mmu.c 125.9 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
44
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
45

46 47 48 49 50 51 52
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
53
bool tdp_enabled = false;
54

55 56 57 58
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
59 60 61
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
62
};
63

64
#undef MMU_DEBUG
65 66

#ifdef MMU_DEBUG
67 68
static bool dbg = 0;
module_param(dbg, bool, 0644);
69 70 71

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72
#define MMU_WARN_ON(x) WARN_ON(x)
73 74 75
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
76
#define MMU_WARN_ON(x) do { } while (0)
77
#endif
A
Avi Kivity 已提交
78

79 80
#define PTE_PREFETCH_NUM		8

81
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
82 83 84 85 86
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
87
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
88 89 90 91 92 93 94 95

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
96
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
97

98 99 100
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
101 102 103 104 105

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


106
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
107 108
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 110 111 112 113 114
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
115 116 117 118

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 120 121
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122

123 124
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
125

126 127 128 129 130
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

131 132
#include <trace/events/kvm.h>

133 134 135
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

136 137
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138

139 140
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

141 142 143
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

144 145 146
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
147 148
};

149 150 151 152
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
153
	int level;
154 155 156 157 158 159 160 161
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

162 163 164 165 166 167
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

168
static struct kmem_cache *pte_list_desc_cache;
169
static struct kmem_cache *mmu_page_header_cache;
170
static struct percpu_counter kvm_total_used_mmu_pages;
171

S
Sheng Yang 已提交
172 173 174 175 176
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
177 178 179
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
180
static void mmu_free_roots(struct kvm_vcpu *vcpu);
181 182 183 184 185 186 187

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

188
/*
189 190 191 192 193 194 195
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
196
 */
197
#define MMIO_SPTE_GEN_LOW_SHIFT		2
198 199
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

200 201 202
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
203
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
204 205 206 207 208

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
209
	WARN_ON(gen & ~MMIO_GEN_MASK);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

227
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228
{
229
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 231
}

232
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233
			   unsigned access)
234
{
235
	unsigned int gen = kvm_current_mmio_generation(vcpu);
236
	u64 mask = generation_mmio_spte_mask(gen);
237

238
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
239 240
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

241
	trace_mark_mmio_spte(sptep, gfn, access, gen);
242
	mmu_spte_set(sptep, mask);
243 244 245 246 247 248 249 250 251
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
252
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253
	return (spte & ~mask) >> PAGE_SHIFT;
254 255 256 257
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
258
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259
	return (spte & ~mask) & ~PAGE_MASK;
260 261
}

262
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
263
			  kvm_pfn_t pfn, unsigned access)
264 265
{
	if (unlikely(is_noslot_pfn(pfn))) {
266
		mark_mmio_spte(vcpu, sptep, gfn, access);
267 268 269 270 271
		return true;
	}

	return false;
}
272

273
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274
{
275 276
	unsigned int kvm_gen, spte_gen;

277
	kvm_gen = kvm_current_mmio_generation(vcpu);
278 279 280 281
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
282 283
}

S
Sheng Yang 已提交
284
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
286 287 288 289 290 291 292 293 294
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
295 296 297 298 299
static int is_cpuid_PSE36(void)
{
	return 1;
}

300 301
static int is_nx(struct kvm_vcpu *vcpu)
{
302
	return vcpu->arch.efer & EFER_NX;
303 304
}

305 306
static int is_shadow_present_pte(u64 pte)
{
307
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 309
}

M
Marcelo Tosatti 已提交
310 311 312 313 314
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

315 316 317 318
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
319
	if (is_large_pte(pte))
320 321 322 323
		return 1;
	return 0;
}

D
Dan Williams 已提交
324
static kvm_pfn_t spte_to_pfn(u64 pte)
325
{
326
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 328
}

329 330 331 332 333 334 335
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

336
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
337
static void __set_spte(u64 *sptep, u64 spte)
338
{
339
	*sptep = spte;
340 341
}

342
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343
{
344 345 346 347 348 349 350
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
351 352 353 354 355

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
356
#else
357 358 359 360 361 362 363
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
364

365 366 367 368 369 370 371 372 373 374 375 376
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

377 378 379
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
380

381 382 383 384 385 386 387 388 389 390 391 392 393
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
412
	count_spte_clear(sptep, spte);
413 414 415 416 417 418 419 420 421 422 423
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 425
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429

	return orig.spte;
}
430 431 432 433

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
471 472
#endif

473 474
static bool spte_is_locklessly_modifiable(u64 spte)
{
475 476
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 478
}

479 480
static bool spte_has_volatile_bits(u64 spte)
{
481 482 483 484 485 486 487 488 489
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

490 491 492 493 494 495
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

496 497
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498 499 500 501 502
		return false;

	return true;
}

503 504 505 506 507
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

508 509 510 511 512
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
527 528 529 530 531 532
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
533
 */
534
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535
{
536
	u64 old_spte = *sptep;
537
	bool ret = false;
538

539
	WARN_ON(!is_shadow_present_pte(new_spte));
540

541 542 543 544
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
545

546
	if (!spte_has_volatile_bits(old_spte))
547
		__update_clear_spte_fast(sptep, new_spte);
548
	else
549
		old_spte = __update_clear_spte_slow(sptep, new_spte);
550

551 552 553 554 555
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
556 557
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
558 559
		ret = true;

560
	if (!shadow_accessed_mask)
561
		return ret;
562

563 564 565 566 567 568 569 570
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

571 572 573 574
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575 576

	return ret;
577 578
}

579 580 581 582 583 584 585
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
586
	kvm_pfn_t pfn;
587 588 589
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
590
		__update_clear_spte_fast(sptep, 0ull);
591
	else
592
		old_spte = __update_clear_spte_slow(sptep, 0ull);
593

594
	if (!is_shadow_present_pte(old_spte))
595 596 597
		return 0;

	pfn = spte_to_pfn(old_spte);
598 599 600 601 602 603

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
604
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
620
	__update_clear_spte_fast(sptep, 0ull);
621 622
}

623 624 625 626 627 628 629
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
630 631 632 633 634 635 636 637 638 639 640
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
641 642 643 644
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
645 646 647 648 649 650 651 652
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
653 654
}

655
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656
				  struct kmem_cache *base_cache, int min)
657 658 659 660
{
	void *obj;

	if (cache->nobjs >= min)
661
		return 0;
662
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664
		if (!obj)
665
			return -ENOMEM;
666 667
		cache->objects[cache->nobjs++] = obj;
	}
668
	return 0;
669 670
}

671 672 673 674 675
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

676 677
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
678 679
{
	while (mc->nobjs)
680
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 682
}

A
Avi Kivity 已提交
683
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684
				       int min)
A
Avi Kivity 已提交
685
{
686
	void *page;
A
Avi Kivity 已提交
687 688 689 690

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
692 693
		if (!page)
			return -ENOMEM;
694
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
695 696 697 698 699 700 701
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
702
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
703 704
}

705
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706
{
707 708
	int r;

709
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711 712
	if (r)
		goto out;
713
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714 715
	if (r)
		goto out;
716
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717
				   mmu_page_header_cache, 4);
718 719
out:
	return r;
720 721 722 723
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
724 725
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
726
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727 728
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
729 730
}

731
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 733 734 735 736 737 738 739
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

740
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741
{
742
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 744
}

745
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746
{
747
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
766
/*
767 768
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
769
 */
770 771 772
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
773 774 775
{
	unsigned long idx;

776
	idx = gfn_to_index(gfn, slot->base_gfn, level);
777
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
778 779
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

803
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
804
{
805
	struct kvm_memslots *slots;
806
	struct kvm_memory_slot *slot;
807
	gfn_t gfn;
M
Marcelo Tosatti 已提交
808

809
	kvm->arch.indirect_shadow_pages++;
810
	gfn = sp->gfn;
811 812
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
813 814 815 816 817 818

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

819
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
820 821
}

822
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
823
{
824
	struct kvm_memslots *slots;
825
	struct kvm_memory_slot *slot;
826
	gfn_t gfn;
M
Marcelo Tosatti 已提交
827

828
	kvm->arch.indirect_shadow_pages--;
829
	gfn = sp->gfn;
830 831
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
832 833 834 835
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

836
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
837 838
}

839 840
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
841
{
842
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
843 844

	if (slot) {
845
		linfo = lpage_info_slot(gfn, slot, level);
846
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
847 848
	}

849
	return true;
M
Marcelo Tosatti 已提交
850 851
}

852 853
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
854 855 856 857
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
859 860
}

861
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
862
{
J
Joerg Roedel 已提交
863
	unsigned long page_size;
864
	int i, ret = 0;
M
Marcelo Tosatti 已提交
865

J
Joerg Roedel 已提交
866
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
867

868
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
869 870 871 872 873 874
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

875
	return ret;
M
Marcelo Tosatti 已提交
876 877
}

878 879 880 881 882 883 884 885 886 887 888
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

889 890 891
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
892 893
{
	struct kvm_memory_slot *slot;
894

895
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
896
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
897 898 899 900 901
		slot = NULL;

	return slot;
}

902 903
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
904 905
{
	int host_level, level, max_level;
906 907
	struct kvm_memory_slot *slot;

908 909
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
910

911 912
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
913 914 915
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

916 917 918 919 920
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
921
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
922 923

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
924
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
925 926 927
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
928 929
}

930
/*
931
 * About rmap_head encoding:
932
 *
933 934
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
935
 * pte_list_desc containing more mappings.
936 937 938 939
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
940
 */
941
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
942
			struct kvm_rmap_head *rmap_head)
943
{
944
	struct pte_list_desc *desc;
945
	int i, count = 0;
946

947
	if (!rmap_head->val) {
948
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
949 950
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
951 952
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
953
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
954
		desc->sptes[1] = spte;
955
		rmap_head->val = (unsigned long)desc | 1;
956
		++count;
957
	} else {
958
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
959
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
961
			desc = desc->more;
962
			count += PTE_LIST_EXT;
963
		}
964 965
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
966 967
			desc = desc->more;
		}
A
Avi Kivity 已提交
968
		for (i = 0; desc->sptes[i]; ++i)
969
			++count;
A
Avi Kivity 已提交
970
		desc->sptes[i] = spte;
971
	}
972
	return count;
973 974
}

975
static void
976 977 978
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
979 980 981
{
	int j;

982
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
983
		;
A
Avi Kivity 已提交
984 985
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
986 987 988
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
989
		rmap_head->val = (unsigned long)desc->sptes[0];
990 991 992 993
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
994
			rmap_head->val = (unsigned long)desc->more | 1;
995
	mmu_free_pte_list_desc(desc);
996 997
}

998
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
999
{
1000 1001
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1002 1003
	int i;

1004
	if (!rmap_head->val) {
1005
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1006
		BUG();
1007
	} else if (!(rmap_head->val & 1)) {
1008
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1009
		if ((u64 *)rmap_head->val != spte) {
1010
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1011 1012
			BUG();
		}
1013
		rmap_head->val = 0;
1014
	} else {
1015
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1016
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1017 1018
		prev_desc = NULL;
		while (desc) {
1019
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1020
				if (desc->sptes[i] == spte) {
1021 1022
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1023 1024
					return;
				}
1025
			}
1026 1027 1028
			prev_desc = desc;
			desc = desc->more;
		}
1029
		pr_err("pte_list_remove: %p many->many\n", spte);
1030 1031 1032 1033
		BUG();
	}
}

1034 1035
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1036
{
1037
	unsigned long idx;
1038

1039
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1040
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 1042
}

1043 1044
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1045
{
1046
	struct kvm_memslots *slots;
1047 1048
	struct kvm_memory_slot *slot;

1049 1050
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1051
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1062 1063 1064
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1065
	struct kvm_rmap_head *rmap_head;
1066 1067 1068

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069 1070
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1071 1072 1073 1074 1075 1076
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1077
	struct kvm_rmap_head *rmap_head;
1078 1079 1080

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081 1082
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1102 1103
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1104
{
1105 1106
	u64 *sptep;

1107
	if (!rmap_head->val)
1108 1109
		return NULL;

1110
	if (!(rmap_head->val & 1)) {
1111
		iter->desc = NULL;
1112 1113
		sptep = (u64 *)rmap_head->val;
		goto out;
1114 1115
	}

1116
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1117
	iter->pos = 0;
1118 1119 1120 1121
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1122 1123 1124 1125 1126 1127 1128 1129 1130
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1131 1132
	u64 *sptep;

1133 1134 1135 1136 1137
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1138
				goto out;
1139 1140 1141 1142 1143 1144 1145
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1146 1147
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1148 1149 1150 1151
		}
	}

	return NULL;
1152 1153 1154
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1155 1156
}

1157 1158
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1159
	     _spte_; _spte_ = rmap_get_next(_iter_))
1160

1161
static void drop_spte(struct kvm *kvm, u64 *sptep)
1162
{
1163
	if (mmu_spte_clear_track_bits(sptep))
1164
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1188
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1189
 * spte write-protection is caused by protecting shadow page table.
1190
 *
T
Tiejun Chen 已提交
1191
 * Note: write protection is difference between dirty logging and spte
1192 1193 1194 1195 1196
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1197
 *
1198
 * Return true if tlb need be flushed.
1199
 */
1200
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1201 1202 1203
{
	u64 spte = *sptep;

1204 1205
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1206 1207 1208 1209
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1210 1211
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1212
	spte = spte & ~PT_WRITABLE_MASK;
1213

1214
	return mmu_spte_update(sptep, spte);
1215 1216
}

1217 1218
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1219
				 bool pt_protect)
1220
{
1221 1222
	u64 *sptep;
	struct rmap_iterator iter;
1223
	bool flush = false;
1224

1225
	for_each_rmap_spte(rmap_head, &iter, sptep)
1226
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1227

1228
	return flush;
1229 1230
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1242
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1243 1244 1245 1246 1247
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1248
	for_each_rmap_spte(rmap_head, &iter, sptep)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1265
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1266 1267 1268 1269 1270
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1271
	for_each_rmap_spte(rmap_head, &iter, sptep)
1272 1273 1274 1275 1276
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1277
/**
1278
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1279 1280 1281 1282 1283 1284 1285 1286
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1287
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1288 1289
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1290
{
1291
	struct kvm_rmap_head *rmap_head;
1292

1293
	while (mask) {
1294 1295 1296
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1297

1298 1299 1300
		/* clear the first set bit */
		mask &= mask - 1;
	}
1301 1302
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1316
	struct kvm_rmap_head *rmap_head;
1317 1318

	while (mask) {
1319 1320 1321
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1322 1323 1324 1325 1326 1327 1328

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1343 1344 1345 1346 1347
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1348 1349
}

1350 1351
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1352
{
1353
	struct kvm_rmap_head *rmap_head;
1354
	int i;
1355
	bool write_protected = false;
1356

1357
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1358
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1359
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1360 1361 1362
	}

	return write_protected;
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1373
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1374
{
1375 1376
	u64 *sptep;
	struct rmap_iterator iter;
1377
	bool flush = false;
1378

1379
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1380
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1381 1382

		drop_spte(kvm, sptep);
1383
		flush = true;
1384
	}
1385

1386 1387 1388
	return flush;
}

1389
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1390 1391 1392
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1393
	return kvm_zap_rmapp(kvm, rmap_head);
1394 1395
}

1396
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397 1398
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1399
{
1400 1401
	u64 *sptep;
	struct rmap_iterator iter;
1402
	int need_flush = 0;
1403
	u64 new_spte;
1404
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1405
	kvm_pfn_t new_pfn;
1406 1407 1408

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1409

1410
restart:
1411
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1412 1413
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1414

1415
		need_flush = 1;
1416

1417
		if (pte_write(*ptep)) {
1418
			drop_spte(kvm, sptep);
1419
			goto restart;
1420
		} else {
1421
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1422 1423 1424 1425
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1426
			new_spte &= ~shadow_accessed_mask;
1427 1428 1429

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1430 1431
		}
	}
1432

1433 1434 1435 1436 1437 1438
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1449
	struct kvm_rmap_head *rmap;
1450 1451 1452
	int level;

	/* private field. */
1453
	struct kvm_rmap_head *end_rmap;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1507 1508 1509 1510 1511
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1512
					       struct kvm_rmap_head *rmap_head,
1513
					       struct kvm_memory_slot *slot,
1514 1515
					       gfn_t gfn,
					       int level,
1516
					       unsigned long data))
1517
{
1518
	struct kvm_memslots *slots;
1519
	struct kvm_memory_slot *memslot;
1520 1521
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1522
	int i;
1523

1524 1525 1526 1527 1528
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1549 1550
	}

1551
	return ret;
1552 1553
}

1554 1555
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1556 1557
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1558
					 struct kvm_memory_slot *slot,
1559
					 gfn_t gfn, int level,
1560 1561 1562
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1563 1564 1565 1566
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1567 1568 1569
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1570 1571 1572 1573 1574
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1575 1576
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1577
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1578 1579
}

1580
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1581 1582
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1583
{
1584
	u64 *sptep;
1585
	struct rmap_iterator uninitialized_var(iter);
1586 1587
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1588
	BUG_ON(!shadow_accessed_mask);
1589

1590
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1591
		if (*sptep & shadow_accessed_mask) {
1592
			young = 1;
1593 1594
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1595
		}
1596
	}
1597

1598
	trace_kvm_age_page(gfn, level, slot, young);
1599 1600 1601
	return young;
}

1602
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1603 1604
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1605
{
1606 1607
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1618
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1619
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1620 1621 1622
			young = 1;
			break;
		}
1623
	}
A
Andrea Arcangeli 已提交
1624 1625 1626 1627
out:
	return young;
}

1628 1629
#define RMAP_RECYCLE_THRESHOLD 1000

1630
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1631
{
1632
	struct kvm_rmap_head *rmap_head;
1633 1634 1635
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1636

1637
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1638

1639
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1640 1641 1642
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1643
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644
{
A
Andres Lagar-Cavilla 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1666 1667
}

A
Andrea Arcangeli 已提交
1668 1669 1670 1671 1672
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1673
#ifdef MMU_DEBUG
1674
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1675
{
1676 1677 1678
	u64 *pos;
	u64 *end;

1679
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1680
		if (is_shadow_present_pte(*pos)) {
1681
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1682
			       pos, *pos);
A
Avi Kivity 已提交
1683
			return 0;
1684
		}
A
Avi Kivity 已提交
1685 1686
	return 1;
}
1687
#endif
A
Avi Kivity 已提交
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1701
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1702
{
1703
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1704
	hlist_del(&sp->hash_link);
1705 1706
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1707 1708
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1709
	kmem_cache_free(mmu_page_header_cache, sp);
1710 1711
}

1712 1713
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1714
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1715 1716
}

1717
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1718
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1719 1720 1721 1722
{
	if (!parent_pte)
		return;

1723
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1724 1725
}

1726
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1727 1728
				       u64 *parent_pte)
{
1729
	pte_list_remove(parent_pte, &sp->parent_ptes);
1730 1731
}

1732 1733 1734 1735
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1736
	mmu_spte_clear_no_track(parent_pte);
1737 1738
}

1739
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1740
{
1741
	struct kvm_mmu_page *sp;
1742

1743 1744
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1745
	if (!direct)
1746
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1748 1749 1750 1751 1752 1753

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1754 1755 1756
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1757 1758
}

1759
static void mark_unsync(u64 *spte);
1760
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1761
{
1762 1763 1764 1765 1766 1767
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1768 1769
}

1770
static void mark_unsync(u64 *spte)
1771
{
1772
	struct kvm_mmu_page *sp;
1773
	unsigned int index;
1774

1775
	sp = page_header(__pa(spte));
1776 1777
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1778
		return;
1779
	if (sp->unsync_children++)
1780
		return;
1781
	kvm_mmu_mark_parents_unsync(sp);
1782 1783
}

1784
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1785
			       struct kvm_mmu_page *sp)
1786 1787 1788 1789
{
	return 1;
}

M
Marcelo Tosatti 已提交
1790 1791 1792 1793
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1794 1795
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1796
				 const void *pte)
1797 1798 1799 1800
{
	WARN_ON(1);
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1811 1812
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1813
{
1814
	int i;
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1827 1828 1829 1830 1831 1832 1833
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1834 1835 1836 1837
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1838

1839
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840
		struct kvm_mmu_page *child;
1841 1842
		u64 ent = sp->spt[i];

1843 1844 1845 1846
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1847 1848 1849 1850 1851 1852 1853 1854

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1855 1856 1857 1858
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1859
				nr_unsync_leaf += ret;
1860
			} else
1861 1862 1863 1864 1865 1866
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1867
			clear_unsync_child_bit(sp, i);
1868 1869
	}

1870 1871 1872
	return nr_unsync_leaf;
}

1873 1874
#define INVALID_INDEX (-1)

1875 1876 1877
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1878
	pvec->nr = 0;
1879 1880 1881
	if (!sp->unsync_children)
		return 0;

1882
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1883
	return __mmu_unsync_walk(sp, pvec);
1884 1885 1886 1887 1888
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1889
	trace_kvm_mmu_sync_page(sp);
1890 1891 1892 1893
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1894 1895 1896 1897
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1909 1910 1911 1912 1913 1914 1915 1916
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1917

1918
/* @sp->gfn should be write-protected at the call site */
1919
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1920
			   struct list_head *invalid_list, bool clear_unsync)
1921
{
1922
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1923
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1924 1925 1926
		return 1;
	}

1927
	if (clear_unsync)
1928 1929
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1930
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1931
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1932 1933 1934
		return 1;
	}

1935
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1936 1937 1938
	return 0;
}

1939 1940 1941
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1942
	LIST_HEAD(invalid_list);
1943 1944
	int ret;

1945
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1946
	if (ret)
1947 1948
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1949 1950 1951
	return ret;
}

1952 1953 1954 1955 1956 1957 1958
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1959 1960
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1961
{
1962
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1963 1964
}

1965 1966 1967 1968
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1969
	LIST_HEAD(invalid_list);
1970 1971
	bool flush = false;

1972
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1973
		if (!s->unsync)
1974 1975 1976
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1977
		kvm_unlink_unsync_page(vcpu->kvm, s);
1978
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1979
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1980
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1981 1982 1983 1984 1985
			continue;
		}
		flush = true;
	}

1986
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1987
	if (flush)
1988
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1989 1990
}

1991
struct mmu_page_path {
P
Paolo Bonzini 已提交
1992 1993
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
	unsigned int idx[PT64_ROOT_LEVEL];
1994 1995
};

1996
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1997
		for (i = mmu_pages_first(&pvec, &parents);	\
1998 1999 2000
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2001 2002 2003
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2004 2005 2006 2007 2008
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2009 2010
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2011

P
Paolo Bonzini 已提交
2012 2013 2014
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2015

P
Paolo Bonzini 已提交
2016
		parents->parent[level-2] = sp;
2017 2018 2019 2020 2021
	}

	return n;
}

P
Paolo Bonzini 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2031 2032
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2046
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2047
{
2048 2049 2050 2051 2052 2053 2054 2055 2056
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2057
		WARN_ON(idx == INVALID_INDEX);
2058
		clear_unsync_child_bit(sp, idx);
2059
		level++;
P
Paolo Bonzini 已提交
2060
	} while (!sp->unsync_children);
2061
}
2062

2063 2064 2065 2066 2067 2068 2069
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2070
	LIST_HEAD(invalid_list);
2071 2072

	while (mmu_unsync_walk(parent, &pages)) {
2073
		bool protected = false;
2074 2075

		for_each_sp(pages, sp, parents, i)
2076
			protected |= rmap_write_protect(vcpu, sp->gfn);
2077 2078 2079 2080

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

2081
		for_each_sp(pages, sp, parents, i) {
2082
			kvm_sync_page(vcpu, sp, &invalid_list);
2083 2084
			mmu_pages_clear_parents(&parents);
		}
2085
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2086
		cond_resched_lock(&vcpu->kvm->mmu_lock);
2087
	}
2088 2089
}

2090 2091
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2092
	atomic_set(&sp->write_flooding_count,  0);
2093 2094 2095 2096 2097 2098 2099 2100 2101
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2102 2103 2104 2105 2106
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2107 2108 2109 2110
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2111
					     int direct,
2112
					     unsigned access)
2113 2114 2115
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2116 2117
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2118

2119
	role = vcpu->arch.mmu.base_role;
2120
	role.level = level;
2121
	role.direct = direct;
2122
	if (role.direct)
2123
		role.cr4_pae = 0;
2124
	role.access = access;
2125 2126
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2127 2128 2129 2130
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2131
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2132 2133 2134
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

2135 2136
		if (!need_sync && sp->unsync)
			need_sync = true;
2137

2138 2139
		if (sp->role.word != role.word)
			continue;
2140

2141 2142
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
2143

2144
		if (sp->unsync_children)
2145
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2146

2147
		__clear_sp_write_flooding_count(sp);
2148 2149 2150
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
2151

A
Avi Kivity 已提交
2152
	++vcpu->kvm->stat.mmu_cache_miss;
2153 2154 2155

	sp = kvm_mmu_alloc_page(vcpu, direct);

2156 2157
	sp->gfn = gfn;
	sp->role = role;
2158 2159
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2160
	if (!direct) {
2161 2162 2163 2164 2165 2166 2167 2168
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2169
			kvm_flush_remote_tlbs(vcpu->kvm);
2170

2171 2172
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);
2173
	}
2174
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2175
	clear_page(sp->spt);
A
Avi Kivity 已提交
2176
	trace_kvm_mmu_get_page(sp, true);
2177
	return sp;
2178 2179
}

2180 2181 2182 2183 2184 2185
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2186 2187 2188 2189 2190 2191

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2206

2207 2208 2209 2210 2211
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2212 2213
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2214
{
2215
	if (is_last_spte(spte, iterator->level)) {
2216 2217 2218 2219
		iterator->level = 0;
		return;
	}

2220
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2221 2222 2223
	--iterator->level;
}

2224 2225 2226 2227 2228
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2229 2230
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2231 2232 2233
{
	u64 spte;

2234 2235 2236
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2237
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2238
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2239

2240
	mmu_spte_set(sptep, spte);
2241 2242 2243 2244 2245

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2246 2247
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2265
		drop_parent_pte(child, sptep);
2266 2267 2268 2269
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2270
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2271 2272 2273 2274 2275 2276 2277
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2278
		if (is_last_spte(pte, sp->role.level)) {
2279
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2280 2281 2282
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2283
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2284
			drop_parent_pte(child, spte);
2285
		}
X
Xiao Guangrong 已提交
2286 2287 2288 2289
		return true;
	}

	if (is_mmio_spte(pte))
2290
		mmu_spte_clear_no_track(spte);
2291

X
Xiao Guangrong 已提交
2292
	return false;
2293 2294
}

2295
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2296
					 struct kvm_mmu_page *sp)
2297
{
2298 2299
	unsigned i;

2300 2301
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2302 2303
}

2304
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2305
{
2306 2307
	u64 *sptep;
	struct rmap_iterator iter;
2308

2309
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2310
		drop_parent_pte(sp, sptep);
2311 2312
}

2313
static int mmu_zap_unsync_children(struct kvm *kvm,
2314 2315
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2316
{
2317 2318 2319
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2320

2321
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2322
		return 0;
2323 2324 2325 2326 2327

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2328
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2329
			mmu_pages_clear_parents(&parents);
2330
			zapped++;
2331 2332 2333 2334
		}
	}

	return zapped;
2335 2336
}

2337 2338
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2339
{
2340
	int ret;
A
Avi Kivity 已提交
2341

2342
	trace_kvm_mmu_prepare_zap_page(sp);
2343
	++kvm->stat.mmu_shadow_zapped;
2344
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2345
	kvm_mmu_page_unlink_children(kvm, sp);
2346
	kvm_mmu_unlink_parents(kvm, sp);
2347

2348
	if (!sp->role.invalid && !sp->role.direct)
2349
		unaccount_shadowed(kvm, sp);
2350

2351 2352
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2353
	if (!sp->root_count) {
2354 2355
		/* Count self */
		ret++;
2356
		list_move(&sp->link, invalid_list);
2357
		kvm_mod_used_mmu_pages(kvm, -1);
2358
	} else {
A
Avi Kivity 已提交
2359
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2360 2361 2362 2363 2364 2365 2366

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2367
	}
2368 2369

	sp->role.invalid = 1;
2370
	return ret;
2371 2372
}

2373 2374 2375
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2376
	struct kvm_mmu_page *sp, *nsp;
2377 2378 2379 2380

	if (list_empty(invalid_list))
		return;

2381 2382 2383 2384 2385
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2386

2387 2388 2389 2390 2391
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2392

2393
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2394
		WARN_ON(!sp->role.invalid || sp->root_count);
2395
		kvm_mmu_free_page(sp);
2396
	}
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2407 2408
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2409 2410 2411 2412 2413
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2414 2415
/*
 * Changing the number of mmu pages allocated to the vm
2416
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2417
 */
2418
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2419
{
2420
	LIST_HEAD(invalid_list);
2421

2422 2423
	spin_lock(&kvm->mmu_lock);

2424
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2425 2426 2427 2428
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2429

2430
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2432 2433
	}

2434
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2435 2436

	spin_unlock(&kvm->mmu_lock);
2437 2438
}

2439
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2440
{
2441
	struct kvm_mmu_page *sp;
2442
	LIST_HEAD(invalid_list);
2443 2444
	int r;

2445
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2446
	r = 0;
2447
	spin_lock(&kvm->mmu_lock);
2448
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2449
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2450 2451
			 sp->role.word);
		r = 1;
2452
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2453
	}
2454
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2455 2456
	spin_unlock(&kvm->mmu_lock);

2457
	return r;
2458
}
2459
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2460

2461
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2462 2463 2464 2465 2466 2467 2468 2469
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2470 2471
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2472
{
2473
	struct kvm_mmu_page *sp;
2474

2475 2476 2477
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

2478
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2479
		if (!can_unsync)
2480
			return true;
2481

2482 2483
		if (sp->unsync)
			continue;
2484

2485 2486
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2487
	}
2488 2489

	return false;
2490 2491
}

D
Dan Williams 已提交
2492
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2493 2494 2495 2496 2497 2498 2499
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2500
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2501
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2502
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2503
		    bool can_unsync, bool host_writable)
2504
{
2505
	u64 spte;
M
Marcelo Tosatti 已提交
2506
	int ret = 0;
S
Sheng Yang 已提交
2507

2508
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2509 2510
		return 0;

2511
	spte = PT_PRESENT_MASK;
2512
	if (!speculative)
2513
		spte |= shadow_accessed_mask;
2514

S
Sheng Yang 已提交
2515 2516 2517 2518
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2519

2520
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2521
		spte |= shadow_user_mask;
2522

2523
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2524
		spte |= PT_PAGE_SIZE_MASK;
2525
	if (tdp_enabled)
2526
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2527
			kvm_is_mmio_pfn(pfn));
2528

2529
	if (host_writable)
2530
		spte |= SPTE_HOST_WRITEABLE;
2531 2532
	else
		pte_access &= ~ACC_WRITE_MASK;
2533

2534
	spte |= (u64)pfn << PAGE_SHIFT;
2535

2536
	if (pte_access & ACC_WRITE_MASK) {
2537

X
Xiao Guangrong 已提交
2538
		/*
2539 2540 2541 2542
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2543
		 */
2544
		if (level > PT_PAGE_TABLE_LEVEL &&
2545
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2546
			goto done;
2547

2548
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2549

2550 2551 2552 2553 2554 2555
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2556
		if (!can_unsync && is_writable_pte(*sptep))
2557 2558
			goto set_pte;

2559
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2560
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2561
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2562
			ret = 1;
2563
			pte_access &= ~ACC_WRITE_MASK;
2564
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2565 2566 2567
		}
	}

2568
	if (pte_access & ACC_WRITE_MASK) {
2569
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2570 2571
		spte |= shadow_dirty_mask;
	}
2572

2573
set_pte:
2574
	if (mmu_spte_update(sptep, spte))
2575
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2576
done:
M
Marcelo Tosatti 已提交
2577 2578 2579
	return ret;
}

2580
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2581
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2582
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2583 2584
{
	int was_rmapped = 0;
2585
	int rmap_count;
2586
	bool emulate = false;
M
Marcelo Tosatti 已提交
2587

2588 2589
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2590

2591
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2592 2593 2594 2595
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2596 2597
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2598
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2599
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2600 2601

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2602
			drop_parent_pte(child, sptep);
2603
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2604
		} else if (pfn != spte_to_pfn(*sptep)) {
2605
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2606
				 spte_to_pfn(*sptep), pfn);
2607
			drop_spte(vcpu->kvm, sptep);
2608
			kvm_flush_remote_tlbs(vcpu->kvm);
2609 2610
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2611
	}
2612

2613 2614
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2615
		if (write_fault)
2616
			emulate = true;
2617
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2618
	}
M
Marcelo Tosatti 已提交
2619

2620 2621
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2622

A
Avi Kivity 已提交
2623
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2624
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2625
		 is_large_pte(*sptep)? "2MB" : "4kB",
2626 2627
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2628
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2629 2630
		++vcpu->kvm->stat.lpages;

2631 2632 2633 2634 2635 2636
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2637
	}
2638

X
Xiao Guangrong 已提交
2639
	kvm_release_pfn_clean(pfn);
2640 2641

	return emulate;
2642 2643
}

D
Dan Williams 已提交
2644
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2645 2646 2647 2648
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2649
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2650
	if (!slot)
2651
		return KVM_PFN_ERR_FAULT;
2652

2653
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2654 2655 2656 2657 2658 2659 2660
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2661
	struct kvm_memory_slot *slot;
2662 2663 2664 2665 2666
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2667 2668
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2669 2670
		return -1;

2671
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2672 2673 2674 2675
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2676 2677
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2694
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2725
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2726
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2727
{
2728
	struct kvm_shadow_walk_iterator iterator;
2729
	struct kvm_mmu_page *sp;
2730
	int emulate = 0;
2731
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2732

2733 2734 2735
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2736
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2737
		if (iterator.level == level) {
2738 2739 2740
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2741
			direct_pte_prefetch(vcpu, iterator.sptep);
2742 2743
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2744 2745
		}

2746
		drop_large_spte(vcpu, iterator.sptep);
2747
		if (!is_shadow_present_pte(*iterator.sptep)) {
2748 2749 2750 2751
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2752
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2753
					      iterator.level - 1, 1, ACC_ALL);
2754

2755
			link_shadow_page(vcpu, iterator.sptep, sp);
2756 2757
		}
	}
2758
	return emulate;
A
Avi Kivity 已提交
2759 2760
}

H
Huang Ying 已提交
2761
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2762
{
H
Huang Ying 已提交
2763 2764 2765 2766 2767 2768 2769
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2770

H
Huang Ying 已提交
2771
	send_sig_info(SIGBUS, &info, tsk);
2772 2773
}

D
Dan Williams 已提交
2774
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2775
{
X
Xiao Guangrong 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2785
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2786
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2787
		return 0;
2788
	}
2789

2790
	return -EFAULT;
2791 2792
}

2793
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2794 2795
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2796
{
D
Dan Williams 已提交
2797
	kvm_pfn_t pfn = *pfnp;
2798 2799 2800 2801 2802 2803 2804 2805 2806
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2807
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2808 2809
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
2810
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2829
			kvm_get_pfn(pfn);
2830 2831 2832 2833 2834
			*pfnp = pfn;
		}
	}
}

2835
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2836
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2837 2838
{
	/* The pfn is invalid, report the error! */
2839
	if (unlikely(is_error_pfn(pfn))) {
2840
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2841
		return true;
2842 2843
	}

2844
	if (unlikely(is_noslot_pfn(pfn)))
2845 2846
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

2847
	return false;
2848 2849
}

2850
static bool page_fault_can_be_fast(u32 error_code)
2851
{
2852 2853 2854 2855 2856 2857 2858
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2872 2873
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2897
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2898
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2912
	struct kvm_mmu_page *sp;
2913 2914 2915
	bool ret = false;
	u64 spte = 0ull;

2916 2917 2918
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2919
	if (!page_fault_can_be_fast(error_code))
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
2931
	if (!is_shadow_present_pte(spte)) {
2932 2933 2934 2935
		ret = true;
		goto exit;
	}

2936 2937
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2971 2972 2973 2974 2975
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2976
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2977
exit:
X
Xiao Guangrong 已提交
2978 2979
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2980 2981 2982 2983 2984
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2985
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
2986
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2987
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2988

2989 2990
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2991 2992
{
	int r;
2993
	int level;
2994
	bool force_pt_level = false;
D
Dan Williams 已提交
2995
	kvm_pfn_t pfn;
2996
	unsigned long mmu_seq;
2997
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2998

2999
	level = mapping_level(vcpu, gfn, &force_pt_level);
3000 3001 3002 3003 3004 3005 3006 3007
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3008

3009
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3010
	}
M
Marcelo Tosatti 已提交
3011

3012 3013 3014
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3015
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3016
	smp_rmb();
3017

3018
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3019
		return 0;
3020

3021 3022
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3023

3024
	spin_lock(&vcpu->kvm->mmu_lock);
3025
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3026
		goto out_unlock;
3027
	make_mmu_pages_available(vcpu);
3028 3029
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3030
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3031 3032
	spin_unlock(&vcpu->kvm->mmu_lock);

3033
	return r;
3034 3035 3036 3037 3038

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3039 3040 3041
}


3042 3043 3044
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3045
	struct kvm_mmu_page *sp;
3046
	LIST_HEAD(invalid_list);
3047

3048
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3049
		return;
3050

3051 3052 3053
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3054
		hpa_t root = vcpu->arch.mmu.root_hpa;
3055

3056
		spin_lock(&vcpu->kvm->mmu_lock);
3057 3058
		sp = page_header(root);
		--sp->root_count;
3059 3060 3061 3062
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3063
		spin_unlock(&vcpu->kvm->mmu_lock);
3064
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3065 3066
		return;
	}
3067 3068

	spin_lock(&vcpu->kvm->mmu_lock);
3069
	for (i = 0; i < 4; ++i) {
3070
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3071

A
Avi Kivity 已提交
3072 3073
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3074 3075
			sp = page_header(root);
			--sp->root_count;
3076
			if (!sp->root_count && sp->role.invalid)
3077 3078
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3079
		}
3080
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3081
	}
3082
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3083
	spin_unlock(&vcpu->kvm->mmu_lock);
3084
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3085 3086
}

3087 3088 3089 3090 3091
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3092
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3093 3094 3095 3096 3097 3098
		ret = 1;
	}

	return ret;
}

3099 3100 3101
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3102
	unsigned i;
3103 3104 3105

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3106
		make_mmu_pages_available(vcpu);
3107
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3108 3109 3110 3111 3112 3113 3114
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3115
			MMU_WARN_ON(VALID_PAGE(root));
3116
			spin_lock(&vcpu->kvm->mmu_lock);
3117
			make_mmu_pages_available(vcpu);
3118
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3119
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3120 3121 3122 3123 3124
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3125
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3126 3127 3128 3129 3130 3131 3132
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3133
{
3134
	struct kvm_mmu_page *sp;
3135 3136 3137
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3138

3139
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3140

3141 3142 3143 3144 3145 3146 3147 3148
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3149
		hpa_t root = vcpu->arch.mmu.root_hpa;
3150

3151
		MMU_WARN_ON(VALID_PAGE(root));
3152

3153
		spin_lock(&vcpu->kvm->mmu_lock);
3154
		make_mmu_pages_available(vcpu);
3155
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3156
				      0, ACC_ALL);
3157 3158
		root = __pa(sp->spt);
		++sp->root_count;
3159
		spin_unlock(&vcpu->kvm->mmu_lock);
3160
		vcpu->arch.mmu.root_hpa = root;
3161
		return 0;
3162
	}
3163

3164 3165
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3166 3167
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3168
	 */
3169 3170 3171 3172
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3173
	for (i = 0; i < 4; ++i) {
3174
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3175

3176
		MMU_WARN_ON(VALID_PAGE(root));
3177
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3178
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3179
			if (!is_present_gpte(pdptr)) {
3180
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3181 3182
				continue;
			}
A
Avi Kivity 已提交
3183
			root_gfn = pdptr >> PAGE_SHIFT;
3184 3185
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3186
		}
3187
		spin_lock(&vcpu->kvm->mmu_lock);
3188
		make_mmu_pages_available(vcpu);
3189 3190
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3191 3192
		root = __pa(sp->spt);
		++sp->root_count;
3193 3194
		spin_unlock(&vcpu->kvm->mmu_lock);

3195
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3196
	}
3197
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3224
	return 0;
3225 3226
}

3227 3228 3229 3230 3231 3232 3233 3234
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3235 3236 3237 3238 3239
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3240 3241 3242
	if (vcpu->arch.mmu.direct_map)
		return;

3243 3244
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3245

3246
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3247
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3248
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3249 3250 3251
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3252
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3253 3254 3255 3256 3257
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3258
		if (root && VALID_PAGE(root)) {
3259 3260 3261 3262 3263
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3264
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3265 3266 3267 3268 3269 3270
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3271
	spin_unlock(&vcpu->kvm->mmu_lock);
3272
}
N
Nadav Har'El 已提交
3273
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3274

3275
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3276
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3277
{
3278 3279
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3280 3281 3282
	return vaddr;
}

3283
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3284 3285
					 u32 access,
					 struct x86_exception *exception)
3286
{
3287 3288
	if (exception)
		exception->error_code = 0;
3289
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3290 3291
}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3311
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3312 3313 3314 3315 3316 3317 3318
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3319 3320 3321
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3322 3323
{
	struct kvm_shadow_walk_iterator iterator;
3324 3325 3326
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3327

3328
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3329
		goto exit;
3330

3331
	walk_shadow_page_lockless_begin(vcpu);
3332

3333 3334
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3335 3336 3337 3338 3339
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3340
		leaf--;
3341

3342 3343
		if (!is_shadow_present_pte(spte))
			break;
3344 3345

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3346
						    iterator.level);
3347 3348
	}

3349 3350
	walk_shadow_page_lockless_end(vcpu);

3351 3352 3353
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3354
		while (root > leaf) {
3355 3356 3357 3358 3359 3360 3361 3362
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3363 3364
}

3365
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3366 3367
{
	u64 spte;
3368
	bool reserved;
3369

3370
	if (mmio_info_in_cache(vcpu, addr, direct))
3371
		return RET_MMIO_PF_EMULATE;
3372

3373
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3374
	if (WARN_ON(reserved))
3375
		return RET_MMIO_PF_BUG;
3376 3377 3378 3379 3380

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3381
		if (!check_mmio_spte(vcpu, spte))
3382 3383
			return RET_MMIO_PF_INVALID;

3384 3385
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3386 3387

		trace_handle_mmio_page_fault(addr, gfn, access);
3388
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3389
		return RET_MMIO_PF_EMULATE;
3390 3391 3392 3393 3394 3395
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3396
	return RET_MMIO_PF_RETRY;
3397
}
3398
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3399

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3437
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3438
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3439
{
3440
	gfn_t gfn = gva >> PAGE_SHIFT;
3441
	int r;
A
Avi Kivity 已提交
3442

3443
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3444

3445 3446 3447
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;

3448 3449 3450
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3451

3452
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3453 3454


3455
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3456
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3457 3458
}

3459
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3460 3461
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3462

3463
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3464
	arch.gfn = gfn;
3465
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3466
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3467

3468
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3469 3470 3471 3472
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3473
	if (unlikely(!lapic_in_kernel(vcpu) ||
3474 3475 3476 3477 3478 3479
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3480
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3481
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3482
{
3483
	struct kvm_memory_slot *slot;
3484 3485
	bool async;

3486
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3487 3488
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3489 3490 3491
	if (!async)
		return false; /* *pfn has correct page already */

3492
	if (!prefault && can_do_async_pf(vcpu)) {
3493
		trace_kvm_try_async_get_page(gva, gfn);
3494 3495 3496 3497 3498 3499 3500 3501
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3502
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3503 3504 3505
	return false;
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3516
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3517
			  bool prefault)
3518
{
D
Dan Williams 已提交
3519
	kvm_pfn_t pfn;
3520
	int r;
3521
	int level;
3522
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3523
	gfn_t gfn = gpa >> PAGE_SHIFT;
3524
	unsigned long mmu_seq;
3525 3526
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3527

3528
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3529

3530 3531 3532
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;

3533 3534 3535 3536
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3537 3538 3539
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3540
	if (likely(!force_pt_level)) {
3541 3542 3543
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3544
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3545
	}
3546

3547 3548 3549
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3550
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3551
	smp_rmb();
3552

3553
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3554 3555
		return 0;

3556 3557 3558
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3559
	spin_lock(&vcpu->kvm->mmu_lock);
3560
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3561
		goto out_unlock;
3562
	make_mmu_pages_available(vcpu);
3563 3564
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3565
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3566 3567 3568
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3569 3570 3571 3572 3573

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3574 3575
}

3576 3577
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3578 3579 3580
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3581
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3582
	context->invlpg = nonpaging_invlpg;
3583
	context->update_pte = nonpaging_update_pte;
3584
	context->root_level = 0;
A
Avi Kivity 已提交
3585
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3586
	context->root_hpa = INVALID_PAGE;
3587
	context->direct_map = true;
3588
	context->nx = false;
A
Avi Kivity 已提交
3589 3590
}

3591
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3592
{
3593
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3594 3595
}

3596 3597
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3598
	return kvm_read_cr3(vcpu);
3599 3600
}

3601 3602
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3603
{
3604
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3605 3606
}

3607
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3608
			   unsigned access, int *nr_present)
3609 3610 3611 3612 3613 3614 3615 3616
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3617
		mark_mmio_spte(vcpu, sptep, gfn, access);
3618 3619 3620 3621 3622 3623
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3633 3634 3635 3636 3637
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3638 3639 3640 3641 3642 3643 3644 3645
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3646 3647 3648 3649
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3650
			bool pse, bool amd)
3651 3652
{
	u64 exb_bit_rsvd = 0;
3653
	u64 gbpages_bit_rsvd = 0;
3654
	u64 nonleaf_bit8_rsvd = 0;
3655

3656
	rsvd_check->bad_mt_xwr = 0;
3657

3658
	if (!nx)
3659
		exb_bit_rsvd = rsvd_bits(63, 63);
3660
	if (!gbpages)
3661
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3662 3663 3664 3665 3666

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3667
	if (amd)
3668 3669
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3670
	switch (level) {
3671 3672
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3673 3674 3675 3676
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3677

3678
		if (!pse) {
3679
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3680 3681 3682
			break;
		}

3683 3684
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3685
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3686 3687
		else
			/* 32 bits PSE 4MB page */
3688
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3689 3690
		break;
	case PT32E_ROOT_LEVEL:
3691
		rsvd_check->rsvd_bits_mask[0][2] =
3692
			rsvd_bits(maxphyaddr, 63) |
3693
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3694
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3695
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3696
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3697
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3698
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3699 3700
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3701 3702
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3703 3704
		break;
	case PT64_ROOT_LEVEL:
3705 3706
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3707
			rsvd_bits(maxphyaddr, 51);
3708 3709
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3710
			rsvd_bits(maxphyaddr, 51);
3711 3712 3713 3714 3715 3716 3717
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3718
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3719
			rsvd_bits(13, 29);
3720
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3721 3722
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3723 3724
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3725 3726 3727 3728
		break;
	}
}

3729 3730 3731 3732 3733 3734
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3735
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3736 3737
}

3738 3739 3740
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3741
{
3742
	u64 bad_mt_xwr;
3743

3744
	rsvd_check->rsvd_bits_mask[0][3] =
3745
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3746
	rsvd_check->rsvd_bits_mask[0][2] =
3747
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3748
	rsvd_check->rsvd_bits_mask[0][1] =
3749
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3750
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3751 3752

	/* large page */
3753 3754
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3755
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3756
	rsvd_check->rsvd_bits_mask[1][1] =
3757
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3758
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3759

3760 3761 3762 3763 3764 3765 3766 3767
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3768
	}
3769
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3770 3771
}

3772 3773 3774 3775 3776 3777 3778
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3779 3780 3781 3782 3783 3784 3785 3786
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
3787 3788 3789 3790
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
3791 3792 3793
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
				context->shadow_root_level, context->nx,
3794 3795
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
3796 3797 3798
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

3799 3800 3801 3802 3803 3804
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

3805 3806 3807 3808 3809 3810 3811 3812
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
3813
	if (boot_cpu_is_amd())
3814 3815 3816
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
3817
					cpu_has_gbpages, true, true);
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

3837 3838
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3839 3840 3841
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3842
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3843

F
Feng Wu 已提交
3844
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3845
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3846 3847 3848 3849 3850 3851
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3852 3853 3854 3855 3856 3857
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3858 3859 3860 3861 3862
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3863 3864 3865 3866 3867 3868
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3869
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3890 3891 3892
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3893

F
Feng Wu 已提交
3894 3895
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3896 3897 3898 3899 3900 3901
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3920 3921 3922
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3923
{
3924
	context->nx = is_nx(vcpu);
3925
	context->root_level = level;
3926

3927
	reset_rsvds_bits_mask(vcpu, context);
3928
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3929
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3930

3931
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3932 3933
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3934
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3935
	context->invlpg = paging64_invlpg;
3936
	context->update_pte = paging64_update_pte;
3937
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3938
	context->root_hpa = INVALID_PAGE;
3939
	context->direct_map = false;
A
Avi Kivity 已提交
3940 3941
}

3942 3943
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3944
{
3945
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3946 3947
}

3948 3949
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3950
{
3951
	context->nx = false;
3952
	context->root_level = PT32_ROOT_LEVEL;
3953

3954
	reset_rsvds_bits_mask(vcpu, context);
3955
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3956
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3957 3958 3959

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3960
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3961
	context->invlpg = paging32_invlpg;
3962
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3963
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3964
	context->root_hpa = INVALID_PAGE;
3965
	context->direct_map = false;
A
Avi Kivity 已提交
3966 3967
}

3968 3969
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3970
{
3971
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3972 3973
}

3974
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3975
{
3976
	struct kvm_mmu *context = &vcpu->arch.mmu;
3977

3978
	context->base_role.word = 0;
3979
	context->base_role.smm = is_smm(vcpu);
3980
	context->page_fault = tdp_page_fault;
3981
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3982
	context->invlpg = nonpaging_invlpg;
3983
	context->update_pte = nonpaging_update_pte;
3984
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3985
	context->root_hpa = INVALID_PAGE;
3986
	context->direct_map = true;
3987
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3988
	context->get_cr3 = get_cr3;
3989
	context->get_pdptr = kvm_pdptr_read;
3990
	context->inject_page_fault = kvm_inject_page_fault;
3991 3992

	if (!is_paging(vcpu)) {
3993
		context->nx = false;
3994 3995 3996
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3997
		context->nx = is_nx(vcpu);
3998
		context->root_level = PT64_ROOT_LEVEL;
3999 4000
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4001
	} else if (is_pae(vcpu)) {
4002
		context->nx = is_nx(vcpu);
4003
		context->root_level = PT32E_ROOT_LEVEL;
4004 4005
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4006
	} else {
4007
		context->nx = false;
4008
		context->root_level = PT32_ROOT_LEVEL;
4009 4010
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4011 4012
	}

4013
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
4014
	update_last_pte_bitmap(vcpu, context);
4015
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4016 4017
}

4018
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4019
{
4020
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4021
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4022 4023
	struct kvm_mmu *context = &vcpu->arch.mmu;

4024
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4025 4026

	if (!is_paging(vcpu))
4027
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4028
	else if (is_long_mode(vcpu))
4029
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4030
	else if (is_pae(vcpu))
4031
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4032
	else
4033
		paging32_init_context(vcpu, context);
4034

4035 4036 4037 4038
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4039
		= smep && !is_write_protection(vcpu);
4040 4041
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4042
	context->base_role.smm = is_smm(vcpu);
4043
	reset_shadow_zero_bits_mask(vcpu, context);
4044 4045 4046
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4047
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4048
{
4049 4050
	struct kvm_mmu *context = &vcpu->arch.mmu;

4051
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4067
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4068 4069 4070
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4071
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4072
{
4073 4074 4075 4076 4077 4078 4079
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4080 4081
}

4082
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4083 4084 4085 4086
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4087
	g_context->get_pdptr         = kvm_pdptr_read;
4088 4089 4090
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4091 4092 4093 4094 4095 4096
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4097 4098
	 */
	if (!is_paging(vcpu)) {
4099
		g_context->nx = false;
4100 4101 4102
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4103
		g_context->nx = is_nx(vcpu);
4104
		g_context->root_level = PT64_ROOT_LEVEL;
4105
		reset_rsvds_bits_mask(vcpu, g_context);
4106 4107
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4108
		g_context->nx = is_nx(vcpu);
4109
		g_context->root_level = PT32E_ROOT_LEVEL;
4110
		reset_rsvds_bits_mask(vcpu, g_context);
4111 4112
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4113
		g_context->nx = false;
4114
		g_context->root_level = PT32_ROOT_LEVEL;
4115
		reset_rsvds_bits_mask(vcpu, g_context);
4116 4117 4118
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4119
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
4120
	update_last_pte_bitmap(vcpu, g_context);
4121 4122
}

4123
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4124
{
4125
	if (mmu_is_nested(vcpu))
4126
		init_kvm_nested_mmu(vcpu);
4127
	else if (tdp_enabled)
4128
		init_kvm_tdp_mmu(vcpu);
4129
	else
4130
		init_kvm_softmmu(vcpu);
4131 4132
}

4133
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4134
{
4135
	kvm_mmu_unload(vcpu);
4136
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4137
}
4138
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4139 4140

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4141
{
4142 4143
	int r;

4144
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4145 4146
	if (r)
		goto out;
4147
	r = mmu_alloc_roots(vcpu);
4148
	kvm_mmu_sync_roots(vcpu);
4149 4150
	if (r)
		goto out;
4151
	/* set_cr3() should ensure TLB has been flushed */
4152
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4153 4154
out:
	return r;
A
Avi Kivity 已提交
4155
}
A
Avi Kivity 已提交
4156 4157 4158 4159 4160
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4161
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4162
}
4163
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4164

4165
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4166 4167
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4168
{
4169
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4170 4171
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4172
        }
4173

A
Avi Kivity 已提交
4174
	++vcpu->kvm->stat.mmu_pte_updated;
4175
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4176 4177
}

4178 4179 4180 4181 4182 4183 4184 4185
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4186 4187
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4188 4189 4190
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4191 4192 4193
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
4194
{
4195 4196
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
4197
		return;
4198
	}
4199 4200

	if (remote_flush)
4201
		kvm_flush_remote_tlbs(vcpu->kvm);
4202
	else if (local_flush)
4203
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4204 4205
}

4206 4207
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4208
{
4209 4210
	u64 gentry;
	int r;
4211 4212 4213

	/*
	 * Assume that the pte write on a page table of the same type
4214 4215
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4216
	 */
4217
	if (is_pae(vcpu) && *bytes == 4) {
4218
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4219 4220
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4221
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4222 4223
		if (r)
			gentry = 0;
4224 4225 4226
		new = (const u8 *)&gentry;
	}

4227
	switch (*bytes) {
4228 4229 4230 4231 4232 4233 4234 4235 4236
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4237 4238
	}

4239 4240 4241 4242 4243 4244 4245
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4246
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4247
{
4248 4249 4250 4251
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4252
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4253
		return false;
4254

4255 4256
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4273 4274 4275 4276 4277 4278 4279 4280

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4318 4319
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
			      const u8 *new, int bytes)
4320 4321 4322 4323 4324 4325
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4326
	bool remote_flush, local_flush;
4327 4328 4329 4330 4331 4332 4333
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4334
	mask.smm = 1;
4335 4336 4337 4338 4339 4340 4341 4342

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4343
	remote_flush = local_flush = false;
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4358
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4359

4360
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4361
		if (detect_write_misaligned(sp, gpa, bytes) ||
4362
		      detect_write_flooding(sp)) {
4363
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4364
			++vcpu->kvm->stat.mmu_flooded;
4365 4366
			continue;
		}
4367 4368 4369 4370 4371

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4372
		local_flush = true;
4373
		while (npte--) {
4374
			entry = *spte;
4375
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4376 4377
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4378
			      & mask.word) && rmap_can_add(vcpu))
4379
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4380
			if (need_remote_flush(entry, *spte))
4381
				remote_flush = true;
4382
			++spte;
4383 4384
		}
	}
4385
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4386
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4387
	spin_unlock(&vcpu->kvm->mmu_lock);
4388 4389
}

4390 4391
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4392 4393
	gpa_t gpa;
	int r;
4394

4395
	if (vcpu->arch.mmu.direct_map)
4396 4397
		return 0;

4398
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4399 4400

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4401

4402
	return r;
4403
}
4404
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4405

4406
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4407
{
4408
	LIST_HEAD(invalid_list);
4409

4410 4411 4412
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4413 4414 4415
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4416

A
Avi Kivity 已提交
4417
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4418
	}
4419
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4420 4421
}

4422 4423
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4424
{
4425
	int r, emulation_type = EMULTYPE_RETRY;
4426
	enum emulation_result er;
4427
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4428

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}

G
Gleb Natapov 已提交
4441
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4442
	if (r < 0)
4443 4444 4445
		return r;
	if (!r)
		return 1;
4446

4447
	if (mmio_info_in_cache(vcpu, cr2, direct))
4448
		emulation_type = 0;
4449
emulate:
4450
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4451 4452 4453 4454

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4455
	case EMULATE_USER_EXIT:
4456
		++vcpu->stat.mmio_exits;
4457
		/* fall through */
4458
	case EMULATE_FAIL:
4459
		return 0;
4460 4461 4462 4463 4464 4465
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4466 4467 4468
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4469
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4470 4471 4472 4473
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4474 4475 4476 4477 4478 4479
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4480 4481 4482 4483 4484 4485
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4486 4487
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4488
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4489 4490
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4491 4492 4493 4494
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4495
	struct page *page;
A
Avi Kivity 已提交
4496 4497
	int i;

4498 4499 4500 4501 4502 4503 4504
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4505 4506
		return -ENOMEM;

4507
	vcpu->arch.mmu.pae_root = page_address(page);
4508
	for (i = 0; i < 4; ++i)
4509
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4510

A
Avi Kivity 已提交
4511 4512 4513
	return 0;
}

4514
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4515
{
4516 4517 4518 4519
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4520

4521 4522
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4523

4524
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4525
{
4526
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4527

4528
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4529 4530
}

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

4546
/* The return value indicates if tlb flush on all vcpus is needed. */
4547
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4615 4616 4617 4618
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4619
	int i;
X
Xiao Guangrong 已提交
4620 4621

	spin_lock(&kvm->mmu_lock);
4622 4623 4624 4625 4626 4627 4628 4629 4630
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4631

4632 4633 4634 4635
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4636 4637 4638 4639 4640
	}

	spin_unlock(&kvm->mmu_lock);
}

4641 4642
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4643
{
4644
	return __rmap_write_protect(kvm, rmap_head, false);
4645 4646
}

4647 4648
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4649
{
4650
	bool flush;
A
Avi Kivity 已提交
4651

4652
	spin_lock(&kvm->mmu_lock);
4653 4654
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4655
	spin_unlock(&kvm->mmu_lock);
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4675 4676
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4677
}
4678

4679
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4680
					 struct kvm_rmap_head *rmap_head)
4681 4682 4683 4684
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4685
	kvm_pfn_t pfn;
4686 4687
	struct kvm_mmu_page *sp;

4688
restart:
4689
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4690 4691 4692 4693
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4694 4695 4696 4697 4698
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4699 4700 4701 4702 4703 4704
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
			PageTransCompound(pfn_to_page(pfn))) {
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4705 4706
			goto restart;
		}
4707 4708 4709 4710 4711 4712
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4713
				   const struct kvm_memory_slot *memslot)
4714
{
4715
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4716
	spin_lock(&kvm->mmu_lock);
4717 4718
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4719 4720 4721
	spin_unlock(&kvm->mmu_lock);
}

4722 4723 4724
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4725
	bool flush;
4726 4727

	spin_lock(&kvm->mmu_lock);
4728
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4747
	bool flush;
4748 4749

	spin_lock(&kvm->mmu_lock);
4750 4751
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4765
	bool flush;
4766 4767

	spin_lock(&kvm->mmu_lock);
4768
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4779
#define BATCH_ZAP_PAGES	10
4780 4781 4782
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4783
	int batch = 0;
4784 4785 4786 4787

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4788 4789
		int ret;

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4805 4806 4807 4808
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4809
		if (batch >= BATCH_ZAP_PAGES &&
4810
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4811
			batch = 0;
4812 4813 4814
			goto restart;
		}

4815 4816
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4817 4818 4819
		batch += ret;

		if (ret)
4820 4821 4822
			goto restart;
	}

4823 4824 4825 4826
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4827
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4842
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4843 4844
	kvm->arch.mmu_valid_gen++;

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4856 4857 4858 4859
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4860 4861 4862 4863 4864
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4865
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4866 4867 4868 4869 4870
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4871
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4872
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4873
		kvm_mmu_invalidate_zap_all_pages(kvm);
4874
	}
4875 4876
}

4877 4878
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4879 4880
{
	struct kvm *kvm;
4881
	int nr_to_scan = sc->nr_to_scan;
4882
	unsigned long freed = 0;
4883

4884
	spin_lock(&kvm_lock);
4885 4886

	list_for_each_entry(kvm, &vm_list, vm_list) {
4887
		int idx;
4888
		LIST_HEAD(invalid_list);
4889

4890 4891 4892 4893 4894 4895 4896 4897
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4898 4899 4900 4901 4902 4903
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4904 4905
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4906 4907
			continue;

4908
		idx = srcu_read_lock(&kvm->srcu);
4909 4910
		spin_lock(&kvm->mmu_lock);

4911 4912 4913 4914 4915 4916
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4917 4918
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4919
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4920

4921
unlock:
4922
		spin_unlock(&kvm->mmu_lock);
4923
		srcu_read_unlock(&kvm->srcu, idx);
4924

4925 4926 4927 4928 4929
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4930 4931
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4932 4933
	}

4934
	spin_unlock(&kvm_lock);
4935 4936 4937 4938 4939 4940
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4941
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4942 4943 4944
}

static struct shrinker mmu_shrinker = {
4945 4946
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4947 4948 4949
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4950
static void mmu_destroy_caches(void)
4951
{
4952 4953
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4954 4955
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4956 4957 4958 4959
}

int kvm_mmu_module_init(void)
{
4960 4961
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4962
					    0, 0, NULL);
4963
	if (!pte_list_desc_cache)
4964 4965
		goto nomem;

4966 4967
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4968
						  0, 0, NULL);
4969 4970 4971
	if (!mmu_page_header_cache)
		goto nomem;

4972
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4973 4974
		goto nomem;

4975 4976
	register_shrinker(&mmu_shrinker);

4977 4978 4979
	return 0;

nomem:
4980
	mmu_destroy_caches();
4981 4982 4983
	return -ENOMEM;
}

4984 4985 4986 4987 4988 4989 4990
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4991
	struct kvm_memslots *slots;
4992
	struct kvm_memory_slot *memslot;
4993
	int i;
4994

4995 4996
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
4997

4998 4999 5000
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5001 5002 5003

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5004
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5005 5006 5007 5008

	return nr_mmu_pages;
}

5009 5010
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5011
	kvm_mmu_unload(vcpu);
5012 5013
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5014 5015 5016 5017 5018 5019 5020
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5021 5022
	mmu_audit_disable();
}