likely(!force_pt_level)) {
4067 4068 4069
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
4070
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4071
	}
4072

4073
	if (fast_page_fault(vcpu, gpa, level, error_code))
4074
		return RET_PF_RETRY;
4075

4076
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4077
	smp_rmb();
4078

4079
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4080
		return RET_PF_RETRY;
4081

4082 4083 4084
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

4085
	spin_lock(&vcpu->kvm->mmu_lock);
4086
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4087
		goto out_unlock;
4088 4089
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4090 4091
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4092
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4093 4094 4095
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
4096 4097 4098 4099

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
4100
	return RET_PF_RETRY;
4101 4102
}

4103 4104
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4105 4106 4107
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4108
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4109
	context->invlpg = nonpaging_invlpg;
4110
	context->update_pte = nonpaging_update_pte;
4111
	context->root_level = 0;
A
Avi Kivity 已提交
4112
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4113
	context->direct_map = true;
4114
	context->nx = false;
A
Avi Kivity 已提交
4115 4116
}

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
/*
 * Find out if a previously cached root matching the new CR3/role is available.
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
	struct kvm_mmu *mmu = &vcpu->arch.mmu;

	root.cr3 = mmu->get_cr3(vcpu);
	root.hpa = mmu->root_hpa;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

		if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
		    page_header(root.hpa) != NULL &&
		    new_role.word == page_header(root.hpa)->role.word)
			break;
	}

	mmu->root_hpa = root.hpa;

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4149
static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4150 4151
			    union kvm_mmu_page_role new_role,
			    bool skip_tlb_flush)
A
Avi Kivity 已提交
4152
{
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	struct kvm_mmu *mmu = &vcpu->arch.mmu;

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
	    mmu->root_level >= PT64_ROOT_4LEVEL) {
		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
			return false;

4165
		if (cached_root_available(vcpu, new_cr3, new_role)) {
4166 4167 4168 4169 4170 4171 4172 4173
			/*
			 * It is possible that the cached previous root page is
			 * obsolete because of a change in the MMU
			 * generation number. However, that is accompanied by
			 * KVM_REQ_MMU_RELOAD, which will free the root that we
			 * have set here and allocate a new one.
			 */

4174
			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4175 4176
			if (!skip_tlb_flush) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4177
				kvm_x86_ops->tlb_flush(vcpu, true);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
			}

			/*
			 * The last MMIO access's GVA and GPA are cached in the
			 * VCPU. When switching to a new CR3, that GVA->GPA
			 * mapping may no longer be valid. So clear any cached
			 * MMIO info even when we don't need to sync the shadow
			 * page tables.
			 */
			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4188

4189 4190 4191 4192 4193 4194 4195 4196
			__clear_sp_write_flooding_count(
				page_header(mmu->root_hpa));

			return true;
		}
	}

	return false;
A
Avi Kivity 已提交
4197 4198
}

4199
static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4200 4201
			      union kvm_mmu_page_role new_role,
			      bool skip_tlb_flush)
A
Avi Kivity 已提交
4202
{
4203
	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4204
		kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
A
Avi Kivity 已提交
4205 4206
}

4207
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4208
{
4209 4210
	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
			  skip_tlb_flush);
4211
}
4212
EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4213

4214 4215
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4216
	return kvm_read_cr3(vcpu);
4217 4218
}

4219 4220
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
4221
{
4222
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
4223 4224
}

4225
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4226
			   unsigned access, int *nr_present)
4227 4228 4229 4230 4231 4232 4233 4234
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4235
		mark_mmio_spte(vcpu, sptep, gfn, access);
4236 4237 4238 4239 4240 4241
		return true;
	}

	return false;
}

4242 4243
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4244
{
4245 4246 4247 4248 4249 4250 4251
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4252 4253 4254 4255 4256 4257 4258
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

4259
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4260 4261
}

4262 4263 4264 4265 4266
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4267 4268 4269 4270 4271 4272 4273 4274
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4275 4276 4277 4278
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4279
			bool pse, bool amd)
4280 4281
{
	u64 exb_bit_rsvd = 0;
4282
	u64 gbpages_bit_rsvd = 0;
4283
	u64 nonleaf_bit8_rsvd = 0;
4284

4285
	rsvd_check->bad_mt_xwr = 0;
4286

4287
	if (!nx)
4288
		exb_bit_rsvd = rsvd_bits(63, 63);
4289
	if (!gbpages)
4290
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4291 4292 4293 4294 4295

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4296
	if (amd)
4297 4298
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4299
	switch (level) {
4300 4301
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4302 4303 4304 4305
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4306

4307
		if (!pse) {
4308
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4309 4310 4311
			break;
		}

4312 4313
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4314
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4315 4316
		else
			/* 32 bits PSE 4MB page */
4317
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4318 4319
		break;
	case PT32E_ROOT_LEVEL:
4320
		rsvd_check->rsvd_bits_mask[0][2] =
4321
			rsvd_bits(maxphyaddr, 63) |
4322
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4323
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4324
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4325
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4326
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4327
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4328 4329
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4330 4331
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4332
		break;
4333 4334 4335 4336 4337 4338
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4339
	case PT64_ROOT_4LEVEL:
4340 4341
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4342
			rsvd_bits(maxphyaddr, 51);
4343 4344
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4345
			rsvd_bits(maxphyaddr, 51);
4346 4347 4348 4349 4350 4351 4352
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4353
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4354
			rsvd_bits(13, 29);
4355
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4356 4357
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4358 4359
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4360 4361 4362 4363
		break;
	}
}

4364 4365 4366 4367 4368
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4369 4370
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4371
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4372 4373
}

4374 4375 4376
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4377
{
4378
	u64 bad_mt_xwr;
4379

4380 4381
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4382
	rsvd_check->rsvd_bits_mask[0][3] =
4383
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4384
	rsvd_check->rsvd_bits_mask[0][2] =
4385
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4386
	rsvd_check->rsvd_bits_mask[0][1] =
4387
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4388
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4389 4390

	/* large page */
4391
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4392 4393
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4394
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4395
	rsvd_check->rsvd_bits_mask[1][1] =
4396
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4397
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4398

4399 4400 4401 4402 4403 4404 4405 4406
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4407
	}
4408
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4409 4410
}

4411 4412 4413 4414 4415 4416 4417
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4418 4419 4420 4421 4422 4423 4424 4425
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4426
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4427 4428
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4429

4430 4431 4432 4433
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4434 4435
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4436
				boot_cpu_data.x86_phys_bits,
4437
				context->shadow_root_level, uses_nx,
4438 4439
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4440 4441 4442 4443 4444 4445 4446 4447 4448

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4449 4450 4451
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4452 4453 4454 4455 4456 4457
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4458 4459 4460 4461 4462 4463 4464 4465
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4466 4467 4468 4469 4470
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4471
	if (boot_cpu_is_amd())
4472
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4473 4474
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
4475 4476
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4477
	else
4478
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4479 4480 4481
					    boot_cpu_data.x86_phys_bits,
					    false);

4482 4483 4484 4485 4486 4487 4488
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4513 4514
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4515
{
4516 4517 4518 4519 4520 4521 4522 4523 4524
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4525 4526

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4527 4528
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4529
		/*
4530 4531
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4532
		 */
4533

4534
		/* Faults from writes to non-writable pages */
4535
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4536
		/* Faults from user mode accesses to supervisor pages */
4537
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4538
		/* Faults from fetches of non-executable pages*/
4539
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
			 * conditions are ture:
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4579
		}
4580 4581

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4582 4583 4584
	}
}

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4660
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4661
{
4662 4663 4664 4665 4666
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4667 4668
}

4669 4670 4671
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4672
{
4673
	context->nx = is_nx(vcpu);
4674
	context->root_level = level;
4675

4676
	reset_rsvds_bits_mask(vcpu, context);
4677
	update_permission_bitmask(vcpu, context, false);
4678
	update_pkru_bitmask(vcpu, context, false);
4679
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4680

4681
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4682 4683
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4684
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4685
	context->invlpg = paging64_invlpg;
4686
	context->update_pte = paging64_update_pte;
4687
	context->shadow_root_level = level;
4688
	context->direct_map = false;
A
Avi Kivity 已提交
4689 4690
}

4691 4692
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4693
{
4694 4695 4696 4697
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4698 4699
}

4700 4701
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4702
{
4703
	context->nx = false;
4704
	context->root_level = PT32_ROOT_LEVEL;
4705

4706
	reset_rsvds_bits_mask(vcpu, context);
4707
	update_permission_bitmask(vcpu, context, false);
4708
	update_pkru_bitmask(vcpu, context, false);
4709
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4710 4711 4712

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4713
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4714
	context->invlpg = paging32_invlpg;
4715
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4716
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4717
	context->direct_map = false;
A
Avi Kivity 已提交
4718 4719
}

4720 4721
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4722
{
4723
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4724 4725
}

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_page_role role = {0};

	role.guest_mode = is_guest_mode(vcpu);
	role.smm = is_smm(vcpu);
	role.ad_disabled = (shadow_accessed_mask == 0);
	role.level = kvm_x86_ops->get_tdp_level(vcpu);
	role.direct = true;
	role.access = ACC_ALL;

	return role;
}

4741
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4742
{
4743
	struct kvm_mmu *context = &vcpu->arch.mmu;
4744

4745 4746
	context->base_role.word = mmu_base_role_mask.word &
				  kvm_calc_tdp_mmu_root_page_role(vcpu).word;
4747
	context->page_fault = tdp_page_fault;
4748
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4749
	context->invlpg = nonpaging_invlpg;
4750
	context->update_pte = nonpaging_update_pte;
4751
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4752
	context->direct_map = true;
4753
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4754
	context->get_cr3 = get_cr3;
4755
	context->get_pdptr = kvm_pdptr_read;
4756
	context->inject_page_fault = kvm_inject_page_fault;
4757 4758

	if (!is_paging(vcpu)) {
4759
		context->nx = false;
4760 4761 4762
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4763
		context->nx = is_nx(vcpu);
4764 4765
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4766 4767
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4768
	} else if (is_pae(vcpu)) {
4769
		context->nx = is_nx(vcpu);
4770
		context->root_level = PT32E_ROOT_LEVEL;
4771 4772
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4773
	} else {
4774
		context->nx = false;
4775
		context->root_level = PT32_ROOT_LEVEL;
4776 4777
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4778 4779
	}

4780
	update_permission_bitmask(vcpu, context, false);
4781
	update_pkru_bitmask(vcpu, context, false);
4782
	update_last_nonleaf_level(vcpu, context);
4783
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4784 4785
}

4786 4787
static union kvm_mmu_page_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4788
{
4789
	union kvm_mmu_page_role role = {0};
4790
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4791
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4792

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	role.nxe = is_nx(vcpu);
	role.cr4_pae = !!is_pae(vcpu);
	role.cr0_wp  = is_write_protection(vcpu);
	role.smep_andnot_wp = smep && !is_write_protection(vcpu);
	role.smap_andnot_wp = smap && !is_write_protection(vcpu);
	role.guest_mode = is_guest_mode(vcpu);
	role.smm = is_smm(vcpu);
	role.direct = !is_paging(vcpu);
	role.access = ACC_ALL;

	if (!is_long_mode(vcpu))
		role.level = PT32E_ROOT_LEVEL;
	else if (is_la57_mode(vcpu))
		role.level = PT64_ROOT_5LEVEL;
	else
		role.level = PT64_ROOT_4LEVEL;

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
4815
	struct kvm_mmu *context = &vcpu->arch.mmu;
A
Avi Kivity 已提交
4816 4817

	if (!is_paging(vcpu))
4818
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4819
	else if (is_long_mode(vcpu))
4820
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4821
	else if (is_pae(vcpu))
4822
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4823
	else
4824
		paging32_init_context(vcpu, context);
4825

4826 4827
	context->base_role.word = mmu_base_role_mask.word &
				  kvm_calc_shadow_mmu_root_page_role(vcpu).word;
4828
	reset_shadow_zero_bits_mask(vcpu, context);
4829 4830 4831
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
static union kvm_mmu_page_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
{
	union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;

	role.level = PT64_ROOT_4LEVEL;
	role.direct = false;
	role.ad_disabled = !accessed_dirty;
	role.guest_mode = true;
	role.access = ACC_ALL;

	return role;
}

4846
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4847
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4848
{
4849
	struct kvm_mmu *context = &vcpu->arch.mmu;
4850 4851
	union kvm_mmu_page_role root_page_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
4852

4853
	__kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
4854
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4855 4856

	context->nx = true;
4857
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4858 4859 4860 4861 4862
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
4863
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4864
	context->direct_map = false;
4865
	context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
N
Nadav Har'El 已提交
4866
	update_permission_bitmask(vcpu, context, true);
4867
	update_pkru_bitmask(vcpu, context, true);
4868
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4869
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4870
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4871 4872 4873
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4874
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4875
{
4876 4877 4878 4879 4880 4881 4882
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4883 4884
}

4885
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4886 4887 4888 4889
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4890
	g_context->get_pdptr         = kvm_pdptr_read;
4891 4892 4893
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4894 4895 4896 4897 4898 4899
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4900 4901
	 */
	if (!is_paging(vcpu)) {
4902
		g_context->nx = false;
4903 4904 4905
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4906
		g_context->nx = is_nx(vcpu);
4907 4908
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4909
		reset_rsvds_bits_mask(vcpu, g_context);
4910 4911
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4912
		g_context->nx = is_nx(vcpu);
4913
		g_context->root_level = PT32E_ROOT_LEVEL;
4914
		reset_rsvds_bits_mask(vcpu, g_context);
4915 4916
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4917
		g_context->nx = false;
4918
		g_context->root_level = PT32_ROOT_LEVEL;
4919
		reset_rsvds_bits_mask(vcpu, g_context);
4920 4921 4922
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4923
	update_permission_bitmask(vcpu, g_context, false);
4924
	update_pkru_bitmask(vcpu, g_context, false);
4925
	update_last_nonleaf_level(vcpu, g_context);
4926 4927
}

4928
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4929
{
4930
	if (reset_roots) {
4931 4932
		uint i;

4933
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4934 4935 4936

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4937 4938
	}

4939
	if (mmu_is_nested(vcpu))
4940
		init_kvm_nested_mmu(vcpu);
4941
	else if (tdp_enabled)
4942
		init_kvm_tdp_mmu(vcpu);
4943
	else
4944
		init_kvm_softmmu(vcpu);
4945
}
4946
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4947

4948 4949 4950 4951 4952 4953 4954 4955
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
	if (tdp_enabled)
		return kvm_calc_tdp_mmu_root_page_role(vcpu);
	else
		return kvm_calc_shadow_mmu_root_page_role(vcpu);
}
4956

4957
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4958
{
4959
	kvm_mmu_unload(vcpu);
4960
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4961
}
4962
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4963 4964

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4965
{
4966 4967
	int r;

4968
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4969 4970
	if (r)
		goto out;
4971
	r = mmu_alloc_roots(vcpu);
4972
	kvm_mmu_sync_roots(vcpu);
4973 4974
	if (r)
		goto out;
4975
	kvm_mmu_load_cr3(vcpu);
4976
	kvm_x86_ops->tlb_flush(vcpu, true);
4977 4978
out:
	return r;
A
Avi Kivity 已提交
4979
}
A
Avi Kivity 已提交
4980 4981 4982 4983
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4984
	kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
4985
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4986
}
4987
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4988

4989
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4990 4991
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4992
{
4993
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4994 4995
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4996
        }
4997

A
Avi Kivity 已提交
4998
	++vcpu->kvm->stat.mmu_pte_updated;
4999
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
5000 5001
}

5002 5003 5004 5005 5006 5007 5008 5009
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5010 5011
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5012 5013 5014
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5015
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5016
				    int *bytes)
5017
{
5018
	u64 gentry = 0;
5019
	int r;
5020 5021 5022

	/*
	 * Assume that the pte write on a page table of the same type
5023 5024
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5025
	 */
5026
	if (is_pae(vcpu) && *bytes == 4) {
5027
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5028 5029
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5030 5031
	}

5032 5033 5034 5035
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5036 5037
	}

5038 5039 5040 5041 5042 5043 5044
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5045
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5046
{
5047 5048 5049 5050
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5051
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5052
		return false;
5053

5054 5055
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
5072 5073 5074 5075 5076 5077 5078 5079

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5117
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5118 5119
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5120 5121 5122 5123 5124 5125
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5126
	bool remote_flush, local_flush;
5127 5128 5129 5130 5131

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5132
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5133 5134
		return;

5135
	remote_flush = local_flush = false;
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
5147 5148 5149

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5150
	++vcpu->kvm->stat.mmu_pte_write;
5151
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5152

5153
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5154
		if (detect_write_misaligned(sp, gpa, bytes) ||
5155
		      detect_write_flooding(sp)) {
5156
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5157
			++vcpu->kvm->stat.mmu_flooded;
5158 5159
			continue;
		}
5160 5161 5162 5163 5164

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5165
		local_flush = true;
5166
		while (npte--) {
5167
			entry = *spte;
5168
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5169 5170
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5171
			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5172
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5173
			if (need_remote_flush(entry, *spte))
5174
				remote_flush = true;
5175
			++spte;
5176 5177
		}
	}
5178
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5179
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5180
	spin_unlock(&vcpu->kvm->mmu_lock);
5181 5182
}

5183 5184
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5185 5186
	gpa_t gpa;
	int r;
5187

5188
	if (vcpu->arch.mmu.direct_map)
5189 5190
		return 0;

5191
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5192 5193

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5194

5195
	return r;
5196
}
5197
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5198

5199
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5200
{
5201
	LIST_HEAD(invalid_list);
5202

5203
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5204
		return 0;
5205

5206 5207 5208
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
5209

A
Avi Kivity 已提交
5210
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
5211
	}
5212
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5213 5214 5215 5216

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
A
Avi Kivity 已提交
5217 5218
}

5219
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5220
		       void *insn, int insn_len)
5221
{
5222
	int r, emulation_type = 0;
5223
	enum emulation_result er;
5224
	bool direct = vcpu->arch.mmu.direct_map;
5225

5226 5227 5228 5229 5230
	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
	if (vcpu->arch.mmu.direct_map) {
		vcpu->arch.gpa_available = true;
		vcpu->arch.gpa_val = cr2;
	}
5231

5232
	r = RET_PF_INVALID;
5233 5234
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
5235
		if (r == RET_PF_EMULATE)
5236 5237
			goto emulate;
	}
5238

5239 5240 5241 5242 5243 5244 5245 5246
	if (r == RET_PF_INVALID) {
		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
					      false);
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5247
	if (r < 0)
5248
		return r;
5249

5250 5251 5252 5253 5254 5255 5256
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5257
	if (vcpu->arch.mmu.direct_map &&
5258
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5259 5260 5261 5262
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
		return 1;
	}

5263 5264 5265 5266 5267 5268
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5269 5270 5271 5272
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5273
	 */
5274
	if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5275
		emulation_type = EMULTYPE_ALLOW_RETRY;
5276
emulate:
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
	 * guest.
	 */
	if (unlikely(insn && !insn_len))
		return 1;

5287
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5288 5289 5290 5291

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
5292
	case EMULATE_USER_EXIT:
5293
		++vcpu->stat.mmio_exits;
5294
		/* fall through */
5295
	case EMULATE_FAIL:
5296
		return 0;
5297 5298 5299 5300 5301 5302
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
5303 5304
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5305
	struct kvm_mmu *mmu = &vcpu->arch.mmu;
5306
	int i;
5307

5308 5309 5310 5311
	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
	if (is_noncanonical_address(gva, vcpu))
		return;

5312
	mmu->invlpg(vcpu, gva, mmu->root_hpa);
5313 5314 5315 5316

	/*
	 * INVLPG is required to invalidate any global mappings for the VA,
	 * irrespective of PCID. Since it would take us roughly similar amount
5317 5318 5319
	 * of work to determine whether any of the prev_root mappings of the VA
	 * is marked global, or to just sync it blindly, so we might as well
	 * just always sync it.
5320
	 *
5321 5322 5323
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5324
	 */
5325 5326 5327
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (VALID_PAGE(mmu->prev_roots[i].hpa))
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5328

5329
	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
M
Marcelo Tosatti 已提交
5330 5331 5332 5333
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5334 5335 5336
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
	struct kvm_mmu *mmu = &vcpu->arch.mmu;
5337
	bool tlb_flush = false;
5338
	uint i;
5339 5340

	if (pcid == kvm_get_active_pcid(vcpu)) {
5341
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5342
		tlb_flush = true;
5343 5344
	}

5345 5346 5347 5348 5349 5350
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5351
	}
5352

5353 5354 5355
	if (tlb_flush)
		kvm_x86_ops->tlb_flush_gva(vcpu, gva);

5356 5357 5358
	++vcpu->stat.invlpg;

	/*
5359 5360 5361
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5362 5363 5364 5365
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5366 5367 5368 5369 5370 5371
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

5372 5373 5374 5375 5376 5377
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
5378 5379
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
5380
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
5381
	free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
5382 5383 5384 5385
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
5386
	struct page *page;
A
Avi Kivity 已提交
5387 5388
	int i;

5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
	/*
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
	 */
	if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5399 5400
		return 0;

5401 5402 5403 5404 5405 5406 5407
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
5408 5409
		return -ENOMEM;

5410
	vcpu->arch.mmu.pae_root = page_address(page);
5411
	for (i = 0; i < 4; ++i)
5412
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5413

A
Avi Kivity 已提交
5414 5415 5416
	return 0;
}

5417
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5418
{
5419 5420
	uint i;

5421 5422 5423 5424
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
5425

5426 5427 5428
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5429 5430
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
5431

5432
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5433
{
5434
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5435

5436 5437 5438 5439 5440 5441
	/*
	 * kvm_mmu_setup() is called only on vCPU initialization.  
	 * Therefore, no need to reset mmu roots as they are not yet
	 * initialized.
	 */
	kvm_init_mmu(vcpu, false);
A
Avi Kivity 已提交
5442 5443
}

5444
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5445 5446
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5447 5448 5449 5450
{
	kvm_mmu_invalidate_zap_all_pages(kvm);
}

5451 5452 5453 5454 5455
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
5456
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

5467
/* The return value indicates if tlb flush on all vcpus is needed. */
5468
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5469 5470

/* The caller should hold mmu-lock before calling this function. */
5471
static __always_inline bool
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

5501
static __always_inline bool
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

5512
static __always_inline bool
5513 5514 5515 5516 5517 5518 5519
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

5520
static __always_inline bool
5521 5522 5523 5524 5525 5526 5527
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

5528
static __always_inline bool
5529 5530 5531 5532 5533 5534 5535
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
5536 5537 5538 5539
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5540
	int i;
X
Xiao Guangrong 已提交
5541 5542

	spin_lock(&kvm->mmu_lock);
5543 5544 5545 5546 5547 5548 5549 5550 5551
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5552

5553 5554 5555 5556
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
5557 5558 5559 5560 5561
	}

	spin_unlock(&kvm->mmu_lock);
}

5562 5563
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5564
{
5565
	return __rmap_write_protect(kvm, rmap_head, false);
5566 5567
}

5568 5569
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5570
{
5571
	bool flush;
A
Avi Kivity 已提交
5572

5573
	spin_lock(&kvm->mmu_lock);
5574 5575
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5576
	spin_unlock(&kvm->mmu_lock);
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5596 5597
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
5598
}
5599

5600
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5601
					 struct kvm_rmap_head *rmap_head)
5602 5603 5604 5605
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5606
	kvm_pfn_t pfn;
5607 5608
	struct kvm_mmu_page *sp;

5609
restart:
5610
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5611 5612 5613 5614
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5615 5616 5617 5618 5619
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5620 5621 5622
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
5623
			PageTransCompoundMap(pfn_to_page(pfn))) {
5624 5625
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
5626 5627
			goto restart;
		}
5628 5629 5630 5631 5632 5633
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5634
				   const struct kvm_memory_slot *memslot)
5635
{
5636
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5637
	spin_lock(&kvm->mmu_lock);
5638 5639
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5640 5641 5642
	spin_unlock(&kvm->mmu_lock);
}

5643 5644 5645
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5646
	bool flush;
5647 5648

	spin_lock(&kvm->mmu_lock);
5649
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5668
	bool flush;
5669 5670

	spin_lock(&kvm->mmu_lock);
5671 5672
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5686
	bool flush;
5687 5688

	spin_lock(&kvm->mmu_lock);
5689
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
5700
#define BATCH_ZAP_PAGES	10
5701 5702 5703
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
5704
	int batch = 0;
5705 5706 5707 5708

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
5709 5710
		int ret;

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

5726 5727 5728 5729
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
5730
		if (batch >= BATCH_ZAP_PAGES &&
5731
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
5732
			batch = 0;
5733 5734 5735
			goto restart;
		}

5736 5737
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
5738 5739 5740
		batch += ret;

		if (ret)
5741 5742 5743
			goto restart;
	}

5744 5745 5746 5747
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
5748
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
5763
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5764 5765
	kvm->arch.mmu_valid_gen++;

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5777 5778 5779 5780
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5781 5782 5783 5784 5785
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5786
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5787
{
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
	gen &= MMIO_GEN_MASK;

	/*
	 * Shift to eliminate the "update in-progress" flag, which isn't
	 * included in the spte's generation number.
	 */
	gen >>= 1;

	/*
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5805
	/*
5806
	 * The very rare case: if the MMIO generation number has wrapped,
5807 5808
	 * zap all shadow pages.
	 */
5809
	if (unlikely(gen == 0)) {
5810
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5811
		kvm_mmu_invalidate_zap_all_pages(kvm);
5812
	}
5813 5814
}

5815 5816
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5817 5818
{
	struct kvm *kvm;
5819
	int nr_to_scan = sc->nr_to_scan;
5820
	unsigned long freed = 0;
5821

5822
	spin_lock(&kvm_lock);
5823 5824

	list_for_each_entry(kvm, &vm_list, vm_list) {
5825
		int idx;
5826
		LIST_HEAD(invalid_list);
5827

5828 5829 5830 5831 5832 5833 5834 5835
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5836 5837 5838 5839 5840 5841
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5842 5843
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
5844 5845
			continue;

5846
		idx = srcu_read_lock(&kvm->srcu);
5847 5848
		spin_lock(&kvm->mmu_lock);

5849 5850 5851 5852 5853 5854
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5855 5856
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5857
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5858

5859
unlock:
5860
		spin_unlock(&kvm->mmu_lock);
5861
		srcu_read_unlock(&kvm->srcu, idx);
5862

5863 5864 5865 5866 5867
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5868 5869
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5870 5871
	}

5872
	spin_unlock(&kvm_lock);
5873 5874 5875 5876 5877 5878
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5879
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5880 5881 5882
}

static struct shrinker mmu_shrinker = {
5883 5884
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5885 5886 5887
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5888
static void mmu_destroy_caches(void)
5889
{
5890 5891
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5892 5893 5894 5895
}

int kvm_mmu_module_init(void)
{
5896 5897
	int ret = -ENOMEM;

5898
	kvm_mmu_reset_all_pte_masks();
5899

5900 5901
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5902
					    0, SLAB_ACCOUNT, NULL);
5903
	if (!pte_list_desc_cache)
5904
		goto out;
5905

5906 5907
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5908
						  0, SLAB_ACCOUNT, NULL);
5909
	if (!mmu_page_header_cache)
5910
		goto out;
5911

5912
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5913
		goto out;
5914

5915 5916 5917
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5918

5919 5920
	return 0;

5921
out:
5922
	mmu_destroy_caches();
5923
	return ret;
5924 5925
}

5926 5927 5928 5929 5930 5931 5932
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5933
	struct kvm_memslots *slots;
5934
	struct kvm_memory_slot *memslot;
5935
	int i;
5936

5937 5938
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5939

5940 5941 5942
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5943 5944 5945

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5946
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5947 5948 5949 5950

	return nr_mmu_pages;
}

5951 5952
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5953
	kvm_mmu_unload(vcpu);
5954 5955
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5956 5957 5958 5959 5960 5961 5962
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5963 5964
	mmu_audit_disable();
}