mmu.c 141.1 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/sched/signal.h>
40
#include <linux/uaccess.h>
41
#include <linux/hash.h>
42
#include <linux/kern_levels.h>
A
Avi Kivity 已提交
43

A
Avi Kivity 已提交
44 45
#include <asm/page.h>
#include <asm/cmpxchg.h>
46
#include <asm/io.h>
47
#include <asm/vmx.h>
48
#include <asm/kvm_page_track.h>
49
#include "trace.h"
A
Avi Kivity 已提交
50

51 52 53 54 55 56 57
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
58
bool tdp_enabled = false;
59

60 61 62 63
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
64 65 66
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
67
};
68

69
#undef MMU_DEBUG
70 71

#ifdef MMU_DEBUG
72 73
static bool dbg = 0;
module_param(dbg, bool, 0644);
74 75 76

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
#define MMU_WARN_ON(x) WARN_ON(x)
78 79 80
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
81
#define MMU_WARN_ON(x) do { } while (0)
82
#endif
A
Avi Kivity 已提交
83

84 85
#define PTE_PREFETCH_NUM		8

86
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
87 88 89 90 91
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
92
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
93 94 95 96 97 98 99 100

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
101
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
102

103 104 105
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
106 107 108 109 110

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


111
#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
A
Avi Kivity 已提交
112 113
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114 115 116 117 118 119
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
120 121 122 123

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
124 125 126
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127

128
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
129
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
130

131 132 133 134 135
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

136 137 138 139
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

140 141
#include <trace/events/kvm.h>

142 143 144
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

145 146
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
147

148 149
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

150 151 152
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

153 154 155
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
156 157
};

158 159 160 161
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
162
	int level;
163 164 165 166 167 168 169 170
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

171 172 173 174 175 176
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

177
static struct kmem_cache *pte_list_desc_cache;
178
static struct kmem_cache *mmu_page_header_cache;
179
static struct percpu_counter kvm_total_used_mmu_pages;
180

S
Sheng Yang 已提交
181 182 183 184 185
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
186
static u64 __read_mostly shadow_mmio_mask;
187
static u64 __read_mostly shadow_mmio_value;
188
static u64 __read_mostly shadow_present_mask;
189
static u64 __read_mostly shadow_me_mask;
190

191
/*
192 193 194
 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 * tracking.
195 196 197 198 199 200 201 202 203 204 205 206 207 208
 */
static u64 __read_mostly shadow_acc_track_mask;
static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

209
static void mmu_spte_set(u64 *sptep, u64 spte);
210
static void mmu_free_roots(struct kvm_vcpu *vcpu);
211

212
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
213
{
214 215
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
216
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
217 218 219
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

static inline bool spte_ad_enabled(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return !(spte & shadow_acc_track_value);
}

static inline u64 spte_shadow_accessed_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

243 244
static inline bool is_access_track_spte(u64 spte)
{
245
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
246 247
}

248
/*
249 250 251 252 253 254 255
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
256
 */
257
#define MMIO_SPTE_GEN_LOW_SHIFT		2
258 259
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

260 261 262
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
263
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
264 265 266 267 268

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
269
	WARN_ON(gen & ~MMIO_GEN_MASK);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

287
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
288
{
289
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
290 291
}

292
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293
			   unsigned access)
294
{
295
	unsigned int gen = kvm_current_mmio_generation(vcpu);
296
	u64 mask = generation_mmio_spte_mask(gen);
297

298
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
299
	mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
300

301
	trace_mark_mmio_spte(sptep, gfn, access, gen);
302
	mmu_spte_set(sptep, mask);
303 304 305 306
}

static bool is_mmio_spte(u64 spte)
{
307
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
308 309 310 311
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
312
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
313
	return (spte & ~mask) >> PAGE_SHIFT;
314 315 316 317
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
318
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
319
	return (spte & ~mask) & ~PAGE_MASK;
320 321
}

322
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
323
			  kvm_pfn_t pfn, unsigned access)
324 325
{
	if (unlikely(is_noslot_pfn(pfn))) {
326
		mark_mmio_spte(vcpu, sptep, gfn, access);
327 328 329 330 331
		return true;
	}

	return false;
}
332

333
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
334
{
335 336
	unsigned int kvm_gen, spte_gen;

337
	kvm_gen = kvm_current_mmio_generation(vcpu);
338 339 340 341
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
342 343
}

344 345 346 347 348 349 350
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
351
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
352
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
353
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
354
{
355 356
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
357
	BUG_ON(acc_track_mask & shadow_acc_track_value);
358

S
Sheng Yang 已提交
359 360 361 362 363
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
364
	shadow_present_mask = p_mask;
365
	shadow_acc_track_mask = acc_track_mask;
366
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
367 368 369
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

370 371 372 373 374 375 376 377 378 379 380 381
void kvm_mmu_clear_all_pte_masks(void)
{
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
}

A
Avi Kivity 已提交
382 383 384 385 386
static int is_cpuid_PSE36(void)
{
	return 1;
}

387 388
static int is_nx(struct kvm_vcpu *vcpu)
{
389
	return vcpu->arch.efer & EFER_NX;
390 391
}

392 393
static int is_shadow_present_pte(u64 pte)
{
394
	return (pte != 0) && !is_mmio_spte(pte);
395 396
}

M
Marcelo Tosatti 已提交
397 398 399 400 401
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

402 403 404 405
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
406
	if (is_large_pte(pte))
407 408 409 410
		return 1;
	return 0;
}

411 412 413 414 415
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
416
static kvm_pfn_t spte_to_pfn(u64 pte)
417
{
418
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
419 420
}

421 422 423 424 425 426 427
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

428
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
429
static void __set_spte(u64 *sptep, u64 spte)
430
{
431
	WRITE_ONCE(*sptep, spte);
432 433
}

434
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
435
{
436
	WRITE_ONCE(*sptep, spte);
437 438 439 440 441 442
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
443 444 445 446 447

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
448
#else
449 450 451 452 453 454 455
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
456

457 458 459 460 461 462 463 464 465 466 467 468
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

469 470 471
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
472

473 474 475 476 477 478 479 480 481 482 483 484
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

485
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
486 487
}

488 489 490 491 492 493 494
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

495
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
496 497 498 499 500 501 502 503

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
504
	count_spte_clear(sptep, spte);
505 506 507 508 509 510 511 512 513 514 515
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
516 517
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
518
	count_spte_clear(sptep, spte);
519 520 521

	return orig.spte;
}
522 523 524 525

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
526 527 528 529 530 531 532 533 534 535 536 537 538 539
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
563 564
#endif

565
static bool spte_can_locklessly_be_made_writable(u64 spte)
566
{
567 568
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
569 570
}

571 572
static bool spte_has_volatile_bits(u64 spte)
{
573 574 575
	if (!is_shadow_present_pte(spte))
		return false;

576
	/*
577
	 * Always atomically update spte if it can be updated
578 579 580 581
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
582 583
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
584 585
		return true;

586
	if (spte_ad_enabled(spte)) {
587 588 589 590
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
591

592
	return false;
593 594
}

595
static bool is_accessed_spte(u64 spte)
596
{
597 598 599 600
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
601 602
}

603
static bool is_dirty_spte(u64 spte)
604
{
605 606 607
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
608 609
}

610 611 612 613 614 615 616 617 618 619 620 621
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

622 623 624
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
625
 */
626
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
627
{
628
	u64 old_spte = *sptep;
629

630
	WARN_ON(!is_shadow_present_pte(new_spte));
631

632 633
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
634
		return old_spte;
635
	}
636

637
	if (!spte_has_volatile_bits(old_spte))
638
		__update_clear_spte_fast(sptep, new_spte);
639
	else
640
		old_spte = __update_clear_spte_slow(sptep, new_spte);
641

642 643
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

666 667
	/*
	 * For the spte updated out of mmu-lock is safe, since
668
	 * we always atomically update it, see the comments in
669 670
	 * spte_has_volatile_bits().
	 */
671
	if (spte_can_locklessly_be_made_writable(old_spte) &&
672
	      !is_writable_pte(new_spte))
673
		flush = true;
674

675
	/*
676
	 * Flush TLB when accessed/dirty states are changed in the page tables,
677 678 679
	 * to guarantee consistency between TLB and page tables.
	 */

680 681
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
682
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
683 684 685 686
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
687
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
688
	}
689

690
	return flush;
691 692
}

693 694 695 696
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
697
 * Returns non-zero if the PTE was previously valid.
698 699 700
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
701
	kvm_pfn_t pfn;
702 703 704
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
705
		__update_clear_spte_fast(sptep, 0ull);
706
	else
707
		old_spte = __update_clear_spte_slow(sptep, 0ull);
708

709
	if (!is_shadow_present_pte(old_spte))
710 711 712
		return 0;

	pfn = spte_to_pfn(old_spte);
713 714 715 716 717 718

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
719
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
720

721
	if (is_accessed_spte(old_spte))
722
		kvm_set_pfn_accessed(pfn);
723 724

	if (is_dirty_spte(old_spte))
725
		kvm_set_pfn_dirty(pfn);
726

727 728 729 730 731 732 733 734 735 736
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
737
	__update_clear_spte_fast(sptep, 0ull);
738 739
}

740 741 742 743 744
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

745 746
static u64 mark_spte_for_access_track(u64 spte)
{
747
	if (spte_ad_enabled(spte))
748 749
		return spte & ~shadow_accessed_mask;

750
	if (is_access_track_spte(spte))
751 752 753
		return spte;

	/*
754 755 756
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

773 774 775 776 777 778 779
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

780
	WARN_ON_ONCE(spte_ad_enabled(spte));
781 782 783 784 785 786 787 788 789 790
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

791 792 793 794 795 796 797 798
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

799
	if (spte_ad_enabled(spte)) {
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

817 818
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
819 820 821 822 823
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
824

825 826 827 828
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
829
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
830 831 832 833
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
834 835 836 837 838
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
839
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
840
	local_irq_enable();
841 842
}

843
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
844
				  struct kmem_cache *base_cache, int min)
845 846 847 848
{
	void *obj;

	if (cache->nobjs >= min)
849
		return 0;
850
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
851
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
852
		if (!obj)
853
			return -ENOMEM;
854 855
		cache->objects[cache->nobjs++] = obj;
	}
856
	return 0;
857 858
}

859 860 861 862 863
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

864 865
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
866 867
{
	while (mc->nobjs)
868
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
869 870
}

A
Avi Kivity 已提交
871
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
872
				       int min)
A
Avi Kivity 已提交
873
{
874
	void *page;
A
Avi Kivity 已提交
875 876 877 878

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
879
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
880 881
		if (!page)
			return -ENOMEM;
882
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
883 884 885 886 887 888 889
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
890
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
891 892
}

893
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
894
{
895 896
	int r;

897
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
898
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
899 900
	if (r)
		goto out;
901
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
902 903
	if (r)
		goto out;
904
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
905
				   mmu_page_header_cache, 4);
906 907
out:
	return r;
908 909 910 911
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
912 913
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
914
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
915 916
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
917 918
}

919
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
920 921 922 923 924 925 926 927
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

928
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
929
{
930
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
931 932
}

933
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
934
{
935
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
954
/*
955 956
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
957
 */
958 959 960
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
961 962 963
{
	unsigned long idx;

964
	idx = gfn_to_index(gfn, slot->base_gfn, level);
965
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
966 967
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

991
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
992
{
993
	struct kvm_memslots *slots;
994
	struct kvm_memory_slot *slot;
995
	gfn_t gfn;
M
Marcelo Tosatti 已提交
996

997
	kvm->arch.indirect_shadow_pages++;
998
	gfn = sp->gfn;
999 1000
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1001 1002 1003 1004 1005 1006

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1007
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1008 1009
}

1010
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1011
{
1012
	struct kvm_memslots *slots;
1013
	struct kvm_memory_slot *slot;
1014
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1015

1016
	kvm->arch.indirect_shadow_pages--;
1017
	gfn = sp->gfn;
1018 1019
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1020 1021 1022 1023
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1024
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1025 1026
}

1027 1028
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
1029
{
1030
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
1031 1032

	if (slot) {
1033
		linfo = lpage_info_slot(gfn, slot, level);
1034
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
1035 1036
	}

1037
	return true;
M
Marcelo Tosatti 已提交
1038 1039
}

1040 1041
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1042 1043 1044 1045
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1046
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1047 1048
}

1049
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
1050
{
J
Joerg Roedel 已提交
1051
	unsigned long page_size;
1052
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1053

J
Joerg Roedel 已提交
1054
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
1055

1056
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057 1058 1059 1060 1061 1062
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1063
	return ret;
M
Marcelo Tosatti 已提交
1064 1065
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1077 1078 1079
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1080 1081
{
	struct kvm_memory_slot *slot;
1082

1083
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1084
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1085 1086 1087 1088 1089
		slot = NULL;

	return slot;
}

1090 1091
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1092 1093
{
	int host_level, level, max_level;
1094 1095
	struct kvm_memory_slot *slot;

1096 1097
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1098

1099 1100
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1101 1102 1103
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1104 1105 1106 1107 1108
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1109
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1110 1111

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1112
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1113 1114 1115
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1116 1117
}

1118
/*
1119
 * About rmap_head encoding:
1120
 *
1121 1122
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1123
 * pte_list_desc containing more mappings.
1124 1125 1126 1127
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1128
 */
1129
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1130
			struct kvm_rmap_head *rmap_head)
1131
{
1132
	struct pte_list_desc *desc;
1133
	int i, count = 0;
1134

1135
	if (!rmap_head->val) {
1136
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1137 1138
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1139 1140
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1141
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1142
		desc->sptes[1] = spte;
1143
		rmap_head->val = (unsigned long)desc | 1;
1144
		++count;
1145
	} else {
1146
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1147
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1148
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1149
			desc = desc->more;
1150
			count += PTE_LIST_EXT;
1151
		}
1152 1153
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1154 1155
			desc = desc->more;
		}
A
Avi Kivity 已提交
1156
		for (i = 0; desc->sptes[i]; ++i)
1157
			++count;
A
Avi Kivity 已提交
1158
		desc->sptes[i] = spte;
1159
	}
1160
	return count;
1161 1162
}

1163
static void
1164 1165 1166
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1167 1168 1169
{
	int j;

1170
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1171
		;
A
Avi Kivity 已提交
1172 1173
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1174 1175 1176
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1177
		rmap_head->val = (unsigned long)desc->sptes[0];
1178 1179 1180 1181
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1182
			rmap_head->val = (unsigned long)desc->more | 1;
1183
	mmu_free_pte_list_desc(desc);
1184 1185
}

1186
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1187
{
1188 1189
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1190 1191
	int i;

1192
	if (!rmap_head->val) {
1193
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1194
		BUG();
1195
	} else if (!(rmap_head->val & 1)) {
1196
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1197
		if ((u64 *)rmap_head->val != spte) {
1198
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1199 1200
			BUG();
		}
1201
		rmap_head->val = 0;
1202
	} else {
1203
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1204
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1205 1206
		prev_desc = NULL;
		while (desc) {
1207
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1208
				if (desc->sptes[i] == spte) {
1209 1210
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1211 1212
					return;
				}
1213
			}
1214 1215 1216
			prev_desc = desc;
			desc = desc->more;
		}
1217
		pr_err("pte_list_remove: %p many->many\n", spte);
1218 1219 1220 1221
		BUG();
	}
}

1222 1223
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1224
{
1225
	unsigned long idx;
1226

1227
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1228
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1229 1230
}

1231 1232
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1233
{
1234
	struct kvm_memslots *slots;
1235 1236
	struct kvm_memory_slot *slot;

1237 1238
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1239
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1250 1251 1252
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1253
	struct kvm_rmap_head *rmap_head;
1254 1255 1256

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1257 1258
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1259 1260 1261 1262 1263 1264
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1265
	struct kvm_rmap_head *rmap_head;
1266 1267 1268

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1269 1270
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1271 1272
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1290 1291
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1292
{
1293 1294
	u64 *sptep;

1295
	if (!rmap_head->val)
1296 1297
		return NULL;

1298
	if (!(rmap_head->val & 1)) {
1299
		iter->desc = NULL;
1300 1301
		sptep = (u64 *)rmap_head->val;
		goto out;
1302 1303
	}

1304
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1305
	iter->pos = 0;
1306 1307 1308 1309
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1310 1311 1312 1313 1314 1315 1316 1317 1318
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1319 1320
	u64 *sptep;

1321 1322 1323 1324 1325
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1326
				goto out;
1327 1328 1329 1330 1331 1332 1333
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1334 1335
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1336 1337 1338 1339
		}
	}

	return NULL;
1340 1341 1342
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1343 1344
}

1345 1346
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1347
	     _spte_; _spte_ = rmap_get_next(_iter_))
1348

1349
static void drop_spte(struct kvm *kvm, u64 *sptep)
1350
{
1351
	if (mmu_spte_clear_track_bits(sptep))
1352
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1376
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1377
 * spte write-protection is caused by protecting shadow page table.
1378
 *
T
Tiejun Chen 已提交
1379
 * Note: write protection is difference between dirty logging and spte
1380 1381 1382 1383 1384
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1385
 *
1386
 * Return true if tlb need be flushed.
1387
 */
1388
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1389 1390 1391
{
	u64 spte = *sptep;

1392
	if (!is_writable_pte(spte) &&
1393
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1394 1395 1396 1397
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1398 1399
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1400
	spte = spte & ~PT_WRITABLE_MASK;
1401

1402
	return mmu_spte_update(sptep, spte);
1403 1404
}

1405 1406
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1407
				 bool pt_protect)
1408
{
1409 1410
	u64 *sptep;
	struct rmap_iterator iter;
1411
	bool flush = false;
1412

1413
	for_each_rmap_spte(rmap_head, &iter, sptep)
1414
		flush |= spte_write_protect(sptep, pt_protect);
1415

1416
	return flush;
1417 1418
}

1419
static bool spte_clear_dirty(u64 *sptep)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static bool wrprot_ad_disabled_spte(u64 *sptep)
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
	if (was_writable)
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1446
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1447 1448 1449 1450 1451
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1452
	for_each_rmap_spte(rmap_head, &iter, sptep)
1453 1454 1455 1456
		if (spte_ad_enabled(*sptep))
			flush |= spte_clear_dirty(sptep);
		else
			flush |= wrprot_ad_disabled_spte(sptep);
1457 1458 1459 1460

	return flush;
}

1461
static bool spte_set_dirty(u64 *sptep)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1472
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1473 1474 1475 1476 1477
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1478
	for_each_rmap_spte(rmap_head, &iter, sptep)
1479 1480
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1481 1482 1483 1484

	return flush;
}

1485
/**
1486
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1487 1488 1489 1490 1491 1492 1493 1494
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1495
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1496 1497
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1498
{
1499
	struct kvm_rmap_head *rmap_head;
1500

1501
	while (mask) {
1502 1503 1504
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1505

1506 1507 1508
		/* clear the first set bit */
		mask &= mask - 1;
	}
1509 1510
}

1511
/**
1512 1513
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1525
	struct kvm_rmap_head *rmap_head;
1526 1527

	while (mask) {
1528 1529 1530
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1531 1532 1533 1534 1535 1536 1537

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1552 1553 1554 1555 1556
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1557 1558
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1574 1575
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1576
{
1577
	struct kvm_rmap_head *rmap_head;
1578
	int i;
1579
	bool write_protected = false;
1580

1581
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1582
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1583
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1584 1585 1586
	}

	return write_protected;
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1597
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1598
{
1599 1600
	u64 *sptep;
	struct rmap_iterator iter;
1601
	bool flush = false;
1602

1603
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1604
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1605 1606

		drop_spte(kvm, sptep);
1607
		flush = true;
1608
	}
1609

1610 1611 1612
	return flush;
}

1613
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614 1615 1616
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1617
	return kvm_zap_rmapp(kvm, rmap_head);
1618 1619
}

1620
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1621 1622
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1623
{
1624 1625
	u64 *sptep;
	struct rmap_iterator iter;
1626
	int need_flush = 0;
1627
	u64 new_spte;
1628
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1629
	kvm_pfn_t new_pfn;
1630 1631 1632

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1633

1634
restart:
1635
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1636
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1637
			    sptep, *sptep, gfn, level);
1638

1639
		need_flush = 1;
1640

1641
		if (pte_write(*ptep)) {
1642
			drop_spte(kvm, sptep);
1643
			goto restart;
1644
		} else {
1645
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1646 1647 1648 1649
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1650 1651

			new_spte = mark_spte_for_access_track(new_spte);
1652 1653 1654

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1655 1656
		}
	}
1657

1658 1659 1660 1661 1662 1663
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1674
	struct kvm_rmap_head *rmap;
1675 1676 1677
	int level;

	/* private field. */
1678
	struct kvm_rmap_head *end_rmap;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1732 1733 1734 1735 1736
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1737
					       struct kvm_rmap_head *rmap_head,
1738
					       struct kvm_memory_slot *slot,
1739 1740
					       gfn_t gfn,
					       int level,
1741
					       unsigned long data))
1742
{
1743
	struct kvm_memslots *slots;
1744
	struct kvm_memory_slot *memslot;
1745 1746
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1747
	int i;
1748

1749 1750 1751 1752 1753
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1754

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1774 1775
	}

1776
	return ret;
1777 1778
}

1779 1780
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1781 1782
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1783
					 struct kvm_memory_slot *slot,
1784
					 gfn_t gfn, int level,
1785 1786 1787
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1788 1789 1790 1791
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1792 1793 1794
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1795 1796 1797 1798 1799
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1800 1801
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1802
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1803 1804
}

1805
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1806 1807
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1808
{
1809
	u64 *sptep;
1810
	struct rmap_iterator uninitialized_var(iter);
1811 1812
	int young = 0;

1813 1814
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1815

1816
	trace_kvm_age_page(gfn, level, slot, young);
1817 1818 1819
	return young;
}

1820
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1821 1822
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1823
{
1824 1825
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1826

1827 1828 1829 1830
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1831 1832
}

1833 1834
#define RMAP_RECYCLE_THRESHOLD 1000

1835
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1836
{
1837
	struct kvm_rmap_head *rmap_head;
1838 1839 1840
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1841

1842
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1843

1844
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1845 1846 1847
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1848
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1849
{
A
Andres Lagar-Cavilla 已提交
1850
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1851 1852
}

A
Andrea Arcangeli 已提交
1853 1854 1855 1856 1857
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1858
#ifdef MMU_DEBUG
1859
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1860
{
1861 1862 1863
	u64 *pos;
	u64 *end;

1864
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1865
		if (is_shadow_present_pte(*pos)) {
1866
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1867
			       pos, *pos);
A
Avi Kivity 已提交
1868
			return 0;
1869
		}
A
Avi Kivity 已提交
1870 1871
	return 1;
}
1872
#endif
A
Avi Kivity 已提交
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1886
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1887
{
1888
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1889
	hlist_del(&sp->hash_link);
1890 1891
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1892 1893
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1894
	kmem_cache_free(mmu_page_header_cache, sp);
1895 1896
}

1897 1898
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1899
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1900 1901
}

1902
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1903
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1904 1905 1906 1907
{
	if (!parent_pte)
		return;

1908
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1909 1910
}

1911
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1912 1913
				       u64 *parent_pte)
{
1914
	pte_list_remove(parent_pte, &sp->parent_ptes);
1915 1916
}

1917 1918 1919 1920
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1921
	mmu_spte_clear_no_track(parent_pte);
1922 1923
}

1924
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1925
{
1926
	struct kvm_mmu_page *sp;
1927

1928 1929
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1930
	if (!direct)
1931
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1932
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1933 1934 1935 1936 1937 1938

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1939 1940 1941
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1942 1943
}

1944
static void mark_unsync(u64 *spte);
1945
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1946
{
1947 1948 1949 1950 1951 1952
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1953 1954
}

1955
static void mark_unsync(u64 *spte)
1956
{
1957
	struct kvm_mmu_page *sp;
1958
	unsigned int index;
1959

1960
	sp = page_header(__pa(spte));
1961 1962
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1963
		return;
1964
	if (sp->unsync_children++)
1965
		return;
1966
	kvm_mmu_mark_parents_unsync(sp);
1967 1968
}

1969
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1970
			       struct kvm_mmu_page *sp)
1971
{
1972
	return 0;
1973 1974
}

M
Marcelo Tosatti 已提交
1975 1976 1977 1978
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1979 1980
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1981
				 const void *pte)
1982 1983 1984 1985
{
	WARN_ON(1);
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1996 1997
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1998
{
1999
	int i;
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2012 2013 2014 2015 2016 2017 2018
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2019 2020 2021 2022
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2023

2024
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2025
		struct kvm_mmu_page *child;
2026 2027
		u64 ent = sp->spt[i];

2028 2029 2030 2031
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2032 2033 2034 2035 2036 2037 2038 2039

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2040 2041 2042 2043
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2044
				nr_unsync_leaf += ret;
2045
			} else
2046 2047 2048 2049 2050 2051
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2052
			clear_unsync_child_bit(sp, i);
2053 2054
	}

2055 2056 2057
	return nr_unsync_leaf;
}

2058 2059
#define INVALID_INDEX (-1)

2060 2061 2062
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2063
	pvec->nr = 0;
2064 2065 2066
	if (!sp->unsync_children)
		return 0;

2067
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2068
	return __mmu_unsync_walk(sp, pvec);
2069 2070 2071 2072 2073
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2074
	trace_kvm_mmu_sync_page(sp);
2075 2076 2077 2078
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2079 2080 2081 2082
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2083

2084 2085 2086 2087 2088 2089
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
2090
 * for_each_valid_sp() has skipped that kind of pages.
2091
 */
2092
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2093 2094
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2095 2096
		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
		} else
2097 2098

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2099 2100
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2101

2102
/* @sp->gfn should be write-protected at the call site */
2103 2104
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2105
{
2106
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2107
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2108
		return false;
2109 2110
	}

2111
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2112
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2113
		return false;
2114 2115
	}

2116
	return true;
2117 2118
}

2119 2120 2121
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2122
{
2123 2124 2125 2126
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
2127

2128 2129 2130 2131
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2132 2133
}

2134 2135 2136 2137 2138 2139 2140
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2141 2142 2143 2144 2145
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2146
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2147
			 struct list_head *invalid_list)
2148
{
2149 2150
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2151 2152
}

2153
/* @gfn should be write-protected at the call site */
2154 2155
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2156 2157
{
	struct kvm_mmu_page *s;
2158
	bool ret = false;
2159

2160
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2161
		if (!s->unsync)
2162 2163 2164
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2165
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2166 2167
	}

2168
	return ret;
2169 2170
}

2171
struct mmu_page_path {
2172 2173
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2174 2175
};

2176
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2177
		for (i = mmu_pages_first(&pvec, &parents);	\
2178 2179 2180
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2181 2182 2183
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2184 2185 2186 2187 2188
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2189 2190
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2191

P
Paolo Bonzini 已提交
2192 2193 2194
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2195

P
Paolo Bonzini 已提交
2196
		parents->parent[level-2] = sp;
2197 2198 2199 2200 2201
	}

	return n;
}

P
Paolo Bonzini 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2211 2212
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2226
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2227
{
2228 2229 2230 2231 2232 2233 2234 2235 2236
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2237
		WARN_ON(idx == INVALID_INDEX);
2238
		clear_unsync_child_bit(sp, idx);
2239
		level++;
P
Paolo Bonzini 已提交
2240
	} while (!sp->unsync_children);
2241
}
2242

2243 2244 2245 2246 2247 2248 2249
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2250
	LIST_HEAD(invalid_list);
2251
	bool flush = false;
2252 2253

	while (mmu_unsync_walk(parent, &pages)) {
2254
		bool protected = false;
2255 2256

		for_each_sp(pages, sp, parents, i)
2257
			protected |= rmap_write_protect(vcpu, sp->gfn);
2258

2259
		if (protected) {
2260
			kvm_flush_remote_tlbs(vcpu->kvm);
2261 2262
			flush = false;
		}
2263

2264
		for_each_sp(pages, sp, parents, i) {
2265
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2266 2267
			mmu_pages_clear_parents(&parents);
		}
2268 2269 2270 2271 2272
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2273
	}
2274 2275

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2276 2277
}

2278 2279
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2280
	atomic_set(&sp->write_flooding_count,  0);
2281 2282 2283 2284 2285 2286 2287 2288 2289
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2290 2291 2292 2293
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2294
					     int direct,
2295
					     unsigned access)
2296 2297 2298
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2299 2300
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2301
	bool flush = false;
2302
	int collisions = 0;
2303
	LIST_HEAD(invalid_list);
2304

2305
	role = vcpu->arch.mmu.base_role;
2306
	role.level = level;
2307
	role.direct = direct;
2308
	if (role.direct)
2309
		role.cr4_pae = 0;
2310
	role.access = access;
2311 2312
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2313 2314 2315 2316
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2317 2318 2319 2320 2321 2322
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2323 2324
		if (!need_sync && sp->unsync)
			need_sync = true;
2325

2326 2327
		if (sp->role.word != role.word)
			continue;
2328

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2339

2340
		if (sp->unsync_children)
2341
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2342

2343
		__clear_sp_write_flooding_count(sp);
2344
		trace_kvm_mmu_get_page(sp, false);
2345
		goto out;
2346
	}
2347

A
Avi Kivity 已提交
2348
	++vcpu->kvm->stat.mmu_cache_miss;
2349 2350 2351

	sp = kvm_mmu_alloc_page(vcpu, direct);

2352 2353
	sp->gfn = gfn;
	sp->role = role;
2354 2355
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2356
	if (!direct) {
2357 2358 2359 2360 2361 2362 2363 2364
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2365
			kvm_flush_remote_tlbs(vcpu->kvm);
2366 2367

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2368
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2369
	}
2370
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2371
	clear_page(sp->spt);
A
Avi Kivity 已提交
2372
	trace_kvm_mmu_get_page(sp, true);
2373 2374

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2375 2376 2377
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2378
	return sp;
2379 2380
}

2381 2382 2383 2384 2385 2386
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2387

2388 2389
	if (iterator->level == PT64_ROOT_4LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2390 2391 2392
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2407

2408 2409 2410 2411 2412
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2413 2414
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2415
{
2416
	if (is_last_spte(spte, iterator->level)) {
2417 2418 2419 2420
		iterator->level = 0;
		return;
	}

2421
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2422 2423 2424
	--iterator->level;
}

2425 2426
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2427
	__shadow_walk_next(iterator, *iterator->sptep);
2428 2429
}

2430 2431
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2432 2433 2434
{
	u64 spte;

2435
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2436

2437
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2438
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2439 2440 2441 2442 2443

	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2444

2445
	mmu_spte_set(sptep, spte);
2446 2447 2448 2449 2450

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2451 2452
}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2470
		drop_parent_pte(child, sptep);
2471 2472 2473 2474
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2475
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2476 2477 2478 2479 2480 2481 2482
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2483
		if (is_last_spte(pte, sp->role.level)) {
2484
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2485 2486 2487
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2488
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2489
			drop_parent_pte(child, spte);
2490
		}
X
Xiao Guangrong 已提交
2491 2492 2493 2494
		return true;
	}

	if (is_mmio_spte(pte))
2495
		mmu_spte_clear_no_track(spte);
2496

X
Xiao Guangrong 已提交
2497
	return false;
2498 2499
}

2500
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2501
					 struct kvm_mmu_page *sp)
2502
{
2503 2504
	unsigned i;

2505 2506
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2507 2508
}

2509
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2510
{
2511 2512
	u64 *sptep;
	struct rmap_iterator iter;
2513

2514
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2515
		drop_parent_pte(sp, sptep);
2516 2517
}

2518
static int mmu_zap_unsync_children(struct kvm *kvm,
2519 2520
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2521
{
2522 2523 2524
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2525

2526
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2527
		return 0;
2528 2529 2530 2531 2532

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2533
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2534
			mmu_pages_clear_parents(&parents);
2535
			zapped++;
2536 2537 2538 2539
		}
	}

	return zapped;
2540 2541
}

2542 2543
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2544
{
2545
	int ret;
A
Avi Kivity 已提交
2546

2547
	trace_kvm_mmu_prepare_zap_page(sp);
2548
	++kvm->stat.mmu_shadow_zapped;
2549
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2550
	kvm_mmu_page_unlink_children(kvm, sp);
2551
	kvm_mmu_unlink_parents(kvm, sp);
2552

2553
	if (!sp->role.invalid && !sp->role.direct)
2554
		unaccount_shadowed(kvm, sp);
2555

2556 2557
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2558
	if (!sp->root_count) {
2559 2560
		/* Count self */
		ret++;
2561
		list_move(&sp->link, invalid_list);
2562
		kvm_mod_used_mmu_pages(kvm, -1);
2563
	} else {
A
Avi Kivity 已提交
2564
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2565 2566 2567 2568 2569 2570 2571

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2572
	}
2573 2574

	sp->role.invalid = 1;
2575
	return ret;
2576 2577
}

2578 2579 2580
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2581
	struct kvm_mmu_page *sp, *nsp;
2582 2583 2584 2585

	if (list_empty(invalid_list))
		return;

2586
	/*
2587 2588 2589 2590 2591 2592 2593
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2594 2595
	 */
	kvm_flush_remote_tlbs(kvm);
2596

2597
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2598
		WARN_ON(!sp->role.invalid || sp->root_count);
2599
		kvm_mmu_free_page(sp);
2600
	}
2601 2602
}

2603 2604 2605 2606 2607 2608 2609 2610
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2611 2612
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2613
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2614 2615
}

2616 2617
/*
 * Changing the number of mmu pages allocated to the vm
2618
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2619
 */
2620
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2621
{
2622
	LIST_HEAD(invalid_list);
2623

2624 2625
	spin_lock(&kvm->mmu_lock);

2626
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2627 2628 2629 2630
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2631

2632
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2633
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2634 2635
	}

2636
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2637 2638

	spin_unlock(&kvm->mmu_lock);
2639 2640
}

2641
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2642
{
2643
	struct kvm_mmu_page *sp;
2644
	LIST_HEAD(invalid_list);
2645 2646
	int r;

2647
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2648
	r = 0;
2649
	spin_lock(&kvm->mmu_lock);
2650
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2651
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2652 2653
			 sp->role.word);
		r = 1;
2654
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2655
	}
2656
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2657 2658
	spin_unlock(&kvm->mmu_lock);

2659
	return r;
2660
}
2661
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2662

2663
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2664 2665 2666 2667 2668 2669 2670 2671
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2672 2673
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2674
{
2675
	struct kvm_mmu_page *sp;
2676

2677 2678
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2679

2680
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2681
		if (!can_unsync)
2682
			return true;
2683

2684 2685
		if (sp->unsync)
			continue;
2686

2687 2688
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2689
	}
2690 2691

	return false;
2692 2693
}

D
Dan Williams 已提交
2694
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2695 2696 2697 2698 2699 2700 2701
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2702
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2703
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2704
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2705
		    bool can_unsync, bool host_writable)
2706
{
2707
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2708
	int ret = 0;
2709
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
2710

2711
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2712 2713
		return 0;

2714 2715 2716 2717
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;

2718 2719 2720 2721 2722 2723
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2724
	spte |= shadow_present_mask;
2725
	if (!speculative)
2726
		spte |= spte_shadow_accessed_mask(spte);
2727

S
Sheng Yang 已提交
2728 2729 2730 2731
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2732

2733
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2734
		spte |= shadow_user_mask;
2735

2736
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2737
		spte |= PT_PAGE_SIZE_MASK;
2738
	if (tdp_enabled)
2739
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2740
			kvm_is_mmio_pfn(pfn));
2741

2742
	if (host_writable)
2743
		spte |= SPTE_HOST_WRITEABLE;
2744 2745
	else
		pte_access &= ~ACC_WRITE_MASK;
2746

2747
	spte |= (u64)pfn << PAGE_SHIFT;
2748
	spte |= shadow_me_mask;
2749

2750
	if (pte_access & ACC_WRITE_MASK) {
2751

X
Xiao Guangrong 已提交
2752
		/*
2753 2754 2755 2756
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2757
		 */
2758
		if (level > PT_PAGE_TABLE_LEVEL &&
2759
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2760
			goto done;
2761

2762
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2763

2764 2765 2766 2767 2768 2769
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2770
		if (!can_unsync && is_writable_pte(*sptep))
2771 2772
			goto set_pte;

2773
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2774
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2775
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2776
			ret = 1;
2777
			pte_access &= ~ACC_WRITE_MASK;
2778
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2779 2780 2781
		}
	}

2782
	if (pte_access & ACC_WRITE_MASK) {
2783
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2784
		spte |= spte_shadow_dirty_mask(spte);
2785
	}
2786

2787 2788 2789
	if (speculative)
		spte = mark_spte_for_access_track(spte);

2790
set_pte:
2791
	if (mmu_spte_update(sptep, spte))
2792
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2793
done:
M
Marcelo Tosatti 已提交
2794 2795 2796
	return ret;
}

2797
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2798
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2799
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2800 2801
{
	int was_rmapped = 0;
2802
	int rmap_count;
2803
	bool emulate = false;
M
Marcelo Tosatti 已提交
2804

2805 2806
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2807

2808
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2809 2810 2811 2812
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2813 2814
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2815
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2816
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2817 2818

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2819
			drop_parent_pte(child, sptep);
2820
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2821
		} else if (pfn != spte_to_pfn(*sptep)) {
2822
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2823
				 spte_to_pfn(*sptep), pfn);
2824
			drop_spte(vcpu->kvm, sptep);
2825
			kvm_flush_remote_tlbs(vcpu->kvm);
2826 2827
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2828
	}
2829

2830 2831
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2832
		if (write_fault)
2833
			emulate = true;
2834
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2835
	}
M
Marcelo Tosatti 已提交
2836

2837 2838
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2839

A
Avi Kivity 已提交
2840
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2841
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2842
		 is_large_pte(*sptep)? "2MB" : "4kB",
2843
		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2844
		 *sptep, sptep);
A
Avi Kivity 已提交
2845
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2846 2847
		++vcpu->kvm->stat.lpages;

2848 2849 2850 2851 2852 2853
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2854
	}
2855

X
Xiao Guangrong 已提交
2856
	kvm_release_pfn_clean(pfn);
2857 2858

	return emulate;
2859 2860
}

D
Dan Williams 已提交
2861
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2862 2863 2864 2865
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2866
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2867
	if (!slot)
2868
		return KVM_PFN_ERR_FAULT;
2869

2870
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2871 2872 2873 2874 2875 2876 2877
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2878
	struct kvm_memory_slot *slot;
2879 2880 2881 2882 2883
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2884 2885
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2886 2887
		return -1;

2888
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2889 2890 2891 2892
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2893 2894
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2911
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2926 2927
	sp = page_header(__pa(sptep));

2928
	/*
2929 2930 2931
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2932
	 */
2933
	if (sp_ad_disabled(sp))
2934 2935 2936 2937 2938 2939 2940 2941
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2942
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2943
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2944
{
2945
	struct kvm_shadow_walk_iterator iterator;
2946
	struct kvm_mmu_page *sp;
2947
	int emulate = 0;
2948
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2949

2950 2951 2952
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2953
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2954
		if (iterator.level == level) {
2955 2956 2957
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2958
			direct_pte_prefetch(vcpu, iterator.sptep);
2959 2960
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2961 2962
		}

2963
		drop_large_spte(vcpu, iterator.sptep);
2964
		if (!is_shadow_present_pte(*iterator.sptep)) {
2965 2966 2967 2968
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2969
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2970
					      iterator.level - 1, 1, ACC_ALL);
2971

2972
			link_shadow_page(vcpu, iterator.sptep, sp);
2973 2974
		}
	}
2975
	return emulate;
A
Avi Kivity 已提交
2976 2977
}

H
Huang Ying 已提交
2978
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2979
{
H
Huang Ying 已提交
2980 2981 2982 2983 2984 2985 2986
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2987

H
Huang Ying 已提交
2988
	send_sig_info(SIGBUS, &info, tsk);
2989 2990
}

D
Dan Williams 已提交
2991
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2992
{
X
Xiao Guangrong 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

3002
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3003
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3004
		return 0;
3005
	}
3006

3007
	return -EFAULT;
3008 3009
}

3010
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
3011 3012
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
3013
{
D
Dan Williams 已提交
3014
	kvm_pfn_t pfn = *pfnp;
3015 3016 3017 3018 3019 3020 3021 3022 3023
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
3024
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3025
	    level == PT_PAGE_TABLE_LEVEL &&
3026
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3027
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
3046
			kvm_get_pfn(pfn);
3047 3048 3049 3050 3051
			*pfnp = pfn;
		}
	}
}

3052
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
3053
				kvm_pfn_t pfn, unsigned access, int *ret_val)
3054 3055
{
	/* The pfn is invalid, report the error! */
3056
	if (unlikely(is_error_pfn(pfn))) {
3057
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3058
		return true;
3059 3060
	}

3061
	if (unlikely(is_noslot_pfn(pfn)))
3062 3063
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

3064
	return false;
3065 3066
}

3067
static bool page_fault_can_be_fast(u32 error_code)
3068
{
3069 3070 3071 3072 3073 3074 3075
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3076 3077 3078 3079 3080
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3081
	/*
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3093 3094
	 */

3095 3096 3097
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3098 3099
}

3100 3101 3102 3103
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3104
static bool
3105
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3106
			u64 *sptep, u64 old_spte, u64 new_spte)
3107 3108 3109 3110 3111
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3124
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3125 3126
		return false;

3127
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3128 3129 3130 3131 3132 3133 3134
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3135 3136 3137 3138

	return true;
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3151 3152 3153 3154 3155 3156 3157 3158 3159
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3160
	struct kvm_mmu_page *sp;
3161
	bool fault_handled = false;
3162
	u64 spte = 0ull;
3163
	uint retry_count = 0;
3164

3165 3166 3167
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

3168
	if (!page_fault_can_be_fast(error_code))
3169 3170 3171 3172
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3173
	do {
3174
		u64 new_spte;
3175

3176 3177 3178 3179 3180
		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
			if (!is_shadow_present_pte(spte) ||
			    iterator.level < level)
				break;

3181 3182 3183
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3184

3185
		/*
3186 3187 3188 3189 3190
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3191 3192 3193 3194
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3195 3196 3197 3198
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3214 3215

			/*
3216 3217 3218 3219 3220 3221 3222 3223 3224
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3225
			 */
3226
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3227
				break;
3228
		}
3229

3230
		/* Verify that the fault can be handled in the fast path */
3231 3232
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3233 3234 3235 3236 3237 3238 3239 3240
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
		 * Documentation/virtual/kvm/locking.txt to get more detail.
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3241
							iterator.sptep, spte,
3242
							new_spte);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3253

X
Xiao Guangrong 已提交
3254
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3255
			      spte, fault_handled);
3256 3257
	walk_shadow_page_lockless_end(vcpu);

3258
	return fault_handled;
3259 3260
}

3261
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3262
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3263
static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3264

3265 3266
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3267 3268
{
	int r;
3269
	int level;
3270
	bool force_pt_level = false;
D
Dan Williams 已提交
3271
	kvm_pfn_t pfn;
3272
	unsigned long mmu_seq;
3273
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3274

3275
	level = mapping_level(vcpu, gfn, &force_pt_level);
3276 3277 3278 3279 3280 3281 3282 3283
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3284

3285
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3286
	}
M
Marcelo Tosatti 已提交
3287

3288 3289 3290
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3291
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3292
	smp_rmb();
3293

3294
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3295
		return 0;
3296

3297 3298
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3299

3300
	spin_lock(&vcpu->kvm->mmu_lock);
3301
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3302
		goto out_unlock;
3303 3304
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3305 3306
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3307
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3308 3309
	spin_unlock(&vcpu->kvm->mmu_lock);

3310
	return r;
3311 3312 3313 3314 3315

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3316 3317 3318
}


3319 3320 3321
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3322
	struct kvm_mmu_page *sp;
3323
	LIST_HEAD(invalid_list);
3324

3325
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3326
		return;
3327

3328 3329
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
	    (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3330
	     vcpu->arch.mmu.direct_map)) {
3331
		hpa_t root = vcpu->arch.mmu.root_hpa;
3332

3333
		spin_lock(&vcpu->kvm->mmu_lock);
3334 3335
		sp = page_header(root);
		--sp->root_count;
3336 3337 3338 3339
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3340
		spin_unlock(&vcpu->kvm->mmu_lock);
3341
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3342 3343
		return;
	}
3344 3345

	spin_lock(&vcpu->kvm->mmu_lock);
3346
	for (i = 0; i < 4; ++i) {
3347
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3348

A
Avi Kivity 已提交
3349 3350
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3351 3352
			sp = page_header(root);
			--sp->root_count;
3353
			if (!sp->root_count && sp->role.invalid)
3354 3355
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3356
		}
3357
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3358
	}
3359
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3360
	spin_unlock(&vcpu->kvm->mmu_lock);
3361
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3362 3363
}

3364 3365 3366 3367 3368
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3369
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3370 3371 3372 3373 3374 3375
		ret = 1;
	}

	return ret;
}

3376 3377 3378
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3379
	unsigned i;
3380

3381
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3382
		spin_lock(&vcpu->kvm->mmu_lock);
3383 3384 3385 3386
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
			return 1;
		}
3387 3388
		sp = kvm_mmu_get_page(vcpu, 0, 0,
				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3389 3390 3391 3392 3393 3394 3395
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3396
			MMU_WARN_ON(VALID_PAGE(root));
3397
			spin_lock(&vcpu->kvm->mmu_lock);
3398 3399 3400 3401
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
				return 1;
			}
3402
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3403
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3404 3405 3406 3407 3408
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3409
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3410 3411 3412 3413 3414 3415 3416
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3417
{
3418
	struct kvm_mmu_page *sp;
3419 3420 3421
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3422

3423
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3424

3425 3426 3427 3428 3429 3430 3431
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3432
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3433
		hpa_t root = vcpu->arch.mmu.root_hpa;
3434

3435
		MMU_WARN_ON(VALID_PAGE(root));
3436

3437
		spin_lock(&vcpu->kvm->mmu_lock);
3438 3439 3440 3441
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
			return 1;
		}
3442 3443
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3444 3445
		root = __pa(sp->spt);
		++sp->root_count;
3446
		spin_unlock(&vcpu->kvm->mmu_lock);
3447
		vcpu->arch.mmu.root_hpa = root;
3448
		return 0;
3449
	}
3450

3451 3452
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3453 3454
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3455
	 */
3456
	pm_mask = PT_PRESENT_MASK;
3457
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3458 3459
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3460
	for (i = 0; i < 4; ++i) {
3461
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3462

3463
		MMU_WARN_ON(VALID_PAGE(root));
3464
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3465
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3466
			if (!(pdptr & PT_PRESENT_MASK)) {
3467
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3468 3469
				continue;
			}
A
Avi Kivity 已提交
3470
			root_gfn = pdptr >> PAGE_SHIFT;
3471 3472
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3473
		}
3474
		spin_lock(&vcpu->kvm->mmu_lock);
3475 3476 3477 3478
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
			return 1;
		}
3479 3480
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3481 3482
		root = __pa(sp->spt);
		++sp->root_count;
3483 3484
		spin_unlock(&vcpu->kvm->mmu_lock);

3485
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3486
	}
3487
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3488 3489 3490 3491 3492

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3493
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3514
	return 0;
3515 3516
}

3517 3518 3519 3520 3521 3522 3523 3524
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3525 3526 3527 3528 3529
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3530 3531 3532
	if (vcpu->arch.mmu.direct_map)
		return;

3533 3534
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3535

3536
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3537
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3538
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3539 3540 3541
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3542
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3543 3544 3545 3546 3547
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3548
		if (root && VALID_PAGE(root)) {
3549 3550 3551 3552 3553
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3554
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3555 3556 3557 3558 3559 3560
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3561
	spin_unlock(&vcpu->kvm->mmu_lock);
3562
}
N
Nadav Har'El 已提交
3563
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3564

3565
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3566
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3567
{
3568 3569
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3570 3571 3572
	return vaddr;
}

3573
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3574 3575
					 u32 access,
					 struct x86_exception *exception)
3576
{
3577 3578
	if (exception)
		exception->error_code = 0;
3579
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3580 3581
}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3601
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3602
{
3603 3604 3605 3606 3607 3608 3609
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3610 3611 3612 3613 3614 3615
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3616 3617 3618
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3619 3620
{
	struct kvm_shadow_walk_iterator iterator;
3621
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3622 3623
	int root, leaf;
	bool reserved = false;
3624

3625
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3626
		goto exit;
3627

3628
	walk_shadow_page_lockless_begin(vcpu);
3629

3630 3631
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3632 3633 3634 3635 3636
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3637
		leaf--;
3638

3639 3640
		if (!is_shadow_present_pte(spte))
			break;
3641 3642

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3643
						    iterator.level);
3644 3645
	}

3646 3647
	walk_shadow_page_lockless_end(vcpu);

3648 3649 3650
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3651
		while (root > leaf) {
3652 3653 3654 3655 3656 3657 3658 3659
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3660 3661
}

P
Paolo Bonzini 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
/*
 * Return values of handle_mmio_page_fault:
 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
 *			directly.
 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
 *			fault path update the mmio spte.
 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
 */
enum {
	RET_MMIO_PF_EMULATE = 1,
	RET_MMIO_PF_INVALID = 2,
	RET_MMIO_PF_RETRY = 0,
	RET_MMIO_PF_BUG = -1
};

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3679 3680
{
	u64 spte;
3681
	bool reserved;
3682

3683
	if (mmio_info_in_cache(vcpu, addr, direct))
3684
		return RET_MMIO_PF_EMULATE;
3685

3686
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3687
	if (WARN_ON(reserved))
3688
		return RET_MMIO_PF_BUG;
3689 3690 3691 3692 3693

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3694
		if (!check_mmio_spte(vcpu, spte))
3695 3696
			return RET_MMIO_PF_INVALID;

3697 3698
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3699 3700

		trace_handle_mmio_page_fault(addr, gfn, access);
3701
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3702
		return RET_MMIO_PF_EMULATE;
3703 3704 3705 3706 3707 3708
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3709
	return RET_MMIO_PF_RETRY;
3710
}
3711
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3712

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3750
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3751
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3752
{
3753
	gfn_t gfn = gva >> PAGE_SHIFT;
3754
	int r;
A
Avi Kivity 已提交
3755

3756
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3757

3758 3759
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3760

3761 3762 3763
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3764

3765
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3766 3767


3768
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3769
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3770 3771
}

3772
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3773 3774
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3775

3776
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3777
	arch.gfn = gfn;
3778
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3779
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3780

3781
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3782 3783
}

3784
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3785
{
3786
	if (unlikely(!lapic_in_kernel(vcpu) ||
3787 3788 3789
		     kvm_event_needs_reinjection(vcpu)))
		return false;

3790
	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3791 3792
		return false;

3793 3794 3795
	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3796
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3797
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3798
{
3799
	struct kvm_memory_slot *slot;
3800 3801
	bool async;

3802
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3803 3804
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3805 3806 3807
	if (!async)
		return false; /* *pfn has correct page already */

3808
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3809
		trace_kvm_try_async_get_page(gva, gfn);
3810 3811 3812 3813 3814 3815 3816 3817
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3818
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3819 3820 3821
	return false;
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
				u64 fault_address, char *insn, int insn_len,
				bool need_unprotect)
{
	int r = 1;

	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

		if (need_unprotect && kvm_event_needs_reinjection(vcpu))
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
3840
		kvm_async_pf_task_wait(fault_address, 0);
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3864
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3865
			  bool prefault)
3866
{
D
Dan Williams 已提交
3867
	kvm_pfn_t pfn;
3868
	int r;
3869
	int level;
3870
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3871
	gfn_t gfn = gpa >> PAGE_SHIFT;
3872
	unsigned long mmu_seq;
3873 3874
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3875

3876
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3877

3878 3879
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3880

3881 3882 3883 3884
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3885 3886 3887
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3888
	if (likely(!force_pt_level)) {
3889 3890 3891
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3892
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3893
	}
3894

3895 3896 3897
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3898
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3899
	smp_rmb();
3900

3901
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3902 3903
		return 0;

3904 3905 3906
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3907
	spin_lock(&vcpu->kvm->mmu_lock);
3908
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3909
		goto out_unlock;
3910 3911
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3912 3913
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3914
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3915 3916 3917
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3918 3919 3920 3921 3922

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3923 3924
}

3925 3926
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3927 3928 3929
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3930
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3931
	context->invlpg = nonpaging_invlpg;
3932
	context->update_pte = nonpaging_update_pte;
3933
	context->root_level = 0;
A
Avi Kivity 已提交
3934
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3935
	context->root_hpa = INVALID_PAGE;
3936
	context->direct_map = true;
3937
	context->nx = false;
A
Avi Kivity 已提交
3938 3939
}

3940
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3941
{
3942
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3943 3944
}

3945 3946
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3947
	return kvm_read_cr3(vcpu);
3948 3949
}

3950 3951
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3952
{
3953
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3954 3955
}

3956
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3957
			   unsigned access, int *nr_present)
3958 3959 3960 3961 3962 3963 3964 3965
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3966
		mark_mmio_spte(vcpu, sptep, gfn, access);
3967 3968 3969 3970 3971 3972
		return true;
	}

	return false;
}

3973 3974
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3975
{
3976 3977 3978 3979 3980 3981 3982
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3983 3984 3985 3986 3987 3988 3989
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

3990
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3991 3992
}

3993 3994 3995 3996 3997
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3998 3999 4000 4001 4002 4003 4004 4005
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4006 4007 4008 4009
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4010
			bool pse, bool amd)
4011 4012
{
	u64 exb_bit_rsvd = 0;
4013
	u64 gbpages_bit_rsvd = 0;
4014
	u64 nonleaf_bit8_rsvd = 0;
4015

4016
	rsvd_check->bad_mt_xwr = 0;
4017

4018
	if (!nx)
4019
		exb_bit_rsvd = rsvd_bits(63, 63);
4020
	if (!gbpages)
4021
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4022 4023 4024 4025 4026

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4027
	if (amd)
4028 4029
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4030
	switch (level) {
4031 4032
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4033 4034 4035 4036
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4037

4038
		if (!pse) {
4039
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4040 4041 4042
			break;
		}

4043 4044
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4045
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4046 4047
		else
			/* 32 bits PSE 4MB page */
4048
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4049 4050
		break;
	case PT32E_ROOT_LEVEL:
4051
		rsvd_check->rsvd_bits_mask[0][2] =
4052
			rsvd_bits(maxphyaddr, 63) |
4053
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4054
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4055
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4056
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4057
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4058
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4059 4060
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4061 4062
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4063
		break;
4064 4065 4066 4067 4068 4069
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4070
	case PT64_ROOT_4LEVEL:
4071 4072
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4073
			rsvd_bits(maxphyaddr, 51);
4074 4075
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4076
			rsvd_bits(maxphyaddr, 51);
4077 4078 4079 4080 4081 4082 4083
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4084
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4085
			rsvd_bits(13, 29);
4086
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4087 4088
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4089 4090
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4091 4092 4093 4094
		break;
	}
}

4095 4096 4097 4098 4099
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4100 4101
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4102
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4103 4104
}

4105 4106 4107
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4108
{
4109
	u64 bad_mt_xwr;
4110

4111 4112
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4113
	rsvd_check->rsvd_bits_mask[0][3] =
4114
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4115
	rsvd_check->rsvd_bits_mask[0][2] =
4116
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4117
	rsvd_check->rsvd_bits_mask[0][1] =
4118
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4119
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4120 4121

	/* large page */
4122
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4123 4124
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4125
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4126
	rsvd_check->rsvd_bits_mask[1][1] =
4127
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4128
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4129

4130 4131 4132 4133 4134 4135 4136 4137
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4138
	}
4139
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4140 4141
}

4142 4143 4144 4145 4146 4147 4148
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4149 4150 4151 4152 4153 4154 4155 4156
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4157
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4158 4159
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4160

4161 4162 4163 4164
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4165 4166
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4167
				boot_cpu_data.x86_phys_bits,
4168
				context->shadow_root_level, uses_nx,
4169 4170
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4171 4172 4173 4174 4175 4176 4177 4178 4179

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4180 4181 4182
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4183 4184 4185 4186 4187 4188
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4189 4190 4191 4192 4193 4194 4195 4196
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4197 4198 4199 4200 4201
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4202
	if (boot_cpu_is_amd())
4203
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4204 4205
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
4206 4207
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4208
	else
4209
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4210 4211 4212
					    boot_cpu_data.x86_phys_bits,
					    false);

4213 4214 4215 4216 4217 4218 4219
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4244 4245
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4246
{
4247 4248 4249 4250 4251 4252 4253 4254 4255
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4256 4257

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4258 4259
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4260
		/*
4261 4262
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4263
		 */
4264

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
		/* Faults from writes to non-writable pages */
		u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
		/* Faults from user mode accesses to supervisor pages */
		u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
		/* Faults from fetches of non-executable pages*/
		u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
			 * conditions are ture:
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4310
		}
4311 4312

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4313 4314 4315
	}
}

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4391
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4392
{
4393 4394 4395 4396 4397
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4398 4399
}

4400 4401 4402
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4403
{
4404
	context->nx = is_nx(vcpu);
4405
	context->root_level = level;
4406

4407
	reset_rsvds_bits_mask(vcpu, context);
4408
	update_permission_bitmask(vcpu, context, false);
4409
	update_pkru_bitmask(vcpu, context, false);
4410
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4411

4412
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4413 4414
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4415
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4416
	context->invlpg = paging64_invlpg;
4417
	context->update_pte = paging64_update_pte;
4418
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4419
	context->root_hpa = INVALID_PAGE;
4420
	context->direct_map = false;
A
Avi Kivity 已提交
4421 4422
}

4423 4424
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4425
{
4426 4427 4428 4429
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4430 4431
}

4432 4433
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4434
{
4435
	context->nx = false;
4436
	context->root_level = PT32_ROOT_LEVEL;
4437

4438
	reset_rsvds_bits_mask(vcpu, context);
4439
	update_permission_bitmask(vcpu, context, false);
4440
	update_pkru_bitmask(vcpu, context, false);
4441
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4442 4443 4444

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4445
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4446
	context->invlpg = paging32_invlpg;
4447
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4448
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4449
	context->root_hpa = INVALID_PAGE;
4450
	context->direct_map = false;
A
Avi Kivity 已提交
4451 4452
}

4453 4454
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4455
{
4456
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4457 4458
}

4459
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4460
{
4461
	struct kvm_mmu *context = &vcpu->arch.mmu;
4462

4463
	context->base_role.word = 0;
4464
	context->base_role.smm = is_smm(vcpu);
4465
	context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4466
	context->page_fault = tdp_page_fault;
4467
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4468
	context->invlpg = nonpaging_invlpg;
4469
	context->update_pte = nonpaging_update_pte;
4470
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4471
	context->root_hpa = INVALID_PAGE;
4472
	context->direct_map = true;
4473
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4474
	context->get_cr3 = get_cr3;
4475
	context->get_pdptr = kvm_pdptr_read;
4476
	context->inject_page_fault = kvm_inject_page_fault;
4477 4478

	if (!is_paging(vcpu)) {
4479
		context->nx = false;
4480 4481 4482
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4483
		context->nx = is_nx(vcpu);
4484 4485
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4486 4487
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4488
	} else if (is_pae(vcpu)) {
4489
		context->nx = is_nx(vcpu);
4490
		context->root_level = PT32E_ROOT_LEVEL;
4491 4492
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4493
	} else {
4494
		context->nx = false;
4495
		context->root_level = PT32_ROOT_LEVEL;
4496 4497
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4498 4499
	}

4500
	update_permission_bitmask(vcpu, context, false);
4501
	update_pkru_bitmask(vcpu, context, false);
4502
	update_last_nonleaf_level(vcpu, context);
4503
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4504 4505
}

4506
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4507
{
4508
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4509
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4510 4511
	struct kvm_mmu *context = &vcpu->arch.mmu;

4512
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4513 4514

	if (!is_paging(vcpu))
4515
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4516
	else if (is_long_mode(vcpu))
4517
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4518
	else if (is_pae(vcpu))
4519
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4520
	else
4521
		paging32_init_context(vcpu, context);
4522

4523 4524 4525 4526
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4527
		= smep && !is_write_protection(vcpu);
4528 4529
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4530
	context->base_role.smm = is_smm(vcpu);
4531
	reset_shadow_zero_bits_mask(vcpu, context);
4532 4533 4534
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4535 4536
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
			     bool accessed_dirty)
N
Nadav Har'El 已提交
4537
{
4538 4539
	struct kvm_mmu *context = &vcpu->arch.mmu;

4540
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4541

4542
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4543 4544

	context->nx = true;
4545
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4546 4547 4548 4549 4550
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
4551
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4552 4553
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;
4554
	context->base_role.ad_disabled = !accessed_dirty;
N
Nadav Har'El 已提交
4555 4556

	update_permission_bitmask(vcpu, context, true);
4557
	update_pkru_bitmask(vcpu, context, true);
4558
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4559
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4560
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4561 4562 4563
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4564
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4565
{
4566 4567 4568 4569 4570 4571 4572
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4573 4574
}

4575
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4576 4577 4578 4579
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4580
	g_context->get_pdptr         = kvm_pdptr_read;
4581 4582 4583
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4584 4585 4586 4587 4588 4589
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4590 4591
	 */
	if (!is_paging(vcpu)) {
4592
		g_context->nx = false;
4593 4594 4595
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4596
		g_context->nx = is_nx(vcpu);
4597 4598
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4599
		reset_rsvds_bits_mask(vcpu, g_context);
4600 4601
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4602
		g_context->nx = is_nx(vcpu);
4603
		g_context->root_level = PT32E_ROOT_LEVEL;
4604
		reset_rsvds_bits_mask(vcpu, g_context);
4605 4606
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4607
		g_context->nx = false;
4608
		g_context->root_level = PT32_ROOT_LEVEL;
4609
		reset_rsvds_bits_mask(vcpu, g_context);
4610 4611 4612
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4613
	update_permission_bitmask(vcpu, g_context, false);
4614
	update_pkru_bitmask(vcpu, g_context, false);
4615
	update_last_nonleaf_level(vcpu, g_context);
4616 4617
}

4618
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4619
{
4620
	if (mmu_is_nested(vcpu))
4621
		init_kvm_nested_mmu(vcpu);
4622
	else if (tdp_enabled)
4623
		init_kvm_tdp_mmu(vcpu);
4624
	else
4625
		init_kvm_softmmu(vcpu);
4626 4627
}

4628
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4629
{
4630
	kvm_mmu_unload(vcpu);
4631
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4632
}
4633
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4634 4635

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4636
{
4637 4638
	int r;

4639
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4640 4641
	if (r)
		goto out;
4642
	r = mmu_alloc_roots(vcpu);
4643
	kvm_mmu_sync_roots(vcpu);
4644 4645
	if (r)
		goto out;
4646
	/* set_cr3() should ensure TLB has been flushed */
4647
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4648 4649
out:
	return r;
A
Avi Kivity 已提交
4650
}
A
Avi Kivity 已提交
4651 4652 4653 4654 4655
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4656
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4657
}
4658
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4659

4660
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4661 4662
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4663
{
4664
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4665 4666
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4667
        }
4668

A
Avi Kivity 已提交
4669
	++vcpu->kvm->stat.mmu_pte_updated;
4670
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4671 4672
}

4673 4674 4675 4676 4677 4678 4679 4680
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4681 4682
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4683 4684 4685
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4686 4687
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4688
{
4689 4690
	u64 gentry;
	int r;
4691 4692 4693

	/*
	 * Assume that the pte write on a page table of the same type
4694 4695
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4696
	 */
4697
	if (is_pae(vcpu) && *bytes == 4) {
4698
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4699 4700
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4701
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4702 4703
		if (r)
			gentry = 0;
4704 4705 4706
		new = (const u8 *)&gentry;
	}

4707
	switch (*bytes) {
4708 4709 4710 4711 4712 4713 4714 4715 4716
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4717 4718
	}

4719 4720 4721 4722 4723 4724 4725
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4726
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4727
{
4728 4729 4730 4731
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4732
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4733
		return false;
4734

4735 4736
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4753 4754 4755 4756 4757 4758 4759 4760

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4798
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4799 4800
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4801 4802 4803 4804 4805 4806
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4807
	bool remote_flush, local_flush;
4808 4809 4810 4811 4812 4813 4814
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4815
	mask.smm = 1;
4816
	mask.ad_disabled = 1;
4817 4818 4819 4820 4821 4822 4823 4824

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4825
	remote_flush = local_flush = false;
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4840
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4841

4842
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4843
		if (detect_write_misaligned(sp, gpa, bytes) ||
4844
		      detect_write_flooding(sp)) {
4845
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4846
			++vcpu->kvm->stat.mmu_flooded;
4847 4848
			continue;
		}
4849 4850 4851 4852 4853

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4854
		local_flush = true;
4855
		while (npte--) {
4856
			entry = *spte;
4857
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4858 4859
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4860
			      & mask.word) && rmap_can_add(vcpu))
4861
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4862
			if (need_remote_flush(entry, *spte))
4863
				remote_flush = true;
4864
			++spte;
4865 4866
		}
	}
4867
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4868
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4869
	spin_unlock(&vcpu->kvm->mmu_lock);
4870 4871
}

4872 4873
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4874 4875
	gpa_t gpa;
	int r;
4876

4877
	if (vcpu->arch.mmu.direct_map)
4878 4879
		return 0;

4880
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4881 4882

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4883

4884
	return r;
4885
}
4886
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4887

4888
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4889
{
4890
	LIST_HEAD(invalid_list);
4891

4892
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4893
		return 0;
4894

4895 4896 4897
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4898

A
Avi Kivity 已提交
4899
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4900
	}
4901
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4902 4903 4904 4905

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
A
Avi Kivity 已提交
4906 4907
}

4908
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4909
		       void *insn, int insn_len)
4910
{
4911
	int r, emulation_type = EMULTYPE_RETRY;
4912
	enum emulation_result er;
4913
	bool direct = vcpu->arch.mmu.direct_map;
4914

4915 4916 4917 4918 4919
	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
	if (vcpu->arch.mmu.direct_map) {
		vcpu->arch.gpa_available = true;
		vcpu->arch.gpa_val = cr2;
	}
4920

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
P
Paolo Bonzini 已提交
4931
		/* Must be RET_MMIO_PF_INVALID.  */
4932
	}
4933

4934 4935
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
				      false);
4936
	if (r < 0)
4937 4938 4939
		return r;
	if (!r)
		return 1;
4940

4941 4942 4943 4944 4945 4946 4947
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
4948
	if (vcpu->arch.mmu.direct_map &&
4949
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4950 4951 4952 4953
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
		return 1;
	}

4954
	if (mmio_info_in_cache(vcpu, cr2, direct))
4955
		emulation_type = 0;
4956
emulate:
4957
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4958 4959 4960 4961

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4962
	case EMULATE_USER_EXIT:
4963
		++vcpu->stat.mmio_exits;
4964
		/* fall through */
4965
	case EMULATE_FAIL:
4966
		return 0;
4967 4968 4969 4970 4971 4972
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4973 4974 4975
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4976
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4977 4978 4979 4980
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4981 4982 4983 4984 4985 4986
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4987 4988 4989 4990 4991 4992
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4993 4994
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4995
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4996
	free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4997 4998 4999 5000
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
5001
	struct page *page;
A
Avi Kivity 已提交
5002 5003
	int i;

5004 5005 5006 5007 5008 5009 5010
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
5011 5012
		return -ENOMEM;

5013
	vcpu->arch.mmu.pae_root = page_address(page);
5014
	for (i = 0; i < 4; ++i)
5015
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5016

A
Avi Kivity 已提交
5017 5018 5019
	return 0;
}

5020
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5021
{
5022 5023 5024 5025
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
5026

5027 5028
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
5029

5030
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5031
{
5032
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5033

5034
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
5035 5036
}

5037
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5038 5039
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5040 5041 5042 5043
{
	kvm_mmu_invalidate_zap_all_pages(kvm);
}

5044 5045 5046 5047 5048
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
5049
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

5060
/* The return value indicates if tlb flush on all vcpus is needed. */
5061
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
5129 5130 5131 5132
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5133
	int i;
X
Xiao Guangrong 已提交
5134 5135

	spin_lock(&kvm->mmu_lock);
5136 5137 5138 5139 5140 5141 5142 5143 5144
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5145

5146 5147 5148 5149
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
5150 5151 5152 5153 5154
	}

	spin_unlock(&kvm->mmu_lock);
}

5155 5156
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5157
{
5158
	return __rmap_write_protect(kvm, rmap_head, false);
5159 5160
}

5161 5162
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5163
{
5164
	bool flush;
A
Avi Kivity 已提交
5165

5166
	spin_lock(&kvm->mmu_lock);
5167 5168
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5169
	spin_unlock(&kvm->mmu_lock);
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5189 5190
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
5191
}
5192

5193
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5194
					 struct kvm_rmap_head *rmap_head)
5195 5196 5197 5198
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5199
	kvm_pfn_t pfn;
5200 5201
	struct kvm_mmu_page *sp;

5202
restart:
5203
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5204 5205 5206 5207
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5208 5209 5210 5211 5212
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5213 5214 5215
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
5216
			PageTransCompoundMap(pfn_to_page(pfn))) {
5217 5218
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
5219 5220
			goto restart;
		}
5221 5222 5223 5224 5225 5226
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5227
				   const struct kvm_memory_slot *memslot)
5228
{
5229
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5230
	spin_lock(&kvm->mmu_lock);
5231 5232
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5233 5234 5235
	spin_unlock(&kvm->mmu_lock);
}

5236 5237 5238
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5239
	bool flush;
5240 5241

	spin_lock(&kvm->mmu_lock);
5242
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5261
	bool flush;
5262 5263

	spin_lock(&kvm->mmu_lock);
5264 5265
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5279
	bool flush;
5280 5281

	spin_lock(&kvm->mmu_lock);
5282
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
5293
#define BATCH_ZAP_PAGES	10
5294 5295 5296
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
5297
	int batch = 0;
5298 5299 5300 5301

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
5302 5303
		int ret;

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

5319 5320 5321 5322
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
5323
		if (batch >= BATCH_ZAP_PAGES &&
5324
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
5325
			batch = 0;
5326 5327 5328
			goto restart;
		}

5329 5330
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
5331 5332 5333
		batch += ret;

		if (ret)
5334 5335 5336
			goto restart;
	}

5337 5338 5339 5340
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
5341
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
5356
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5357 5358
	kvm->arch.mmu_valid_gen++;

5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5370 5371 5372 5373
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5374 5375 5376 5377 5378
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5379
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5380 5381 5382 5383 5384
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
5385
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5386
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5387
		kvm_mmu_invalidate_zap_all_pages(kvm);
5388
	}
5389 5390
}

5391 5392
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5393 5394
{
	struct kvm *kvm;
5395
	int nr_to_scan = sc->nr_to_scan;
5396
	unsigned long freed = 0;
5397

5398
	spin_lock(&kvm_lock);
5399 5400

	list_for_each_entry(kvm, &vm_list, vm_list) {
5401
		int idx;
5402
		LIST_HEAD(invalid_list);
5403

5404 5405 5406 5407 5408 5409 5410 5411
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5412 5413 5414 5415 5416 5417
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5418 5419
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
5420 5421
			continue;

5422
		idx = srcu_read_lock(&kvm->srcu);
5423 5424
		spin_lock(&kvm->mmu_lock);

5425 5426 5427 5428 5429 5430
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5431 5432
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5433
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5434

5435
unlock:
5436
		spin_unlock(&kvm->mmu_lock);
5437
		srcu_read_unlock(&kvm->srcu, idx);
5438

5439 5440 5441 5442 5443
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5444 5445
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5446 5447
	}

5448
	spin_unlock(&kvm_lock);
5449 5450 5451 5452 5453 5454
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5455
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5456 5457 5458
}

static struct shrinker mmu_shrinker = {
5459 5460
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5461 5462 5463
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5464
static void mmu_destroy_caches(void)
5465
{
5466 5467
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
5468 5469
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
5470 5471 5472 5473
}

int kvm_mmu_module_init(void)
{
5474 5475
	kvm_mmu_clear_all_pte_masks();

5476 5477
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5478
					    0, 0, NULL);
5479
	if (!pte_list_desc_cache)
5480 5481
		goto nomem;

5482 5483
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5484
						  0, 0, NULL);
5485 5486 5487
	if (!mmu_page_header_cache)
		goto nomem;

5488
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5489 5490
		goto nomem;

5491 5492
	register_shrinker(&mmu_shrinker);

5493 5494 5495
	return 0;

nomem:
5496
	mmu_destroy_caches();
5497 5498 5499
	return -ENOMEM;
}

5500 5501 5502 5503 5504 5505 5506
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5507
	struct kvm_memslots *slots;
5508
	struct kvm_memory_slot *memslot;
5509
	int i;
5510

5511 5512
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5513

5514 5515 5516
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5517 5518 5519

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5520
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5521 5522 5523 5524

	return nr_mmu_pages;
}

5525 5526
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5527
	kvm_mmu_unload(vcpu);
5528 5529
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5530 5531 5532 5533 5534 5535 5536
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5537 5538
	mmu_audit_disable();
}