mmu.c 151.7 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/sched/signal.h>
40
#include <linux/uaccess.h>
41
#include <linux/hash.h>
42
#include <linux/kern_levels.h>
A
Avi Kivity 已提交
43

A
Avi Kivity 已提交
44
#include <asm/page.h>
45
#include <asm/pat.h>
A
Avi Kivity 已提交
46
#include <asm/cmpxchg.h>
47
#include <asm/io.h>
48
#include <asm/vmx.h>
49
#include <asm/kvm_page_track.h>
50
#include "trace.h"
A
Avi Kivity 已提交
51

52 53 54 55 56 57 58
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
59
bool tdp_enabled = false;
60

61 62 63 64
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
65 66 67
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
68
};
69

70
#undef MMU_DEBUG
71 72

#ifdef MMU_DEBUG
73 74
static bool dbg = 0;
module_param(dbg, bool, 0644);
75 76 77

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
#define MMU_WARN_ON(x) WARN_ON(x)
79 80 81
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
82
#define MMU_WARN_ON(x) do { } while (0)
83
#endif
A
Avi Kivity 已提交
84

85 86
#define PTE_PREFETCH_NUM		8

87
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
88 89 90 91 92
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
93
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
94 95 96 97 98 99 100 101

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
102
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
103

104 105 106
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
107 108 109 110 111

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


112
#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
A
Avi Kivity 已提交
113 114
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 116 117 118 119 120
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121 122 123 124

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 126 127
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128

129
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
131

132 133 134 135 136
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

137 138 139 140
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

141 142
#include <trace/events/kvm.h>

143 144 145
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

146 147
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148

149 150
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

151 152 153
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

168 169 170
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
171 172
};

173 174 175 176
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
177
	int level;
178 179 180
	unsigned index;
};

181 182 183 184 185 186 187 188 189 190 191
static const union kvm_mmu_page_role mmu_base_role_mask = {
	.cr0_wp = 1,
	.cr4_pae = 1,
	.nxe = 1,
	.smep_andnot_wp = 1,
	.smap_andnot_wp = 1,
	.smm = 1,
	.guest_mode = 1,
	.ad_disabled = 1,
};

192 193 194 195 196 197 198
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
199 200 201 202
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

203 204 205 206 207 208
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

209
static struct kmem_cache *pte_list_desc_cache;
210
static struct kmem_cache *mmu_page_header_cache;
211
static struct percpu_counter kvm_total_used_mmu_pages;
212

S
Sheng Yang 已提交
213 214 215 216 217
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
218
static u64 __read_mostly shadow_mmio_mask;
219
static u64 __read_mostly shadow_mmio_value;
220
static u64 __read_mostly shadow_present_mask;
221
static u64 __read_mostly shadow_me_mask;
222

223
/*
224 225 226
 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 * tracking.
227 228 229 230 231 232 233 234 235 236 237 238 239 240
 */
static u64 __read_mostly shadow_acc_track_mask;
static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

241
static void mmu_spte_set(u64 *sptep, u64 spte);
242 243
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
244

245
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
246
{
247 248
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
249
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
250 251 252
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

static inline bool spte_ad_enabled(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return !(spte & shadow_acc_track_value);
}

static inline u64 spte_shadow_accessed_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

276 277
static inline bool is_access_track_spte(u64 spte)
{
278
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
279 280
}

281
/*
282 283 284 285 286 287 288
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
289
 */
290
#define MMIO_SPTE_GEN_LOW_SHIFT		2
291 292
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

293 294 295
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
296
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
297 298 299 300 301

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
302
	WARN_ON(gen & ~MMIO_GEN_MASK);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

320
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
321
{
322
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
323 324
}

325
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
326
			   unsigned access)
327
{
328
	unsigned int gen = kvm_current_mmio_generation(vcpu);
329
	u64 mask = generation_mmio_spte_mask(gen);
330

331
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
332
	mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
333

334
	trace_mark_mmio_spte(sptep, gfn, access, gen);
335
	mmu_spte_set(sptep, mask);
336 337 338 339
}

static bool is_mmio_spte(u64 spte)
{
340
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
341 342 343 344
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
345
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
346
	return (spte & ~mask) >> PAGE_SHIFT;
347 348 349 350
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
351
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
352
	return (spte & ~mask) & ~PAGE_MASK;
353 354
}

355
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
356
			  kvm_pfn_t pfn, unsigned access)
357 358
{
	if (unlikely(is_noslot_pfn(pfn))) {
359
		mark_mmio_spte(vcpu, sptep, gfn, access);
360 361 362 363 364
		return true;
	}

	return false;
}
365

366
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
367
{
368 369
	unsigned int kvm_gen, spte_gen;

370
	kvm_gen = kvm_current_mmio_generation(vcpu);
371 372 373 374
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
375 376
}

377 378 379 380 381 382 383
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
384
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
385
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
386
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
387
{
388 389
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
390
	BUG_ON(acc_track_mask & shadow_acc_track_value);
391

S
Sheng Yang 已提交
392 393 394 395 396
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
397
	shadow_present_mask = p_mask;
398
	shadow_acc_track_mask = acc_track_mask;
399
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
400 401 402
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

403
static void kvm_mmu_clear_all_pte_masks(void)
404 405 406 407 408 409 410 411 412 413 414
{
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
}

A
Avi Kivity 已提交
415 416 417 418 419
static int is_cpuid_PSE36(void)
{
	return 1;
}

420 421
static int is_nx(struct kvm_vcpu *vcpu)
{
422
	return vcpu->arch.efer & EFER_NX;
423 424
}

425 426
static int is_shadow_present_pte(u64 pte)
{
427
	return (pte != 0) && !is_mmio_spte(pte);
428 429
}

M
Marcelo Tosatti 已提交
430 431 432 433 434
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

435 436 437 438
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
439
	if (is_large_pte(pte))
440 441 442 443
		return 1;
	return 0;
}

444 445 446 447 448
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
449
static kvm_pfn_t spte_to_pfn(u64 pte)
450
{
451
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
452 453
}

454 455 456 457 458 459 460
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

461
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
462
static void __set_spte(u64 *sptep, u64 spte)
463
{
464
	WRITE_ONCE(*sptep, spte);
465 466
}

467
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
468
{
469
	WRITE_ONCE(*sptep, spte);
470 471 472 473 474 475
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
476 477 478

static u64 __get_spte_lockless(u64 *sptep)
{
479
	return READ_ONCE(*sptep);
480
}
481
#else
482 483 484 485 486 487 488
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
489

490 491 492 493 494 495 496 497 498 499 500 501
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

502 503 504
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
505

506 507 508 509 510 511 512 513 514 515 516 517
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

518
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
519 520
}

521 522 523 524 525 526 527
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

528
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
529 530 531 532 533 534 535 536

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
537
	count_spte_clear(sptep, spte);
538 539 540 541 542 543 544 545 546 547 548
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
549 550
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
551
	count_spte_clear(sptep, spte);
552 553 554

	return orig.spte;
}
555 556 557 558

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
559 560 561 562 563 564 565 566 567 568 569 570 571 572
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
596 597
#endif

598
static bool spte_can_locklessly_be_made_writable(u64 spte)
599
{
600 601
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
602 603
}

604 605
static bool spte_has_volatile_bits(u64 spte)
{
606 607 608
	if (!is_shadow_present_pte(spte))
		return false;

609
	/*
610
	 * Always atomically update spte if it can be updated
611 612 613 614
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
615 616
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
617 618
		return true;

619
	if (spte_ad_enabled(spte)) {
620 621 622 623
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
624

625
	return false;
626 627
}

628
static bool is_accessed_spte(u64 spte)
629
{
630 631 632 633
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
634 635
}

636
static bool is_dirty_spte(u64 spte)
637
{
638 639 640
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
641 642
}

643 644 645 646 647 648 649 650 651 652 653 654
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

655 656 657
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
658
 */
659
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
660
{
661
	u64 old_spte = *sptep;
662

663
	WARN_ON(!is_shadow_present_pte(new_spte));
664

665 666
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
667
		return old_spte;
668
	}
669

670
	if (!spte_has_volatile_bits(old_spte))
671
		__update_clear_spte_fast(sptep, new_spte);
672
	else
673
		old_spte = __update_clear_spte_slow(sptep, new_spte);
674

675 676
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

699 700
	/*
	 * For the spte updated out of mmu-lock is safe, since
701
	 * we always atomically update it, see the comments in
702 703
	 * spte_has_volatile_bits().
	 */
704
	if (spte_can_locklessly_be_made_writable(old_spte) &&
705
	      !is_writable_pte(new_spte))
706
		flush = true;
707

708
	/*
709
	 * Flush TLB when accessed/dirty states are changed in the page tables,
710 711 712
	 * to guarantee consistency between TLB and page tables.
	 */

713 714
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
715
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
716 717 718 719
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
720
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
721
	}
722

723
	return flush;
724 725
}

726 727 728 729
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
730
 * Returns non-zero if the PTE was previously valid.
731 732 733
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
734
	kvm_pfn_t pfn;
735 736 737
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
738
		__update_clear_spte_fast(sptep, 0ull);
739
	else
740
		old_spte = __update_clear_spte_slow(sptep, 0ull);
741

742
	if (!is_shadow_present_pte(old_spte))
743 744 745
		return 0;

	pfn = spte_to_pfn(old_spte);
746 747 748 749 750 751

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
752
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
753

754
	if (is_accessed_spte(old_spte))
755
		kvm_set_pfn_accessed(pfn);
756 757

	if (is_dirty_spte(old_spte))
758
		kvm_set_pfn_dirty(pfn);
759

760 761 762 763 764 765 766 767 768 769
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
770
	__update_clear_spte_fast(sptep, 0ull);
771 772
}

773 774 775 776 777
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

778 779
static u64 mark_spte_for_access_track(u64 spte)
{
780
	if (spte_ad_enabled(spte))
781 782
		return spte & ~shadow_accessed_mask;

783
	if (is_access_track_spte(spte))
784 785 786
		return spte;

	/*
787 788 789
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

806 807 808 809 810 811 812
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

813
	WARN_ON_ONCE(spte_ad_enabled(spte));
814 815 816 817 818 819 820 821 822 823
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

824 825 826 827 828 829 830 831
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

832
	if (spte_ad_enabled(spte)) {
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

850 851
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
852 853 854 855 856
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
857

858 859 860 861
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
862
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
863 864 865 866
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
867 868 869 870 871
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
872
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
873
	local_irq_enable();
874 875
}

876
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
877
				  struct kmem_cache *base_cache, int min)
878 879 880 881
{
	void *obj;

	if (cache->nobjs >= min)
882
		return 0;
883
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
884
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
885
		if (!obj)
886
			return -ENOMEM;
887 888
		cache->objects[cache->nobjs++] = obj;
	}
889
	return 0;
890 891
}

892 893 894 895 896
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

897 898
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
899 900
{
	while (mc->nobjs)
901
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
902 903
}

A
Avi Kivity 已提交
904
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
905
				       int min)
A
Avi Kivity 已提交
906
{
907
	void *page;
A
Avi Kivity 已提交
908 909 910 911

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
912
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
913 914
		if (!page)
			return -ENOMEM;
915
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
916 917 918 919 920 921 922
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
923
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
924 925
}

926
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
927
{
928 929
	int r;

930
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
931
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
932 933
	if (r)
		goto out;
934
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
935 936
	if (r)
		goto out;
937
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
938
				   mmu_page_header_cache, 4);
939 940
out:
	return r;
941 942 943 944
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
945 946
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
947
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
948 949
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
950 951
}

952
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
953 954 955 956 957 958 959 960
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

961
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
962
{
963
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
964 965
}

966
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
967
{
968
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
969 970
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
987
/*
988 989
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
990
 */
991 992 993
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
994 995 996
{
	unsigned long idx;

997
	idx = gfn_to_index(gfn, slot->base_gfn, level);
998
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
999 1000
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1024
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1025
{
1026
	struct kvm_memslots *slots;
1027
	struct kvm_memory_slot *slot;
1028
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1029

1030
	kvm->arch.indirect_shadow_pages++;
1031
	gfn = sp->gfn;
1032 1033
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1034 1035 1036 1037 1038 1039

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1040
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1041 1042
}

1043
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1044
{
1045
	struct kvm_memslots *slots;
1046
	struct kvm_memory_slot *slot;
1047
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1048

1049
	kvm->arch.indirect_shadow_pages--;
1050
	gfn = sp->gfn;
1051 1052
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1053 1054 1055 1056
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1057
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1058 1059
}

1060 1061
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
1062
{
1063
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
1064 1065

	if (slot) {
1066
		linfo = lpage_info_slot(gfn, slot, level);
1067
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
1068 1069
	}

1070
	return true;
M
Marcelo Tosatti 已提交
1071 1072
}

1073 1074
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1075 1076 1077 1078
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1079
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1080 1081
}

1082
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
1083
{
J
Joerg Roedel 已提交
1084
	unsigned long page_size;
1085
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1086

J
Joerg Roedel 已提交
1087
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
1088

1089
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1090 1091 1092 1093 1094 1095
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1096
	return ret;
M
Marcelo Tosatti 已提交
1097 1098
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1110 1111 1112
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1113 1114
{
	struct kvm_memory_slot *slot;
1115

1116
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1117
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1118 1119 1120 1121 1122
		slot = NULL;

	return slot;
}

1123 1124
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1125 1126
{
	int host_level, level, max_level;
1127 1128
	struct kvm_memory_slot *slot;

1129 1130
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1131

1132 1133
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1134 1135 1136
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1137 1138 1139 1140 1141
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1142
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1143 1144

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1145
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1146 1147 1148
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1149 1150
}

1151
/*
1152
 * About rmap_head encoding:
1153
 *
1154 1155
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1156
 * pte_list_desc containing more mappings.
1157 1158 1159 1160
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1161
 */
1162
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1163
			struct kvm_rmap_head *rmap_head)
1164
{
1165
	struct pte_list_desc *desc;
1166
	int i, count = 0;
1167

1168
	if (!rmap_head->val) {
1169
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1170 1171
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1172 1173
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1174
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1175
		desc->sptes[1] = spte;
1176
		rmap_head->val = (unsigned long)desc | 1;
1177
		++count;
1178
	} else {
1179
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1180
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1181
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1182
			desc = desc->more;
1183
			count += PTE_LIST_EXT;
1184
		}
1185 1186
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1187 1188
			desc = desc->more;
		}
A
Avi Kivity 已提交
1189
		for (i = 0; desc->sptes[i]; ++i)
1190
			++count;
A
Avi Kivity 已提交
1191
		desc->sptes[i] = spte;
1192
	}
1193
	return count;
1194 1195
}

1196
static void
1197 1198 1199
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1200 1201 1202
{
	int j;

1203
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1204
		;
A
Avi Kivity 已提交
1205 1206
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1207 1208 1209
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1210
		rmap_head->val = (unsigned long)desc->sptes[0];
1211 1212 1213 1214
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1215
			rmap_head->val = (unsigned long)desc->more | 1;
1216
	mmu_free_pte_list_desc(desc);
1217 1218
}

1219
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1220
{
1221 1222
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1223 1224
	int i;

1225
	if (!rmap_head->val) {
1226
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1227
		BUG();
1228
	} else if (!(rmap_head->val & 1)) {
1229
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1230
		if ((u64 *)rmap_head->val != spte) {
1231
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1232 1233
			BUG();
		}
1234
		rmap_head->val = 0;
1235
	} else {
1236
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1237
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1238 1239
		prev_desc = NULL;
		while (desc) {
1240
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1241
				if (desc->sptes[i] == spte) {
1242 1243
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1244 1245
					return;
				}
1246
			}
1247 1248 1249
			prev_desc = desc;
			desc = desc->more;
		}
1250
		pr_err("pte_list_remove: %p many->many\n", spte);
1251 1252 1253 1254
		BUG();
	}
}

1255 1256
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1257
{
1258
	unsigned long idx;
1259

1260
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1261
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1262 1263
}

1264 1265
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1266
{
1267
	struct kvm_memslots *slots;
1268 1269
	struct kvm_memory_slot *slot;

1270 1271
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1272
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1283 1284 1285
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1286
	struct kvm_rmap_head *rmap_head;
1287 1288 1289

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1290 1291
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1292 1293 1294 1295 1296 1297
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1298
	struct kvm_rmap_head *rmap_head;
1299 1300 1301

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1302 1303
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1323 1324
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1325
{
1326 1327
	u64 *sptep;

1328
	if (!rmap_head->val)
1329 1330
		return NULL;

1331
	if (!(rmap_head->val & 1)) {
1332
		iter->desc = NULL;
1333 1334
		sptep = (u64 *)rmap_head->val;
		goto out;
1335 1336
	}

1337
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1338
	iter->pos = 0;
1339 1340 1341 1342
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1343 1344 1345 1346 1347 1348 1349 1350 1351
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1352 1353
	u64 *sptep;

1354 1355 1356 1357 1358
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1359
				goto out;
1360 1361 1362 1363 1364 1365 1366
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1367 1368
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1369 1370 1371 1372
		}
	}

	return NULL;
1373 1374 1375
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1376 1377
}

1378 1379
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1380
	     _spte_; _spte_ = rmap_get_next(_iter_))
1381

1382
static void drop_spte(struct kvm *kvm, u64 *sptep)
1383
{
1384
	if (mmu_spte_clear_track_bits(sptep))
1385
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1409
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1410
 * spte write-protection is caused by protecting shadow page table.
1411
 *
T
Tiejun Chen 已提交
1412
 * Note: write protection is difference between dirty logging and spte
1413 1414 1415 1416 1417
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1418
 *
1419
 * Return true if tlb need be flushed.
1420
 */
1421
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1422 1423 1424
{
	u64 spte = *sptep;

1425
	if (!is_writable_pte(spte) &&
1426
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1427 1428 1429 1430
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1431 1432
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1433
	spte = spte & ~PT_WRITABLE_MASK;
1434

1435
	return mmu_spte_update(sptep, spte);
1436 1437
}

1438 1439
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1440
				 bool pt_protect)
1441
{
1442 1443
	u64 *sptep;
	struct rmap_iterator iter;
1444
	bool flush = false;
1445

1446
	for_each_rmap_spte(rmap_head, &iter, sptep)
1447
		flush |= spte_write_protect(sptep, pt_protect);
1448

1449
	return flush;
1450 1451
}

1452
static bool spte_clear_dirty(u64 *sptep)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static bool wrprot_ad_disabled_spte(u64 *sptep)
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
	if (was_writable)
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1479
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1480 1481 1482 1483 1484
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1485
	for_each_rmap_spte(rmap_head, &iter, sptep)
1486 1487 1488 1489
		if (spte_ad_enabled(*sptep))
			flush |= spte_clear_dirty(sptep);
		else
			flush |= wrprot_ad_disabled_spte(sptep);
1490 1491 1492 1493

	return flush;
}

1494
static bool spte_set_dirty(u64 *sptep)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1505
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1506 1507 1508 1509 1510
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1511
	for_each_rmap_spte(rmap_head, &iter, sptep)
1512 1513
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1514 1515 1516 1517

	return flush;
}

1518
/**
1519
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1520 1521 1522 1523 1524 1525 1526 1527
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1528
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1529 1530
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1531
{
1532
	struct kvm_rmap_head *rmap_head;
1533

1534
	while (mask) {
1535 1536 1537
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1538

1539 1540 1541
		/* clear the first set bit */
		mask &= mask - 1;
	}
1542 1543
}

1544
/**
1545 1546
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1558
	struct kvm_rmap_head *rmap_head;
1559 1560

	while (mask) {
1561 1562 1563
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1564 1565 1566 1567 1568 1569 1570

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1585 1586 1587 1588 1589
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1590 1591
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1607 1608
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1609
{
1610
	struct kvm_rmap_head *rmap_head;
1611
	int i;
1612
	bool write_protected = false;
1613

1614
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1615
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1616
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1617 1618 1619
	}

	return write_protected;
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1630
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1631
{
1632 1633
	u64 *sptep;
	struct rmap_iterator iter;
1634
	bool flush = false;
1635

1636
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1637
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1638 1639

		drop_spte(kvm, sptep);
1640
		flush = true;
1641
	}
1642

1643 1644 1645
	return flush;
}

1646
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1647 1648 1649
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1650
	return kvm_zap_rmapp(kvm, rmap_head);
1651 1652
}

1653
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1654 1655
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1656
{
1657 1658
	u64 *sptep;
	struct rmap_iterator iter;
1659
	int need_flush = 0;
1660
	u64 new_spte;
1661
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1662
	kvm_pfn_t new_pfn;
1663 1664 1665

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1666

1667
restart:
1668
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1669
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1670
			    sptep, *sptep, gfn, level);
1671

1672
		need_flush = 1;
1673

1674
		if (pte_write(*ptep)) {
1675
			drop_spte(kvm, sptep);
1676
			goto restart;
1677
		} else {
1678
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1679 1680 1681 1682
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1683 1684

			new_spte = mark_spte_for_access_track(new_spte);
1685 1686 1687

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1688 1689
		}
	}
1690

1691 1692 1693 1694 1695 1696
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1707
	struct kvm_rmap_head *rmap;
1708 1709 1710
	int level;

	/* private field. */
1711
	struct kvm_rmap_head *end_rmap;
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1765 1766 1767 1768 1769
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1770
					       struct kvm_rmap_head *rmap_head,
1771
					       struct kvm_memory_slot *slot,
1772 1773
					       gfn_t gfn,
					       int level,
1774
					       unsigned long data))
1775
{
1776
	struct kvm_memslots *slots;
1777
	struct kvm_memory_slot *memslot;
1778 1779
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1780
	int i;
1781

1782 1783 1784 1785 1786
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1787

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1807 1808
	}

1809
	return ret;
1810 1811
}

1812 1813
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1814 1815
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1816
					 struct kvm_memory_slot *slot,
1817
					 gfn_t gfn, int level,
1818 1819 1820
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1821 1822 1823 1824
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1825 1826 1827
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1828 1829 1830 1831 1832
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1833 1834
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1835
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1836 1837
}

1838
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1839 1840
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1841
{
1842
	u64 *sptep;
1843
	struct rmap_iterator uninitialized_var(iter);
1844 1845
	int young = 0;

1846 1847
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1848

1849
	trace_kvm_age_page(gfn, level, slot, young);
1850 1851 1852
	return young;
}

1853
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1854 1855
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1856
{
1857 1858
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1859

1860 1861 1862 1863
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1864 1865
}

1866 1867
#define RMAP_RECYCLE_THRESHOLD 1000

1868
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1869
{
1870
	struct kvm_rmap_head *rmap_head;
1871 1872 1873
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1874

1875
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1876

1877
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1878 1879 1880
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1881
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1882
{
A
Andres Lagar-Cavilla 已提交
1883
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1884 1885
}

A
Andrea Arcangeli 已提交
1886 1887 1888 1889 1890
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1891
#ifdef MMU_DEBUG
1892
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1893
{
1894 1895 1896
	u64 *pos;
	u64 *end;

1897
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1898
		if (is_shadow_present_pte(*pos)) {
1899
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1900
			       pos, *pos);
A
Avi Kivity 已提交
1901
			return 0;
1902
		}
A
Avi Kivity 已提交
1903 1904
	return 1;
}
1905
#endif
A
Avi Kivity 已提交
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1919
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1920
{
1921
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1922
	hlist_del(&sp->hash_link);
1923 1924
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1925 1926
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1927
	kmem_cache_free(mmu_page_header_cache, sp);
1928 1929
}

1930 1931
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1932
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1933 1934
}

1935
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1936
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1937 1938 1939 1940
{
	if (!parent_pte)
		return;

1941
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1942 1943
}

1944
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1945 1946
				       u64 *parent_pte)
{
1947
	pte_list_remove(parent_pte, &sp->parent_ptes);
1948 1949
}

1950 1951 1952 1953
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1954
	mmu_spte_clear_no_track(parent_pte);
1955 1956
}

1957
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1958
{
1959
	struct kvm_mmu_page *sp;
1960

1961 1962
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1963
	if (!direct)
1964
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1965
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1966 1967 1968 1969 1970 1971

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1972 1973 1974
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1975 1976
}

1977
static void mark_unsync(u64 *spte);
1978
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1979
{
1980 1981 1982 1983 1984 1985
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1986 1987
}

1988
static void mark_unsync(u64 *spte)
1989
{
1990
	struct kvm_mmu_page *sp;
1991
	unsigned int index;
1992

1993
	sp = page_header(__pa(spte));
1994 1995
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1996
		return;
1997
	if (sp->unsync_children++)
1998
		return;
1999
	kvm_mmu_mark_parents_unsync(sp);
2000 2001
}

2002
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2003
			       struct kvm_mmu_page *sp)
2004
{
2005
	return 0;
2006 2007
}

2008
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
M
Marcelo Tosatti 已提交
2009 2010 2011
{
}

2012 2013
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2014
				 const void *pte)
2015 2016 2017 2018
{
	WARN_ON(1);
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2029 2030
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2031
{
2032
	int i;
2033

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2045 2046 2047 2048 2049 2050 2051
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2052 2053 2054 2055
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2056

2057
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2058
		struct kvm_mmu_page *child;
2059 2060
		u64 ent = sp->spt[i];

2061 2062 2063 2064
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2065 2066 2067 2068 2069 2070 2071 2072

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2073 2074 2075 2076
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2077
				nr_unsync_leaf += ret;
2078
			} else
2079 2080 2081 2082 2083 2084
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2085
			clear_unsync_child_bit(sp, i);
2086 2087
	}

2088 2089 2090
	return nr_unsync_leaf;
}

2091 2092
#define INVALID_INDEX (-1)

2093 2094 2095
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2096
	pvec->nr = 0;
2097 2098 2099
	if (!sp->unsync_children)
		return 0;

2100
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2101
	return __mmu_unsync_walk(sp, pvec);
2102 2103 2104 2105 2106
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2107
	trace_kvm_mmu_sync_page(sp);
2108 2109 2110 2111
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2112 2113 2114 2115
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2116

2117 2118 2119 2120 2121 2122
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
2123
 * for_each_valid_sp() has skipped that kind of pages.
2124
 */
2125
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2126 2127
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2128 2129
		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
		} else
2130 2131

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2132 2133
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2134

2135
/* @sp->gfn should be write-protected at the call site */
2136 2137
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2138
{
2139 2140
	if (sp->role.cr4_pae != !!is_pae(vcpu)
	    || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2141
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2142
		return false;
2143 2144
	}

2145
	return true;
2146 2147
}

2148 2149 2150
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2151
{
2152 2153 2154 2155
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
2156

2157 2158 2159 2160
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2161 2162
}

2163 2164 2165 2166 2167 2168 2169
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2170 2171 2172 2173 2174
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2175
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2176
			 struct list_head *invalid_list)
2177
{
2178 2179
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2180 2181
}

2182
/* @gfn should be write-protected at the call site */
2183 2184
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2185 2186
{
	struct kvm_mmu_page *s;
2187
	bool ret = false;
2188

2189
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2190
		if (!s->unsync)
2191 2192 2193
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2194
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2195 2196
	}

2197
	return ret;
2198 2199
}

2200
struct mmu_page_path {
2201 2202
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2203 2204
};

2205
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2206
		for (i = mmu_pages_first(&pvec, &parents);	\
2207 2208 2209
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2210 2211 2212
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2213 2214 2215 2216 2217
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2218 2219
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2220

P
Paolo Bonzini 已提交
2221 2222 2223
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2224

P
Paolo Bonzini 已提交
2225
		parents->parent[level-2] = sp;
2226 2227 2228 2229 2230
	}

	return n;
}

P
Paolo Bonzini 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2240 2241
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2255
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2256
{
2257 2258 2259 2260 2261 2262 2263 2264 2265
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2266
		WARN_ON(idx == INVALID_INDEX);
2267
		clear_unsync_child_bit(sp, idx);
2268
		level++;
P
Paolo Bonzini 已提交
2269
	} while (!sp->unsync_children);
2270
}
2271

2272 2273 2274 2275 2276 2277 2278
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2279
	LIST_HEAD(invalid_list);
2280
	bool flush = false;
2281 2282

	while (mmu_unsync_walk(parent, &pages)) {
2283
		bool protected = false;
2284 2285

		for_each_sp(pages, sp, parents, i)
2286
			protected |= rmap_write_protect(vcpu, sp->gfn);
2287

2288
		if (protected) {
2289
			kvm_flush_remote_tlbs(vcpu->kvm);
2290 2291
			flush = false;
		}
2292

2293
		for_each_sp(pages, sp, parents, i) {
2294
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2295 2296
			mmu_pages_clear_parents(&parents);
		}
2297 2298 2299 2300 2301
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2302
	}
2303 2304

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2305 2306
}

2307 2308
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2309
	atomic_set(&sp->write_flooding_count,  0);
2310 2311 2312 2313 2314 2315 2316 2317 2318
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2319 2320 2321 2322
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2323
					     int direct,
2324
					     unsigned access)
2325 2326 2327
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2328 2329
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2330
	bool flush = false;
2331
	int collisions = 0;
2332
	LIST_HEAD(invalid_list);
2333

2334
	role = vcpu->arch.mmu.base_role;
2335
	role.level = level;
2336
	role.direct = direct;
2337
	if (role.direct)
2338
		role.cr4_pae = 0;
2339
	role.access = access;
2340 2341
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2342 2343 2344 2345
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2346 2347 2348 2349 2350 2351
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2352 2353
		if (!need_sync && sp->unsync)
			need_sync = true;
2354

2355 2356
		if (sp->role.word != role.word)
			continue;
2357

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2368

2369
		if (sp->unsync_children)
2370
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2371

2372
		__clear_sp_write_flooding_count(sp);
2373
		trace_kvm_mmu_get_page(sp, false);
2374
		goto out;
2375
	}
2376

A
Avi Kivity 已提交
2377
	++vcpu->kvm->stat.mmu_cache_miss;
2378 2379 2380

	sp = kvm_mmu_alloc_page(vcpu, direct);

2381 2382
	sp->gfn = gfn;
	sp->role = role;
2383 2384
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2385
	if (!direct) {
2386 2387 2388 2389 2390 2391 2392 2393
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2394
			kvm_flush_remote_tlbs(vcpu->kvm);
2395 2396

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2397
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2398
	}
2399
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2400
	clear_page(sp->spt);
A
Avi Kivity 已提交
2401
	trace_kvm_mmu_get_page(sp, true);
2402 2403

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2404 2405 2406
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2407
	return sp;
2408 2409
}

2410 2411 2412
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2413 2414
{
	iterator->addr = addr;
2415
	iterator->shadow_addr = root;
2416
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2417

2418 2419
	if (iterator->level == PT64_ROOT_4LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2420 2421 2422
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2423
	if (iterator->level == PT32E_ROOT_LEVEL) {
2424 2425 2426 2427 2428 2429
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
		BUG_ON(root != vcpu->arch.mmu.root_hpa);

2430 2431 2432 2433 2434 2435 2436 2437 2438
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2439 2440 2441 2442 2443 2444 2445
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
				    addr);
}

2446 2447 2448 2449
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2450

2451 2452 2453 2454 2455
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2456 2457
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2458
{
2459
	if (is_last_spte(spte, iterator->level)) {
2460 2461 2462 2463
		iterator->level = 0;
		return;
	}

2464
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2465 2466 2467
	--iterator->level;
}

2468 2469
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2470
	__shadow_walk_next(iterator, *iterator->sptep);
2471 2472
}

2473 2474
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2475 2476 2477
{
	u64 spte;

2478
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2479

2480
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2481
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2482 2483 2484 2485 2486

	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2487

2488
	mmu_spte_set(sptep, spte);
2489 2490 2491 2492 2493

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2513
		drop_parent_pte(child, sptep);
2514 2515 2516 2517
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2518
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2519 2520 2521 2522 2523 2524 2525
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2526
		if (is_last_spte(pte, sp->role.level)) {
2527
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2528 2529 2530
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2531
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2532
			drop_parent_pte(child, spte);
2533
		}
X
Xiao Guangrong 已提交
2534 2535 2536 2537
		return true;
	}

	if (is_mmio_spte(pte))
2538
		mmu_spte_clear_no_track(spte);
2539

X
Xiao Guangrong 已提交
2540
	return false;
2541 2542
}

2543
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2544
					 struct kvm_mmu_page *sp)
2545
{
2546 2547
	unsigned i;

2548 2549
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2550 2551
}

2552
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2553
{
2554 2555
	u64 *sptep;
	struct rmap_iterator iter;
2556

2557
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2558
		drop_parent_pte(sp, sptep);
2559 2560
}

2561
static int mmu_zap_unsync_children(struct kvm *kvm,
2562 2563
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2564
{
2565 2566 2567
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2568

2569
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2570
		return 0;
2571 2572 2573 2574 2575

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2576
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2577
			mmu_pages_clear_parents(&parents);
2578
			zapped++;
2579 2580 2581 2582
		}
	}

	return zapped;
2583 2584
}

2585 2586
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2587
{
2588
	int ret;
A
Avi Kivity 已提交
2589

2590
	trace_kvm_mmu_prepare_zap_page(sp);
2591
	++kvm->stat.mmu_shadow_zapped;
2592
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2593
	kvm_mmu_page_unlink_children(kvm, sp);
2594
	kvm_mmu_unlink_parents(kvm, sp);
2595

2596
	if (!sp->role.invalid && !sp->role.direct)
2597
		unaccount_shadowed(kvm, sp);
2598

2599 2600
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2601
	if (!sp->root_count) {
2602 2603
		/* Count self */
		ret++;
2604
		list_move(&sp->link, invalid_list);
2605
		kvm_mod_used_mmu_pages(kvm, -1);
2606
	} else {
A
Avi Kivity 已提交
2607
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2608 2609 2610 2611 2612 2613 2614

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2615
	}
2616 2617

	sp->role.invalid = 1;
2618
	return ret;
2619 2620
}

2621 2622 2623
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2624
	struct kvm_mmu_page *sp, *nsp;
2625 2626 2627 2628

	if (list_empty(invalid_list))
		return;

2629
	/*
2630 2631 2632 2633 2634 2635 2636
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2637 2638
	 */
	kvm_flush_remote_tlbs(kvm);
2639

2640
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2641
		WARN_ON(!sp->role.invalid || sp->root_count);
2642
		kvm_mmu_free_page(sp);
2643
	}
2644 2645
}

2646 2647 2648 2649 2650 2651 2652 2653
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2654 2655
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2656
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2657 2658
}

2659 2660
/*
 * Changing the number of mmu pages allocated to the vm
2661
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2662
 */
2663
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2664
{
2665
	LIST_HEAD(invalid_list);
2666

2667 2668
	spin_lock(&kvm->mmu_lock);

2669
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2670 2671 2672 2673
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2674

2675
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2676
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2677 2678
	}

2679
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2680 2681

	spin_unlock(&kvm->mmu_lock);
2682 2683
}

2684
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2685
{
2686
	struct kvm_mmu_page *sp;
2687
	LIST_HEAD(invalid_list);
2688 2689
	int r;

2690
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2691
	r = 0;
2692
	spin_lock(&kvm->mmu_lock);
2693
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2694
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2695 2696
			 sp->role.word);
		r = 1;
2697
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2698
	}
2699
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2700 2701
	spin_unlock(&kvm->mmu_lock);

2702
	return r;
2703
}
2704
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2705

2706
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2707 2708 2709 2710 2711 2712 2713 2714
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2715 2716
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2717
{
2718
	struct kvm_mmu_page *sp;
2719

2720 2721
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2722

2723
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2724
		if (!can_unsync)
2725
			return true;
2726

2727 2728
		if (sp->unsync)
			continue;
2729

2730 2731
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2732
	}
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2773
	return false;
2774 2775
}

D
Dan Williams 已提交
2776
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2777 2778
{
	if (pfn_valid(pfn))
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2791 2792 2793 2794

	return true;
}

2795 2796 2797 2798
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)

A
Avi Kivity 已提交
2799
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2800
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2801
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2802
		    bool can_unsync, bool host_writable)
2803
{
2804
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2805
	int ret = 0;
2806
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
2807

2808
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2809 2810
		return 0;

2811 2812 2813 2814
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;

2815 2816 2817 2818 2819 2820
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2821
	spte |= shadow_present_mask;
2822
	if (!speculative)
2823
		spte |= spte_shadow_accessed_mask(spte);
2824

S
Sheng Yang 已提交
2825 2826 2827 2828
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2829

2830
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2831
		spte |= shadow_user_mask;
2832

2833
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2834
		spte |= PT_PAGE_SIZE_MASK;
2835
	if (tdp_enabled)
2836
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2837
			kvm_is_mmio_pfn(pfn));
2838

2839
	if (host_writable)
2840
		spte |= SPTE_HOST_WRITEABLE;
2841 2842
	else
		pte_access &= ~ACC_WRITE_MASK;
2843

2844 2845 2846
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

2847
	spte |= (u64)pfn << PAGE_SHIFT;
2848

2849
	if (pte_access & ACC_WRITE_MASK) {
2850

X
Xiao Guangrong 已提交
2851
		/*
2852 2853 2854 2855
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2856
		 */
2857
		if (level > PT_PAGE_TABLE_LEVEL &&
2858
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2859
			goto done;
2860

2861
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2862

2863 2864 2865 2866 2867 2868
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2869
		if (!can_unsync && is_writable_pte(*sptep))
2870 2871
			goto set_pte;

2872
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2873
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2874
				 __func__, gfn);
2875
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
2876
			pte_access &= ~ACC_WRITE_MASK;
2877
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2878 2879 2880
		}
	}

2881
	if (pte_access & ACC_WRITE_MASK) {
2882
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2883
		spte |= spte_shadow_dirty_mask(spte);
2884
	}
2885

2886 2887 2888
	if (speculative)
		spte = mark_spte_for_access_track(spte);

2889
set_pte:
2890
	if (mmu_spte_update(sptep, spte))
2891
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
A
Avi Kivity 已提交
2892
done:
M
Marcelo Tosatti 已提交
2893 2894 2895
	return ret;
}

2896 2897 2898
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
		       	bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2899 2900
{
	int was_rmapped = 0;
2901
	int rmap_count;
2902
	int set_spte_ret;
2903
	int ret = RET_PF_RETRY;
2904
	bool flush = false;
M
Marcelo Tosatti 已提交
2905

2906 2907
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2908

2909
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2910 2911 2912 2913
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2914 2915
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2916
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2917
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2918 2919

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2920
			drop_parent_pte(child, sptep);
2921
			flush = true;
A
Avi Kivity 已提交
2922
		} else if (pfn != spte_to_pfn(*sptep)) {
2923
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2924
				 spte_to_pfn(*sptep), pfn);
2925
			drop_spte(vcpu->kvm, sptep);
2926
			flush = true;
2927 2928
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2929
	}
2930

2931 2932 2933
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2934
		if (write_fault)
2935
			ret = RET_PF_EMULATE;
2936
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2937
	}
2938
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2939
		kvm_flush_remote_tlbs(vcpu->kvm);
M
Marcelo Tosatti 已提交
2940

2941
	if (unlikely(is_mmio_spte(*sptep)))
2942
		ret = RET_PF_EMULATE;
2943

A
Avi Kivity 已提交
2944
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2945
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2946
		 is_large_pte(*sptep)? "2MB" : "4kB",
2947
		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2948
		 *sptep, sptep);
A
Avi Kivity 已提交
2949
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2950 2951
		++vcpu->kvm->stat.lpages;

2952 2953 2954 2955 2956 2957
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2958
	}
2959

X
Xiao Guangrong 已提交
2960
	kvm_release_pfn_clean(pfn);
2961

2962
	return ret;
2963 2964
}

D
Dan Williams 已提交
2965
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2966 2967 2968 2969
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2970
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2971
	if (!slot)
2972
		return KVM_PFN_ERR_FAULT;
2973

2974
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2975 2976 2977 2978 2979 2980 2981
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2982
	struct kvm_memory_slot *slot;
2983 2984 2985 2986 2987
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2988 2989
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2990 2991
		return -1;

2992
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2993 2994 2995 2996
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2997 2998
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3015
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3030 3031
	sp = page_header(__pa(sptep));

3032
	/*
3033 3034 3035
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3036
	 */
3037
	if (sp_ad_disabled(sp))
3038 3039 3040 3041 3042 3043 3044 3045
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3046
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
3047
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3048
{
3049
	struct kvm_shadow_walk_iterator iterator;
3050
	struct kvm_mmu_page *sp;
3051
	int emulate = 0;
3052
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
3053

3054 3055 3056
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

3057
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3058
		if (iterator.level == level) {
3059 3060 3061
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
3062
			direct_pte_prefetch(vcpu, iterator.sptep);
3063 3064
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
3065 3066
		}

3067
		drop_large_spte(vcpu, iterator.sptep);
3068
		if (!is_shadow_present_pte(*iterator.sptep)) {
3069 3070 3071 3072
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
3073
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3074
					      iterator.level - 1, 1, ACC_ALL);
3075

3076
			link_shadow_page(vcpu, iterator.sptep, sp);
3077 3078
		}
	}
3079
	return emulate;
A
Avi Kivity 已提交
3080 3081
}

H
Huang Ying 已提交
3082
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3083
{
H
Huang Ying 已提交
3084 3085
	siginfo_t info;

3086
	clear_siginfo(&info);
H
Huang Ying 已提交
3087 3088 3089 3090 3091
	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
3092

H
Huang Ying 已提交
3093
	send_sig_info(SIGBUS, &info, tsk);
3094 3095
}

D
Dan Williams 已提交
3096
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3097
{
X
Xiao Guangrong 已提交
3098 3099 3100 3101 3102 3103
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3104
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3105

3106
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3107
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3108
		return RET_PF_RETRY;
3109
	}
3110

3111
	return -EFAULT;
3112 3113
}

3114
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
3115 3116
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
3117
{
D
Dan Williams 已提交
3118
	kvm_pfn_t pfn = *pfnp;
3119 3120 3121 3122 3123 3124 3125 3126 3127
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
3128
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3129
	    level == PT_PAGE_TABLE_LEVEL &&
3130
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3131
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
3150
			kvm_get_pfn(pfn);
3151 3152 3153 3154 3155
			*pfnp = pfn;
		}
	}
}

3156
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
3157
				kvm_pfn_t pfn, unsigned access, int *ret_val)
3158 3159
{
	/* The pfn is invalid, report the error! */
3160
	if (unlikely(is_error_pfn(pfn))) {
3161
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3162
		return true;
3163 3164
	}

3165
	if (unlikely(is_noslot_pfn(pfn)))
3166 3167
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

3168
	return false;
3169 3170
}

3171
static bool page_fault_can_be_fast(u32 error_code)
3172
{
3173 3174 3175 3176 3177 3178 3179
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3180 3181 3182 3183 3184
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3185
	/*
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3197 3198
	 */

3199 3200 3201
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3202 3203
}

3204 3205 3206 3207
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3208
static bool
3209
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3210
			u64 *sptep, u64 old_spte, u64 new_spte)
3211 3212 3213 3214 3215
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3228
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3229 3230
		return false;

3231
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3232 3233 3234 3235 3236 3237 3238
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3239 3240 3241 3242

	return true;
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3255 3256 3257 3258 3259 3260 3261 3262 3263
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3264
	struct kvm_mmu_page *sp;
3265
	bool fault_handled = false;
3266
	u64 spte = 0ull;
3267
	uint retry_count = 0;
3268

3269 3270 3271
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

3272
	if (!page_fault_can_be_fast(error_code))
3273 3274 3275 3276
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3277
	do {
3278
		u64 new_spte;
3279

3280 3281 3282 3283 3284
		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
			if (!is_shadow_present_pte(spte) ||
			    iterator.level < level)
				break;

3285 3286 3287
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3288

3289
		/*
3290 3291 3292 3293 3294
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3295 3296 3297 3298
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3299 3300 3301 3302
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3318 3319

			/*
3320 3321 3322 3323 3324 3325 3326 3327 3328
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3329
			 */
3330
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3331
				break;
3332
		}
3333

3334
		/* Verify that the fault can be handled in the fast path */
3335 3336
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3337 3338 3339 3340 3341 3342 3343 3344
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
		 * Documentation/virtual/kvm/locking.txt to get more detail.
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3345
							iterator.sptep, spte,
3346
							new_spte);
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3357

X
Xiao Guangrong 已提交
3358
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3359
			      spte, fault_handled);
3360 3361
	walk_shadow_page_lockless_end(vcpu);

3362
	return fault_handled;
3363 3364
}

3365
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3366
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3367
static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3368

3369 3370
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3371 3372
{
	int r;
3373
	int level;
3374
	bool force_pt_level = false;
D
Dan Williams 已提交
3375
	kvm_pfn_t pfn;
3376
	unsigned long mmu_seq;
3377
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3378

3379
	level = mapping_level(vcpu, gfn, &force_pt_level);
3380 3381 3382 3383 3384 3385 3386 3387
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3388

3389
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3390
	}
M
Marcelo Tosatti 已提交
3391

3392
	if (fast_page_fault(vcpu, v, level, error_code))
3393
		return RET_PF_RETRY;
3394

3395
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3396
	smp_rmb();
3397

3398
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3399
		return RET_PF_RETRY;
3400

3401 3402
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3403

3404
	spin_lock(&vcpu->kvm->mmu_lock);
3405
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3406
		goto out_unlock;
3407 3408
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3409 3410
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3411
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3412 3413
	spin_unlock(&vcpu->kvm->mmu_lock);

3414
	return r;
3415 3416 3417 3418

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
3419
	return RET_PF_RETRY;
3420 3421
}

3422 3423
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3424
{
3425
	struct kvm_mmu_page *sp;
3426

3427
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3428
		return;
3429

3430 3431 3432 3433
	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3434

3435 3436 3437
	*root_hpa = INVALID_PAGE;
}

3438 3439
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
3440 3441 3442 3443
{
	int i;
	LIST_HEAD(invalid_list);
	struct kvm_mmu *mmu = &vcpu->arch.mmu;
3444
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3445 3446

	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3447

3448
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3449 3450 3451 3452 3453 3454 3455 3456 3457
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3458 3459

	spin_lock(&vcpu->kvm->mmu_lock);
3460

3461 3462 3463 3464
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
					   &invalid_list);
3465

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
					   &invalid_list);
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
					mmu_free_root_page(vcpu->kvm,
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3479
	}
3480

3481
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3482
	spin_unlock(&vcpu->kvm->mmu_lock);
3483
}
3484
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3485

3486 3487 3488 3489 3490
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3491
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3492 3493 3494 3495 3496 3497
		ret = 1;
	}

	return ret;
}

3498 3499 3500
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3501
	unsigned i;
3502

3503
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3504
		spin_lock(&vcpu->kvm->mmu_lock);
3505 3506
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3507
			return -ENOSPC;
3508
		}
3509 3510
		sp = kvm_mmu_get_page(vcpu, 0, 0,
				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3511 3512 3513 3514 3515 3516 3517
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3518
			MMU_WARN_ON(VALID_PAGE(root));
3519
			spin_lock(&vcpu->kvm->mmu_lock);
3520 3521
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
3522
				return -ENOSPC;
3523
			}
3524
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3525
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3526 3527 3528 3529 3530
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3531
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3532 3533 3534 3535 3536 3537 3538
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3539
{
3540
	struct kvm_mmu_page *sp;
3541 3542 3543
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3544

3545
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3546

3547 3548 3549 3550 3551 3552 3553
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3554
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3555
		hpa_t root = vcpu->arch.mmu.root_hpa;
3556

3557
		MMU_WARN_ON(VALID_PAGE(root));
3558

3559
		spin_lock(&vcpu->kvm->mmu_lock);
3560 3561
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3562
			return -ENOSPC;
3563
		}
3564 3565
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3566 3567
		root = __pa(sp->spt);
		++sp->root_count;
3568
		spin_unlock(&vcpu->kvm->mmu_lock);
3569
		vcpu->arch.mmu.root_hpa = root;
3570
		return 0;
3571
	}
3572

3573 3574
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3575 3576
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3577
	 */
3578
	pm_mask = PT_PRESENT_MASK;
3579
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3580 3581
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3582
	for (i = 0; i < 4; ++i) {
3583
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3584

3585
		MMU_WARN_ON(VALID_PAGE(root));
3586
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3587
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3588
			if (!(pdptr & PT_PRESENT_MASK)) {
3589
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3590 3591
				continue;
			}
A
Avi Kivity 已提交
3592
			root_gfn = pdptr >> PAGE_SHIFT;
3593 3594
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3595
		}
3596
		spin_lock(&vcpu->kvm->mmu_lock);
3597 3598
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
3599
			return -ENOSPC;
3600
		}
3601 3602
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3603 3604
		root = __pa(sp->spt);
		++sp->root_count;
3605 3606
		spin_unlock(&vcpu->kvm->mmu_lock);

3607
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3608
	}
3609
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3610 3611 3612 3613 3614

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3615
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3636
	return 0;
3637 3638
}

3639 3640 3641 3642 3643 3644 3645 3646
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3647
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3648 3649 3650 3651
{
	int i;
	struct kvm_mmu_page *sp;

3652 3653 3654
	if (vcpu->arch.mmu.direct_map)
		return;

3655 3656
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3657

3658
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3659

3660
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3661
		hpa_t root = vcpu->arch.mmu.root_hpa;
3662

3663
		sp = page_header(root);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3682
		mmu_sync_children(vcpu, sp);
3683

3684
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3685
		spin_unlock(&vcpu->kvm->mmu_lock);
3686 3687
		return;
	}
3688 3689 3690 3691

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3692 3693 3694
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3695
		if (root && VALID_PAGE(root)) {
3696 3697 3698 3699 3700 3701
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}

3702
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3703
	spin_unlock(&vcpu->kvm->mmu_lock);
3704
}
N
Nadav Har'El 已提交
3705
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3706

3707
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3708
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3709
{
3710 3711
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3712 3713 3714
	return vaddr;
}

3715
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3716 3717
					 u32 access,
					 struct x86_exception *exception)
3718
{
3719 3720
	if (exception)
		exception->error_code = 0;
3721
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3722 3723
}

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3743
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3744
{
3745 3746 3747 3748 3749 3750 3751
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3752 3753 3754 3755 3756 3757
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3758 3759 3760
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3761 3762
{
	struct kvm_shadow_walk_iterator iterator;
3763
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3764 3765
	int root, leaf;
	bool reserved = false;
3766

3767
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3768
		goto exit;
3769

3770
	walk_shadow_page_lockless_begin(vcpu);
3771

3772 3773
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3774 3775 3776 3777 3778
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3779
		leaf--;
3780

3781 3782
		if (!is_shadow_present_pte(spte))
			break;
3783 3784

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3785
						    iterator.level);
3786 3787
	}

3788 3789
	walk_shadow_page_lockless_end(vcpu);

3790 3791 3792
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3793
		while (root > leaf) {
3794 3795 3796 3797 3798 3799 3800 3801
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3802 3803
}

P
Paolo Bonzini 已提交
3804
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3805 3806
{
	u64 spte;
3807
	bool reserved;
3808

3809
	if (mmio_info_in_cache(vcpu, addr, direct))
3810
		return RET_PF_EMULATE;
3811

3812
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3813
	if (WARN_ON(reserved))
3814
		return -EINVAL;
3815 3816 3817 3818 3819

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3820
		if (!check_mmio_spte(vcpu, spte))
3821
			return RET_PF_INVALID;
3822

3823 3824
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3825 3826

		trace_handle_mmio_page_fault(addr, gfn, access);
3827
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3828
		return RET_PF_EMULATE;
3829 3830 3831 3832 3833 3834
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3835
	return RET_PF_RETRY;
3836 3837
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3875
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3876
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3877
{
3878
	gfn_t gfn = gva >> PAGE_SHIFT;
3879
	int r;
A
Avi Kivity 已提交
3880

3881
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3882

3883
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3884
		return RET_PF_EMULATE;
3885

3886 3887 3888
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3889

3890
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3891 3892


3893
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3894
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3895 3896
}

3897
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3898 3899
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3900

3901
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3902
	arch.gfn = gfn;
3903
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3904
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3905

3906
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3907 3908
}

3909
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3910
{
3911
	if (unlikely(!lapic_in_kernel(vcpu) ||
3912 3913
		     kvm_event_needs_reinjection(vcpu) ||
		     vcpu->arch.exception.pending))
3914 3915
		return false;

3916
	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3917 3918
		return false;

3919 3920 3921
	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3922
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3923
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3924
{
3925
	struct kvm_memory_slot *slot;
3926 3927
	bool async;

3928 3929 3930 3931 3932 3933 3934 3935
	/*
	 * Don't expose private memslots to L2.
	 */
	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		*pfn = KVM_PFN_NOSLOT;
		return false;
	}

3936
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3937 3938
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3939 3940 3941
	if (!async)
		return false; /* *pfn has correct page already */

3942
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3943
		trace_kvm_try_async_get_page(gva, gfn);
3944 3945 3946 3947 3948 3949 3950 3951
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3952
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3953 3954 3955
	return false;
}

3956
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3957
				u64 fault_address, char *insn, int insn_len)
3958 3959 3960 3961 3962 3963 3964
{
	int r = 1;

	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

3965
		if (kvm_event_needs_reinjection(vcpu))
3966 3967 3968 3969 3970 3971 3972
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
3973
		kvm_async_pf_task_wait(fault_address, 0);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3997
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3998
			  bool prefault)
3999
{
D
Dan Williams 已提交
4000
	kvm_pfn_t pfn;
4001
	int r;
4002
	int level;
4003
	bool force_pt_level;
M
Marcelo Tosatti 已提交
4004
	gfn_t gfn = gpa >> PAGE_SHIFT;
4005
	unsigned long mmu_seq;
4006 4007
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
4008

4009
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4010

4011
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4012
		return RET_PF_EMULATE;
4013

4014 4015 4016 4017
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

4018 4019 4020
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
4021
	if (likely(!force_pt_level)) {
4022 4023 4024
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
4025
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4026
	}
4027

4028
	if (fast_page_fault(vcpu, gpa, level, error_code))
4029
		return RET_PF_RETRY;
4030

4031
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4032
	smp_rmb();
4033

4034
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4035
		return RET_PF_RETRY;
4036

4037 4038 4039
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

4040
	spin_lock(&vcpu->kvm->mmu_lock);
4041
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4042
		goto out_unlock;
4043 4044
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
4045 4046
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4047
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4048 4049 4050
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
4051 4052 4053 4054

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
4055
	return RET_PF_RETRY;
4056 4057
}

4058 4059
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4060 4061 4062
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4063
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4064
	context->invlpg = nonpaging_invlpg;
4065
	context->update_pte = nonpaging_update_pte;
4066
	context->root_level = 0;
A
Avi Kivity 已提交
4067
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4068
	context->direct_map = true;
4069
	context->nx = false;
A
Avi Kivity 已提交
4070 4071
}

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
/*
 * Find out if a previously cached root matching the new CR3/role is available.
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
	struct kvm_mmu *mmu = &vcpu->arch.mmu;

	root.cr3 = mmu->get_cr3(vcpu);
	root.hpa = mmu->root_hpa;

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

		if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
		    page_header(root.hpa) != NULL &&
		    new_role.word == page_header(root.hpa)->role.word)
			break;
	}

	mmu->root_hpa = root.hpa;

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4104
static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4105 4106
			    union kvm_mmu_page_role new_role,
			    bool skip_tlb_flush)
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
{
	struct kvm_mmu *mmu = &vcpu->arch.mmu;

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
	    mmu->root_level >= PT64_ROOT_4LEVEL) {
		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
			return false;

4120
		if (cached_root_available(vcpu, new_cr3, new_role)) {
4121 4122 4123 4124 4125 4126 4127 4128
			/*
			 * It is possible that the cached previous root page is
			 * obsolete because of a change in the MMU
			 * generation number. However, that is accompanied by
			 * KVM_REQ_MMU_RELOAD, which will free the root that we
			 * have set here and allocate a new one.
			 */

4129
			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4130 4131
			if (!skip_tlb_flush) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4132
				kvm_x86_ops->tlb_flush(vcpu, true);
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
			}

			/*
			 * The last MMIO access's GVA and GPA are cached in the
			 * VCPU. When switching to a new CR3, that GVA->GPA
			 * mapping may no longer be valid. So clear any cached
			 * MMIO info even when we don't need to sync the shadow
			 * page tables.
			 */
			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4143

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
			__clear_sp_write_flooding_count(
				page_header(mmu->root_hpa));

			return true;
		}
	}

	return false;
}

4154
static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4155 4156
			      union kvm_mmu_page_role new_role,
			      bool skip_tlb_flush)
A
Avi Kivity 已提交
4157
{
4158
	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4159
		kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
A
Avi Kivity 已提交
4160 4161
}

4162
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4163
{
4164 4165
	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
			  skip_tlb_flush);
4166
}
4167
EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4168

4169 4170
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4171
	return kvm_read_cr3(vcpu);
4172 4173
}

4174 4175
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
4176
{
4177
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
4178 4179
}

4180
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4181
			   unsigned access, int *nr_present)
4182 4183 4184 4185 4186 4187 4188 4189
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4190
		mark_mmio_spte(vcpu, sptep, gfn, access);
4191 4192 4193 4194 4195 4196
		return true;
	}

	return false;
}

4197 4198
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4199
{
4200 4201 4202 4203 4204 4205 4206
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4207 4208 4209 4210 4211 4212 4213
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

4214
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4215 4216
}

4217 4218 4219 4220 4221
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4222 4223 4224 4225 4226 4227 4228 4229
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4230 4231 4232 4233
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4234
			bool pse, bool amd)
4235 4236
{
	u64 exb_bit_rsvd = 0;
4237
	u64 gbpages_bit_rsvd = 0;
4238
	u64 nonleaf_bit8_rsvd = 0;
4239

4240
	rsvd_check->bad_mt_xwr = 0;
4241

4242
	if (!nx)
4243
		exb_bit_rsvd = rsvd_bits(63, 63);
4244
	if (!gbpages)
4245
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4246 4247 4248 4249 4250

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4251
	if (amd)
4252 4253
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4254
	switch (level) {
4255 4256
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4257 4258 4259 4260
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4261

4262
		if (!pse) {
4263
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4264 4265 4266
			break;
		}

4267 4268
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4269
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4270 4271
		else
			/* 32 bits PSE 4MB page */
4272
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4273 4274
		break;
	case PT32E_ROOT_LEVEL:
4275
		rsvd_check->rsvd_bits_mask[0][2] =
4276
			rsvd_bits(maxphyaddr, 63) |
4277
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4278
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4279
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4280
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4281
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4282
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4283 4284
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4285 4286
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4287
		break;
4288 4289 4290 4291 4292 4293
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4294
	case PT64_ROOT_4LEVEL:
4295 4296
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4297
			rsvd_bits(maxphyaddr, 51);
4298 4299
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4300
			rsvd_bits(maxphyaddr, 51);
4301 4302 4303 4304 4305 4306 4307
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4308
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4309
			rsvd_bits(13, 29);
4310
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4311 4312
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4313 4314
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4315 4316 4317 4318
		break;
	}
}

4319 4320 4321 4322 4323
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4324 4325
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4326
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4327 4328
}

4329 4330 4331
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4332
{
4333
	u64 bad_mt_xwr;
4334

4335 4336
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4337
	rsvd_check->rsvd_bits_mask[0][3] =
4338
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4339
	rsvd_check->rsvd_bits_mask[0][2] =
4340
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4341
	rsvd_check->rsvd_bits_mask[0][1] =
4342
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4343
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4344 4345

	/* large page */
4346
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4347 4348
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4349
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4350
	rsvd_check->rsvd_bits_mask[1][1] =
4351
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4352
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4353

4354 4355 4356 4357 4358 4359 4360 4361
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4362
	}
4363
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4364 4365
}

4366 4367 4368 4369 4370 4371 4372
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4373 4374 4375 4376 4377 4378 4379 4380
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4381
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4382 4383
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4384

4385 4386 4387 4388
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4389 4390
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4391
				boot_cpu_data.x86_phys_bits,
4392
				context->shadow_root_level, uses_nx,
4393 4394
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4395 4396 4397 4398 4399 4400 4401 4402 4403

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4404 4405 4406
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4407 4408 4409 4410 4411 4412
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4413 4414 4415 4416 4417 4418 4419 4420
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4421 4422 4423 4424 4425
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4426
	if (boot_cpu_is_amd())
4427
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4428 4429
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
4430 4431
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4432
	else
4433
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4434 4435 4436
					    boot_cpu_data.x86_phys_bits,
					    false);

4437 4438 4439 4440 4441 4442 4443
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4468 4469
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4470
{
4471 4472 4473 4474 4475 4476 4477 4478 4479
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4480 4481

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4482 4483
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4484
		/*
4485 4486
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4487
		 */
4488

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
		/* Faults from writes to non-writable pages */
		u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
		/* Faults from user mode accesses to supervisor pages */
		u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
		/* Faults from fetches of non-executable pages*/
		u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
			 * conditions are ture:
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4534
		}
4535 4536

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4537 4538 4539
	}
}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4615
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4616
{
4617 4618 4619 4620 4621
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4622 4623
}

4624 4625 4626
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4627
{
4628
	context->nx = is_nx(vcpu);
4629
	context->root_level = level;
4630

4631
	reset_rsvds_bits_mask(vcpu, context);
4632
	update_permission_bitmask(vcpu, context, false);
4633
	update_pkru_bitmask(vcpu, context, false);
4634
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4635

4636
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4637 4638
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4639
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4640
	context->invlpg = paging64_invlpg;
4641
	context->update_pte = paging64_update_pte;
4642
	context->shadow_root_level = level;
4643
	context->direct_map = false;
A
Avi Kivity 已提交
4644 4645
}

4646 4647
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4648
{
4649 4650 4651 4652
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4653 4654
}

4655 4656
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4657
{
4658
	context->nx = false;
4659
	context->root_level = PT32_ROOT_LEVEL;
4660

4661
	reset_rsvds_bits_mask(vcpu, context);
4662
	update_permission_bitmask(vcpu, context, false);
4663
	update_pkru_bitmask(vcpu, context, false);
4664
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4665 4666 4667

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4668
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4669
	context->invlpg = paging32_invlpg;
4670
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4671
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4672
	context->direct_map = false;
A
Avi Kivity 已提交
4673 4674
}

4675 4676
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4677
{
4678
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4679 4680
}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_page_role role = {0};

	role.guest_mode = is_guest_mode(vcpu);
	role.smm = is_smm(vcpu);
	role.ad_disabled = (shadow_accessed_mask == 0);
	role.level = kvm_x86_ops->get_tdp_level(vcpu);
	role.direct = true;
	role.access = ACC_ALL;

	return role;
}

4696
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4697
{
4698
	struct kvm_mmu *context = &vcpu->arch.mmu;
4699

4700 4701
	context->base_role.word = mmu_base_role_mask.word &
				  kvm_calc_tdp_mmu_root_page_role(vcpu).word;
4702
	context->page_fault = tdp_page_fault;
4703
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4704
	context->invlpg = nonpaging_invlpg;
4705
	context->update_pte = nonpaging_update_pte;
4706
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4707
	context->direct_map = true;
4708
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4709
	context->get_cr3 = get_cr3;
4710
	context->get_pdptr = kvm_pdptr_read;
4711
	context->inject_page_fault = kvm_inject_page_fault;
4712 4713

	if (!is_paging(vcpu)) {
4714
		context->nx = false;
4715 4716 4717
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4718
		context->nx = is_nx(vcpu);
4719 4720
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4721 4722
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4723
	} else if (is_pae(vcpu)) {
4724
		context->nx = is_nx(vcpu);
4725
		context->root_level = PT32E_ROOT_LEVEL;
4726 4727
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4728
	} else {
4729
		context->nx = false;
4730
		context->root_level = PT32_ROOT_LEVEL;
4731 4732
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4733 4734
	}

4735
	update_permission_bitmask(vcpu, context, false);
4736
	update_pkru_bitmask(vcpu, context, false);
4737
	update_last_nonleaf_level(vcpu, context);
4738
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4739 4740
}

4741 4742
static union kvm_mmu_page_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4743
{
4744
	union kvm_mmu_page_role role = {0};
4745
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4746
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769

	role.nxe = is_nx(vcpu);
	role.cr4_pae = !!is_pae(vcpu);
	role.cr0_wp  = is_write_protection(vcpu);
	role.smep_andnot_wp = smep && !is_write_protection(vcpu);
	role.smap_andnot_wp = smap && !is_write_protection(vcpu);
	role.guest_mode = is_guest_mode(vcpu);
	role.smm = is_smm(vcpu);
	role.direct = !is_paging(vcpu);
	role.access = ACC_ALL;

	if (!is_long_mode(vcpu))
		role.level = PT32E_ROOT_LEVEL;
	else if (is_la57_mode(vcpu))
		role.level = PT64_ROOT_5LEVEL;
	else
		role.level = PT64_ROOT_4LEVEL;

	return role;
}

void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
4770 4771
	struct kvm_mmu *context = &vcpu->arch.mmu;

A
Avi Kivity 已提交
4772
	if (!is_paging(vcpu))
4773
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4774
	else if (is_long_mode(vcpu))
4775
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4776
	else if (is_pae(vcpu))
4777
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4778
	else
4779
		paging32_init_context(vcpu, context);
4780

4781 4782
	context->base_role.word = mmu_base_role_mask.word &
				  kvm_calc_shadow_mmu_root_page_role(vcpu).word;
4783
	reset_shadow_zero_bits_mask(vcpu, context);
4784 4785 4786
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
static union kvm_mmu_page_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
{
	union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;

	role.level = PT64_ROOT_4LEVEL;
	role.direct = false;
	role.ad_disabled = !accessed_dirty;
	role.guest_mode = true;
	role.access = ACC_ALL;

	return role;
}

4801
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4802
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4803
{
4804
	struct kvm_mmu *context = &vcpu->arch.mmu;
4805 4806
	union kvm_mmu_page_role root_page_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
4807

4808
	__kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
4809
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4810 4811

	context->nx = true;
4812
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4813 4814 4815 4816 4817
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
4818
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4819
	context->direct_map = false;
4820
	context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
N
Nadav Har'El 已提交
4821
	update_permission_bitmask(vcpu, context, true);
4822
	update_pkru_bitmask(vcpu, context, true);
4823
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4824
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4825
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4826 4827 4828
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4829
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4830
{
4831 4832 4833 4834 4835 4836 4837
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4838 4839
}

4840
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4841 4842 4843 4844
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4845
	g_context->get_pdptr         = kvm_pdptr_read;
4846 4847 4848
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4849 4850 4851 4852 4853 4854
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4855 4856
	 */
	if (!is_paging(vcpu)) {
4857
		g_context->nx = false;
4858 4859 4860
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4861
		g_context->nx = is_nx(vcpu);
4862 4863
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4864
		reset_rsvds_bits_mask(vcpu, g_context);
4865 4866
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4867
		g_context->nx = is_nx(vcpu);
4868
		g_context->root_level = PT32E_ROOT_LEVEL;
4869
		reset_rsvds_bits_mask(vcpu, g_context);
4870 4871
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4872
		g_context->nx = false;
4873
		g_context->root_level = PT32_ROOT_LEVEL;
4874
		reset_rsvds_bits_mask(vcpu, g_context);
4875 4876 4877
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4878
	update_permission_bitmask(vcpu, g_context, false);
4879
	update_pkru_bitmask(vcpu, g_context, false);
4880
	update_last_nonleaf_level(vcpu, g_context);
4881 4882
}

4883
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4884
{
4885
	if (reset_roots) {
4886 4887
		uint i;

4888
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4889 4890 4891

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4892 4893
	}

4894
	if (mmu_is_nested(vcpu))
4895
		init_kvm_nested_mmu(vcpu);
4896
	else if (tdp_enabled)
4897
		init_kvm_tdp_mmu(vcpu);
4898
	else
4899
		init_kvm_softmmu(vcpu);
4900
}
4901
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4902

4903 4904 4905 4906 4907 4908 4909 4910 4911
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
	if (tdp_enabled)
		return kvm_calc_tdp_mmu_root_page_role(vcpu);
	else
		return kvm_calc_shadow_mmu_root_page_role(vcpu);
}

4912
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4913
{
4914
	kvm_mmu_unload(vcpu);
4915
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4916
}
4917
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4918 4919

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4920
{
4921 4922
	int r;

4923
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4924 4925
	if (r)
		goto out;
4926
	r = mmu_alloc_roots(vcpu);
4927
	kvm_mmu_sync_roots(vcpu);
4928 4929
	if (r)
		goto out;
4930
	kvm_mmu_load_cr3(vcpu);
4931
	kvm_x86_ops->tlb_flush(vcpu, true);
4932 4933
out:
	return r;
A
Avi Kivity 已提交
4934
}
A
Avi Kivity 已提交
4935 4936 4937 4938
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4939
	kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
4940
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4941
}
4942
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4943

4944
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4945 4946
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4947
{
4948
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4949 4950
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4951
        }
4952

A
Avi Kivity 已提交
4953
	++vcpu->kvm->stat.mmu_pte_updated;
4954
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4955 4956
}

4957 4958 4959 4960 4961 4962 4963 4964
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4965 4966
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4967 4968 4969
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4970 4971
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4972
{
4973 4974
	u64 gentry;
	int r;
4975 4976 4977

	/*
	 * Assume that the pte write on a page table of the same type
4978 4979
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4980
	 */
4981
	if (is_pae(vcpu) && *bytes == 4) {
4982
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4983 4984
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4985
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4986 4987
		if (r)
			gentry = 0;
4988 4989 4990
		new = (const u8 *)&gentry;
	}

4991
	switch (*bytes) {
4992 4993 4994 4995 4996 4997 4998 4999 5000
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
5001 5002
	}

5003 5004 5005 5006 5007 5008 5009
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5010
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5011
{
5012 5013 5014 5015
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5016
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5017
		return false;
5018

5019 5020
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
5037 5038 5039 5040 5041 5042 5043 5044

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5082
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5083 5084
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5085 5086 5087 5088 5089 5090
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5091
	bool remote_flush, local_flush;
5092 5093 5094 5095 5096

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5097
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5098 5099
		return;

5100
	remote_flush = local_flush = false;
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
5115
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5116

5117
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5118
		if (detect_write_misaligned(sp, gpa, bytes) ||
5119
		      detect_write_flooding(sp)) {
5120
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5121
			++vcpu->kvm->stat.mmu_flooded;
5122 5123
			continue;
		}
5124 5125 5126 5127 5128

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5129
		local_flush = true;
5130
		while (npte--) {
5131
			entry = *spte;
5132
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5133 5134
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5135
			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5136
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5137
			if (need_remote_flush(entry, *spte))
5138
				remote_flush = true;
5139
			++spte;
5140 5141
		}
	}
5142
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5143
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5144
	spin_unlock(&vcpu->kvm->mmu_lock);
5145 5146
}

5147 5148
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5149 5150
	gpa_t gpa;
	int r;
5151

5152
	if (vcpu->arch.mmu.direct_map)
5153 5154
		return 0;

5155
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5156 5157

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5158

5159
	return r;
5160
}
5161
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5162

5163
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5164
{
5165
	LIST_HEAD(invalid_list);
5166

5167
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5168
		return 0;
5169

5170 5171 5172
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
5173

A
Avi Kivity 已提交
5174
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
5175
	}
5176
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5177 5178 5179 5180

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
A
Avi Kivity 已提交
5181 5182
}

5183
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5184
		       void *insn, int insn_len)
5185
{
5186
	int r, emulation_type = EMULTYPE_RETRY;
5187
	enum emulation_result er;
5188
	bool direct = vcpu->arch.mmu.direct_map;
5189

5190 5191 5192 5193 5194
	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
	if (vcpu->arch.mmu.direct_map) {
		vcpu->arch.gpa_available = true;
		vcpu->arch.gpa_val = cr2;
	}
5195

5196
	r = RET_PF_INVALID;
5197 5198
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
5199
		if (r == RET_PF_EMULATE) {
5200 5201 5202 5203
			emulation_type = 0;
			goto emulate;
		}
	}
5204

5205 5206 5207 5208 5209 5210 5211 5212
	if (r == RET_PF_INVALID) {
		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
					      false);
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
5213
	if (r < 0)
5214
		return r;
5215

5216 5217 5218 5219 5220 5221 5222
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5223
	if (vcpu->arch.mmu.direct_map &&
5224
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5225 5226 5227 5228
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
		return 1;
	}

5229
	if (mmio_info_in_cache(vcpu, cr2, direct))
5230
		emulation_type = 0;
5231
emulate:
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
	/*
	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
	 * This can happen if a guest gets a page-fault on data access but the HW
	 * table walker is not able to read the instruction page (e.g instruction
	 * page is not present in memory). In those cases we simply restart the
	 * guest.
	 */
	if (unlikely(insn && !insn_len))
		return 1;

5242
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5243 5244 5245 5246

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
5247
	case EMULATE_USER_EXIT:
5248
		++vcpu->stat.mmio_exits;
5249
		/* fall through */
5250
	case EMULATE_FAIL:
5251
		return 0;
5252 5253 5254 5255 5256 5257
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
5258 5259
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
5260
	struct kvm_mmu *mmu = &vcpu->arch.mmu;
5261
	int i;
5262

5263 5264 5265 5266
	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
	if (is_noncanonical_address(gva, vcpu))
		return;

5267
	mmu->invlpg(vcpu, gva, mmu->root_hpa);
5268 5269 5270 5271

	/*
	 * INVLPG is required to invalidate any global mappings for the VA,
	 * irrespective of PCID. Since it would take us roughly similar amount
5272 5273 5274
	 * of work to determine whether any of the prev_root mappings of the VA
	 * is marked global, or to just sync it blindly, so we might as well
	 * just always sync it.
5275
	 *
5276 5277 5278
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5279
	 */
5280 5281 5282
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (VALID_PAGE(mmu->prev_roots[i].hpa))
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5283

5284
	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
M
Marcelo Tosatti 已提交
5285 5286 5287 5288
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5289 5290 5291
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
	struct kvm_mmu *mmu = &vcpu->arch.mmu;
5292
	bool tlb_flush = false;
5293
	uint i;
5294 5295

	if (pcid == kvm_get_active_pcid(vcpu)) {
5296
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5297
		tlb_flush = true;
5298 5299
	}

5300 5301 5302 5303 5304 5305
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5306
	}
5307

5308 5309 5310
	if (tlb_flush)
		kvm_x86_ops->tlb_flush_gva(vcpu, gva);

5311 5312 5313
	++vcpu->stat.invlpg;

	/*
5314 5315 5316
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5317 5318 5319 5320
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5321 5322 5323 5324 5325 5326
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

5327 5328 5329 5330 5331 5332
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
5333 5334
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
5335
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
5336
	free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
5337 5338 5339 5340
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
5341
	struct page *page;
A
Avi Kivity 已提交
5342 5343
	int i;

5344 5345 5346
	if (tdp_enabled)
		return 0;

5347 5348 5349 5350 5351 5352 5353
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
5354 5355
		return -ENOMEM;

5356
	vcpu->arch.mmu.pae_root = page_address(page);
5357
	for (i = 0; i < 4; ++i)
5358
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5359

A
Avi Kivity 已提交
5360 5361 5362
	return 0;
}

5363
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5364
{
5365 5366
	uint i;

5367 5368 5369 5370
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
5371

5372 5373 5374
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5375 5376
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
5377

5378
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5379
{
5380
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5381

5382
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5383 5384
}

5385
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5386 5387
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5388 5389 5390 5391
{
	kvm_mmu_invalidate_zap_all_pages(kvm);
}

5392 5393 5394 5395 5396
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
5397
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

5408
/* The return value indicates if tlb flush on all vcpus is needed. */
5409
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5410 5411

/* The caller should hold mmu-lock before calling this function. */
5412
static __always_inline bool
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

5442
static __always_inline bool
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

5453
static __always_inline bool
5454 5455 5456 5457 5458 5459 5460
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

5461
static __always_inline bool
5462 5463 5464 5465 5466 5467 5468
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

5469
static __always_inline bool
5470 5471 5472 5473 5474 5475 5476
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
5477 5478 5479 5480
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5481
	int i;
X
Xiao Guangrong 已提交
5482 5483

	spin_lock(&kvm->mmu_lock);
5484 5485 5486 5487 5488 5489 5490 5491 5492
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5493

5494 5495 5496 5497
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
5498 5499 5500 5501 5502
	}

	spin_unlock(&kvm->mmu_lock);
}

5503 5504
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5505
{
5506
	return __rmap_write_protect(kvm, rmap_head, false);
5507 5508
}

5509 5510
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5511
{
5512
	bool flush;
A
Avi Kivity 已提交
5513

5514
	spin_lock(&kvm->mmu_lock);
5515 5516
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5517
	spin_unlock(&kvm->mmu_lock);
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5537 5538
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
5539
}
5540

5541
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5542
					 struct kvm_rmap_head *rmap_head)
5543 5544 5545 5546
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5547
	kvm_pfn_t pfn;
5548 5549
	struct kvm_mmu_page *sp;

5550
restart:
5551
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5552 5553 5554 5555
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5556 5557 5558 5559 5560
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5561 5562 5563
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
5564
			PageTransCompoundMap(pfn_to_page(pfn))) {
5565 5566
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
5567 5568
			goto restart;
		}
5569 5570 5571 5572 5573 5574
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5575
				   const struct kvm_memory_slot *memslot)
5576
{
5577
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5578
	spin_lock(&kvm->mmu_lock);
5579 5580
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5581 5582 5583
	spin_unlock(&kvm->mmu_lock);
}

5584 5585 5586
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5587
	bool flush;
5588 5589

	spin_lock(&kvm->mmu_lock);
5590
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5609
	bool flush;
5610 5611

	spin_lock(&kvm->mmu_lock);
5612 5613
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5627
	bool flush;
5628 5629

	spin_lock(&kvm->mmu_lock);
5630
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
5641
#define BATCH_ZAP_PAGES	10
5642 5643 5644
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
5645
	int batch = 0;
5646 5647 5648 5649

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
5650 5651
		int ret;

5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

5667 5668 5669 5670
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
5671
		if (batch >= BATCH_ZAP_PAGES &&
5672
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
5673
			batch = 0;
5674 5675 5676
			goto restart;
		}

5677 5678
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
5679 5680 5681
		batch += ret;

		if (ret)
5682 5683 5684
			goto restart;
	}

5685 5686 5687 5688
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
5689
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
5704
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5705 5706
	kvm->arch.mmu_valid_gen++;

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5718 5719 5720 5721
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5722 5723 5724 5725 5726
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5727
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5728 5729 5730 5731 5732
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
5733
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5734
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5735
		kvm_mmu_invalidate_zap_all_pages(kvm);
5736
	}
5737 5738
}

5739 5740
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5741 5742
{
	struct kvm *kvm;
5743
	int nr_to_scan = sc->nr_to_scan;
5744
	unsigned long freed = 0;
5745

5746
	spin_lock(&kvm_lock);
5747 5748

	list_for_each_entry(kvm, &vm_list, vm_list) {
5749
		int idx;
5750
		LIST_HEAD(invalid_list);
5751

5752 5753 5754 5755 5756 5757 5758 5759
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5760 5761 5762 5763 5764 5765
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5766 5767
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
5768 5769
			continue;

5770
		idx = srcu_read_lock(&kvm->srcu);
5771 5772
		spin_lock(&kvm->mmu_lock);

5773 5774 5775 5776 5777 5778
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5779 5780
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5781
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5782

5783
unlock:
5784
		spin_unlock(&kvm->mmu_lock);
5785
		srcu_read_unlock(&kvm->srcu, idx);
5786

5787 5788 5789 5790 5791
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5792 5793
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5794 5795
	}

5796
	spin_unlock(&kvm_lock);
5797 5798 5799 5800 5801 5802
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5803
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5804 5805 5806
}

static struct shrinker mmu_shrinker = {
5807 5808
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5809 5810 5811
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5812
static void mmu_destroy_caches(void)
5813
{
5814 5815
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5816 5817 5818 5819
}

int kvm_mmu_module_init(void)
{
5820 5821
	int ret = -ENOMEM;

5822 5823
	kvm_mmu_clear_all_pte_masks();

5824 5825
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5826
					    0, SLAB_ACCOUNT, NULL);
5827
	if (!pte_list_desc_cache)
5828
		goto out;
5829

5830 5831
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5832
						  0, SLAB_ACCOUNT, NULL);
5833
	if (!mmu_page_header_cache)
5834
		goto out;
5835

5836
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5837
		goto out;
5838

5839 5840 5841
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5842

5843 5844
	return 0;

5845
out:
5846
	mmu_destroy_caches();
5847
	return ret;
5848 5849
}

5850 5851 5852 5853 5854 5855 5856
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5857
	struct kvm_memslots *slots;
5858
	struct kvm_memory_slot *memslot;
5859
	int i;
5860

5861 5862
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5863

5864 5865 5866
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5867 5868 5869

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5870
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5871 5872 5873 5874

	return nr_mmu_pages;
}

5875 5876
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5877
	kvm_mmu_unload(vcpu);
5878 5879
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5880 5881 5882 5883 5884 5885 5886
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5887 5888
	mmu_audit_disable();
}