mmu.c 129.1 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
44
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
45

46 47 48 49 50 51 52
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
53
bool tdp_enabled = false;
54

55 56 57 58
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
59 60 61
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
62
};
63

64
#undef MMU_DEBUG
65 66

#ifdef MMU_DEBUG
67 68
static bool dbg = 0;
module_param(dbg, bool, 0644);
69 70 71

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72
#define MMU_WARN_ON(x) WARN_ON(x)
73 74 75
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
76
#define MMU_WARN_ON(x) do { } while (0)
77
#endif
A
Avi Kivity 已提交
78

79 80
#define PTE_PREFETCH_NUM		8

81
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
82 83 84 85 86
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
87
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
88 89 90 91 92 93 94 95

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
96
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
97

98 99 100
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
101 102 103 104 105

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


106
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
107 108
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 110 111 112 113 114
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
115 116 117 118

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 120 121
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122

123 124
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
125

126 127 128 129 130
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

131 132
#include <trace/events/kvm.h>

133 134 135
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

136 137
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138

139 140
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

141 142 143
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

144 145 146
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
147 148
};

149 150 151 152
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
153
	int level;
154 155 156 157 158 159 160 161
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

162 163 164 165 166 167
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

168
static struct kmem_cache *pte_list_desc_cache;
169
static struct kmem_cache *mmu_page_header_cache;
170
static struct percpu_counter kvm_total_used_mmu_pages;
171

S
Sheng Yang 已提交
172 173 174 175 176
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
177
static u64 __read_mostly shadow_mmio_mask;
178
static u64 __read_mostly shadow_present_mask;
179 180

static void mmu_spte_set(u64 *sptep, u64 spte);
181
static void mmu_free_roots(struct kvm_vcpu *vcpu);
182 183 184 185 186 187 188

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

189
/*
190 191 192 193 194 195 196
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
197
 */
198
#define MMIO_SPTE_GEN_LOW_SHIFT		2
199 200
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

201 202 203
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
204
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
205 206 207 208 209

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
210
	WARN_ON(gen & ~MMIO_GEN_MASK);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

228
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
229
{
230
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
231 232
}

233
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
234
			   unsigned access)
235
{
236
	unsigned int gen = kvm_current_mmio_generation(vcpu);
237
	u64 mask = generation_mmio_spte_mask(gen);
238

239
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
240 241
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

242
	trace_mark_mmio_spte(sptep, gfn, access, gen);
243
	mmu_spte_set(sptep, mask);
244 245 246 247 248 249 250 251 252
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
253
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
254
	return (spte & ~mask) >> PAGE_SHIFT;
255 256 257 258
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
259
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
260
	return (spte & ~mask) & ~PAGE_MASK;
261 262
}

263
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
264
			  kvm_pfn_t pfn, unsigned access)
265 266
{
	if (unlikely(is_noslot_pfn(pfn))) {
267
		mark_mmio_spte(vcpu, sptep, gfn, access);
268 269 270 271 272
		return true;
	}

	return false;
}
273

274
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
275
{
276 277
	unsigned int kvm_gen, spte_gen;

278
	kvm_gen = kvm_current_mmio_generation(vcpu);
279 280 281 282
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
283 284
}

S
Sheng Yang 已提交
285
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
286
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
S
Sheng Yang 已提交
287 288 289 290 291 292
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
293
	shadow_present_mask = p_mask;
S
Sheng Yang 已提交
294 295 296
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
297 298 299 300 301
static int is_cpuid_PSE36(void)
{
	return 1;
}

302 303
static int is_nx(struct kvm_vcpu *vcpu)
{
304
	return vcpu->arch.efer & EFER_NX;
305 306
}

307 308
static int is_shadow_present_pte(u64 pte)
{
309
	return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
310 311
}

M
Marcelo Tosatti 已提交
312 313 314 315 316
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

317 318 319 320
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
321
	if (is_large_pte(pte))
322 323 324 325
		return 1;
	return 0;
}

D
Dan Williams 已提交
326
static kvm_pfn_t spte_to_pfn(u64 pte)
327
{
328
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
329 330
}

331 332 333 334 335 336 337
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

338
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
339
static void __set_spte(u64 *sptep, u64 spte)
340
{
341
	WRITE_ONCE(*sptep, spte);
342 343
}

344
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345
{
346
	WRITE_ONCE(*sptep, spte);
347 348 349 350 351 352
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
353 354 355 356 357

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
358
#else
359 360 361 362 363 364 365
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
366

367 368 369 370 371 372 373 374 375 376 377 378
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

379 380 381
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
382

383 384 385 386 387 388 389 390 391 392 393 394
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

395
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
396 397
}

398 399 400 401 402 403 404
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

405
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
406 407 408 409 410 411 412 413

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
414
	count_spte_clear(sptep, spte);
415 416 417 418 419 420 421 422 423 424 425
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
426 427
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
428
	count_spte_clear(sptep, spte);
429 430 431

	return orig.spte;
}
432 433 434 435

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
436 437 438 439 440 441 442 443 444 445 446 447 448 449
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
473 474
#endif

475 476
static bool spte_is_locklessly_modifiable(u64 spte)
{
477 478
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
479 480
}

481 482
static bool spte_has_volatile_bits(u64 spte)
{
483
	/*
484
	 * Always atomically update spte if it can be updated
485 486 487 488 489 490 491
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

492 493 494 495 496 497
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

498 499
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
500 501 502 503 504
		return false;

	return true;
}

505 506 507 508 509
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

510 511 512 513 514
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

515 516 517 518 519 520 521 522 523 524 525 526 527
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
A
Andrea Gelmini 已提交
528
 * Update the state bits, it means the mapped pfn is not changed.
529 530 531 532 533 534
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
535
 */
536
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
537
{
538
	u64 old_spte = *sptep;
539
	bool ret = false;
540

541
	WARN_ON(!is_shadow_present_pte(new_spte));
542

543 544 545 546
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
547

548
	if (!spte_has_volatile_bits(old_spte))
549
		__update_clear_spte_fast(sptep, new_spte);
550
	else
551
		old_spte = __update_clear_spte_slow(sptep, new_spte);
552

553 554
	/*
	 * For the spte updated out of mmu-lock is safe, since
555
	 * we always atomically update it, see the comments in
556 557
	 * spte_has_volatile_bits().
	 */
558 559
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
560 561
		ret = true;

562 563 564 565 566 567 568
	if (!shadow_accessed_mask) {
		/*
		 * We don't set page dirty when dropping non-writable spte.
		 * So do it now if the new spte is becoming non-writable.
		 */
		if (ret)
			kvm_set_pfn_dirty(spte_to_pfn(old_spte));
569
		return ret;
570
	}
571

572 573 574 575 576 577 578 579
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

580 581 582 583
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584 585

	return ret;
586 587
}

588 589 590 591 592 593 594
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
595
	kvm_pfn_t pfn;
596 597 598
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
599
		__update_clear_spte_fast(sptep, 0ull);
600
	else
601
		old_spte = __update_clear_spte_slow(sptep, 0ull);
602

603
	if (!is_shadow_present_pte(old_spte))
604 605 606
		return 0;

	pfn = spte_to_pfn(old_spte);
607 608 609 610 611 612

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
613
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
614

615 616
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
617 618
	if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
					    PT_WRITABLE_MASK))
619 620 621 622 623 624 625 626 627 628 629
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
630
	__update_clear_spte_fast(sptep, 0ull);
631 632
}

633 634 635 636 637 638 639
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
640 641 642 643 644
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
645

646 647 648 649
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
650
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
651 652 653 654
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
655 656 657 658 659
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
660
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
661
	local_irq_enable();
662 663
}

664
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
665
				  struct kmem_cache *base_cache, int min)
666 667 668 669
{
	void *obj;

	if (cache->nobjs >= min)
670
		return 0;
671
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
672
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
673
		if (!obj)
674
			return -ENOMEM;
675 676
		cache->objects[cache->nobjs++] = obj;
	}
677
	return 0;
678 679
}

680 681 682 683 684
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

685 686
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
687 688
{
	while (mc->nobjs)
689
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
690 691
}

A
Avi Kivity 已提交
692
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
693
				       int min)
A
Avi Kivity 已提交
694
{
695
	void *page;
A
Avi Kivity 已提交
696 697 698 699

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
700
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
701 702
		if (!page)
			return -ENOMEM;
703
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
704 705 706 707 708 709 710
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
711
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
712 713
}

714
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
715
{
716 717
	int r;

718
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
719
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
720 721
	if (r)
		goto out;
722
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
723 724
	if (r)
		goto out;
725
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
726
				   mmu_page_header_cache, 4);
727 728
out:
	return r;
729 730 731 732
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
733 734
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
735
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
736 737
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
738 739
}

740
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
741 742 743 744 745 746 747 748
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

749
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
750
{
751
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
752 753
}

754
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
755
{
756
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
775
/*
776 777
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
778
 */
779 780 781
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
782 783 784
{
	unsigned long idx;

785
	idx = gfn_to_index(gfn, slot->base_gfn, level);
786
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
787 788
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

812
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
813
{
814
	struct kvm_memslots *slots;
815
	struct kvm_memory_slot *slot;
816
	gfn_t gfn;
M
Marcelo Tosatti 已提交
817

818
	kvm->arch.indirect_shadow_pages++;
819
	gfn = sp->gfn;
820 821
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
822 823 824 825 826 827

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

828
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
829 830
}

831
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
832
{
833
	struct kvm_memslots *slots;
834
	struct kvm_memory_slot *slot;
835
	gfn_t gfn;
M
Marcelo Tosatti 已提交
836

837
	kvm->arch.indirect_shadow_pages--;
838
	gfn = sp->gfn;
839 840
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
841 842 843 844
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

845
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
846 847
}

848 849
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
850
{
851
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
852 853

	if (slot) {
854
		linfo = lpage_info_slot(gfn, slot, level);
855
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
856 857
	}

858
	return true;
M
Marcelo Tosatti 已提交
859 860
}

861 862
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
863 864 865 866
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
867
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
868 869
}

870
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
871
{
J
Joerg Roedel 已提交
872
	unsigned long page_size;
873
	int i, ret = 0;
M
Marcelo Tosatti 已提交
874

J
Joerg Roedel 已提交
875
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
876

877
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
878 879 880 881 882 883
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

884
	return ret;
M
Marcelo Tosatti 已提交
885 886
}

887 888 889 890 891 892 893 894 895 896 897
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

898 899 900
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
901 902
{
	struct kvm_memory_slot *slot;
903

904
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
905
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
906 907 908 909 910
		slot = NULL;

	return slot;
}

911 912
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
913 914
{
	int host_level, level, max_level;
915 916
	struct kvm_memory_slot *slot;

917 918
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
919

920 921
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
922 923 924
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

925 926 927 928 929
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
930
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
931 932

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
933
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
934 935 936
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
937 938
}

939
/*
940
 * About rmap_head encoding:
941
 *
942 943
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
944
 * pte_list_desc containing more mappings.
945 946 947 948
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
949
 */
950
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
951
			struct kvm_rmap_head *rmap_head)
952
{
953
	struct pte_list_desc *desc;
954
	int i, count = 0;
955

956
	if (!rmap_head->val) {
957
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
958 959
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
960 961
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
962
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
963
		desc->sptes[1] = spte;
964
		rmap_head->val = (unsigned long)desc | 1;
965
		++count;
966
	} else {
967
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
968
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
969
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
970
			desc = desc->more;
971
			count += PTE_LIST_EXT;
972
		}
973 974
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
975 976
			desc = desc->more;
		}
A
Avi Kivity 已提交
977
		for (i = 0; desc->sptes[i]; ++i)
978
			++count;
A
Avi Kivity 已提交
979
		desc->sptes[i] = spte;
980
	}
981
	return count;
982 983
}

984
static void
985 986 987
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
988 989 990
{
	int j;

991
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
992
		;
A
Avi Kivity 已提交
993 994
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
995 996 997
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
998
		rmap_head->val = (unsigned long)desc->sptes[0];
999 1000 1001 1002
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1003
			rmap_head->val = (unsigned long)desc->more | 1;
1004
	mmu_free_pte_list_desc(desc);
1005 1006
}

1007
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1008
{
1009 1010
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1011 1012
	int i;

1013
	if (!rmap_head->val) {
1014
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1015
		BUG();
1016
	} else if (!(rmap_head->val & 1)) {
1017
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1018
		if ((u64 *)rmap_head->val != spte) {
1019
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1020 1021
			BUG();
		}
1022
		rmap_head->val = 0;
1023
	} else {
1024
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1025
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1026 1027
		prev_desc = NULL;
		while (desc) {
1028
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1029
				if (desc->sptes[i] == spte) {
1030 1031
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1032 1033
					return;
				}
1034
			}
1035 1036 1037
			prev_desc = desc;
			desc = desc->more;
		}
1038
		pr_err("pte_list_remove: %p many->many\n", spte);
1039 1040 1041 1042
		BUG();
	}
}

1043 1044
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1045
{
1046
	unsigned long idx;
1047

1048
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1049
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1050 1051
}

1052 1053
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1054
{
1055
	struct kvm_memslots *slots;
1056 1057
	struct kvm_memory_slot *slot;

1058 1059
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1060
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1071 1072 1073
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1074
	struct kvm_rmap_head *rmap_head;
1075 1076 1077

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1078 1079
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1080 1081 1082 1083 1084 1085
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1086
	struct kvm_rmap_head *rmap_head;
1087 1088 1089

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1090 1091
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1111 1112
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1113
{
1114 1115
	u64 *sptep;

1116
	if (!rmap_head->val)
1117 1118
		return NULL;

1119
	if (!(rmap_head->val & 1)) {
1120
		iter->desc = NULL;
1121 1122
		sptep = (u64 *)rmap_head->val;
		goto out;
1123 1124
	}

1125
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1126
	iter->pos = 0;
1127 1128 1129 1130
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1131 1132 1133 1134 1135 1136 1137 1138 1139
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1140 1141
	u64 *sptep;

1142 1143 1144 1145 1146
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1147
				goto out;
1148 1149 1150 1151 1152 1153 1154
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1155 1156
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1157 1158 1159 1160
		}
	}

	return NULL;
1161 1162 1163
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1164 1165
}

1166 1167
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1168
	     _spte_; _spte_ = rmap_get_next(_iter_))
1169

1170
static void drop_spte(struct kvm *kvm, u64 *sptep)
1171
{
1172
	if (mmu_spte_clear_track_bits(sptep))
1173
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1197
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1198
 * spte write-protection is caused by protecting shadow page table.
1199
 *
T
Tiejun Chen 已提交
1200
 * Note: write protection is difference between dirty logging and spte
1201 1202 1203 1204 1205
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1206
 *
1207
 * Return true if tlb need be flushed.
1208
 */
1209
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1210 1211 1212
{
	u64 spte = *sptep;

1213 1214
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1215 1216 1217 1218
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1219 1220
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1221
	spte = spte & ~PT_WRITABLE_MASK;
1222

1223
	return mmu_spte_update(sptep, spte);
1224 1225
}

1226 1227
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1228
				 bool pt_protect)
1229
{
1230 1231
	u64 *sptep;
	struct rmap_iterator iter;
1232
	bool flush = false;
1233

1234
	for_each_rmap_spte(rmap_head, &iter, sptep)
1235
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1236

1237
	return flush;
1238 1239
}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1251
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1252 1253 1254 1255 1256
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1257
	for_each_rmap_spte(rmap_head, &iter, sptep)
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1274
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1275 1276 1277 1278 1279
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1280
	for_each_rmap_spte(rmap_head, &iter, sptep)
1281 1282 1283 1284 1285
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1286
/**
1287
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1288 1289 1290 1291 1292 1293 1294 1295
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1296
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1297 1298
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1299
{
1300
	struct kvm_rmap_head *rmap_head;
1301

1302
	while (mask) {
1303 1304 1305
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1306

1307 1308 1309
		/* clear the first set bit */
		mask &= mask - 1;
	}
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1325
	struct kvm_rmap_head *rmap_head;
1326 1327

	while (mask) {
1328 1329 1330
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1331 1332 1333 1334 1335 1336 1337

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1352 1353 1354 1355 1356
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1357 1358
}

1359 1360
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1361
{
1362
	struct kvm_rmap_head *rmap_head;
1363
	int i;
1364
	bool write_protected = false;
1365

1366
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1367
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1368
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1369 1370 1371
	}

	return write_protected;
1372 1373
}

1374 1375 1376 1377 1378 1379 1380 1381
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1382
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1383
{
1384 1385
	u64 *sptep;
	struct rmap_iterator iter;
1386
	bool flush = false;
1387

1388
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1389
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1390 1391

		drop_spte(kvm, sptep);
1392
		flush = true;
1393
	}
1394

1395 1396 1397
	return flush;
}

1398
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1399 1400 1401
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1402
	return kvm_zap_rmapp(kvm, rmap_head);
1403 1404
}

1405
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1406 1407
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1408
{
1409 1410
	u64 *sptep;
	struct rmap_iterator iter;
1411
	int need_flush = 0;
1412
	u64 new_spte;
1413
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1414
	kvm_pfn_t new_pfn;
1415 1416 1417

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1418

1419
restart:
1420
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1421 1422
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1423

1424
		need_flush = 1;
1425

1426
		if (pte_write(*ptep)) {
1427
			drop_spte(kvm, sptep);
1428
			goto restart;
1429
		} else {
1430
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1431 1432 1433 1434
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1435
			new_spte &= ~shadow_accessed_mask;
1436 1437 1438

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1439 1440
		}
	}
1441

1442 1443 1444 1445 1446 1447
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1458
	struct kvm_rmap_head *rmap;
1459 1460 1461
	int level;

	/* private field. */
1462
	struct kvm_rmap_head *end_rmap;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1516 1517 1518 1519 1520
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1521
					       struct kvm_rmap_head *rmap_head,
1522
					       struct kvm_memory_slot *slot,
1523 1524
					       gfn_t gfn,
					       int level,
1525
					       unsigned long data))
1526
{
1527
	struct kvm_memslots *slots;
1528
	struct kvm_memory_slot *memslot;
1529 1530
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1531
	int i;
1532

1533 1534 1535 1536 1537
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1558 1559
	}

1560
	return ret;
1561 1562
}

1563 1564
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1565 1566
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1567
					 struct kvm_memory_slot *slot,
1568
					 gfn_t gfn, int level,
1569 1570 1571
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1572 1573 1574 1575
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1576 1577 1578
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1579 1580 1581 1582 1583
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1584 1585
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1586
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1587 1588
}

1589
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1590 1591
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1592
{
1593
	u64 *sptep;
1594
	struct rmap_iterator uninitialized_var(iter);
1595 1596
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1597
	BUG_ON(!shadow_accessed_mask);
1598

1599
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1600
		if (*sptep & shadow_accessed_mask) {
1601
			young = 1;
1602 1603
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1604
		}
1605
	}
1606

1607
	trace_kvm_age_page(gfn, level, slot, young);
1608 1609 1610
	return young;
}

1611
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1612 1613
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1614
{
1615 1616
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1627
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1628
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1629 1630 1631
			young = 1;
			break;
		}
1632
	}
A
Andrea Arcangeli 已提交
1633 1634 1635 1636
out:
	return young;
}

1637 1638
#define RMAP_RECYCLE_THRESHOLD 1000

1639
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1640
{
1641
	struct kvm_rmap_head *rmap_head;
1642 1643 1644
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1645

1646
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1647

1648
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1649 1650 1651
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1652
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1653
{
A
Andres Lagar-Cavilla 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1675 1676
}

A
Andrea Arcangeli 已提交
1677 1678 1679 1680 1681
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1682
#ifdef MMU_DEBUG
1683
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1684
{
1685 1686 1687
	u64 *pos;
	u64 *end;

1688
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1689
		if (is_shadow_present_pte(*pos)) {
1690
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1691
			       pos, *pos);
A
Avi Kivity 已提交
1692
			return 0;
1693
		}
A
Avi Kivity 已提交
1694 1695
	return 1;
}
1696
#endif
A
Avi Kivity 已提交
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1710
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1711
{
1712
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1713
	hlist_del(&sp->hash_link);
1714 1715
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1716 1717
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1718
	kmem_cache_free(mmu_page_header_cache, sp);
1719 1720
}

1721 1722
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1723
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1724 1725
}

1726
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1727
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1728 1729 1730 1731
{
	if (!parent_pte)
		return;

1732
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1733 1734
}

1735
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1736 1737
				       u64 *parent_pte)
{
1738
	pte_list_remove(parent_pte, &sp->parent_ptes);
1739 1740
}

1741 1742 1743 1744
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1745
	mmu_spte_clear_no_track(parent_pte);
1746 1747
}

1748
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1749
{
1750
	struct kvm_mmu_page *sp;
1751

1752 1753
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1754
	if (!direct)
1755
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1756
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1757 1758 1759 1760 1761 1762

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1763 1764 1765
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1766 1767
}

1768
static void mark_unsync(u64 *spte);
1769
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1770
{
1771 1772 1773 1774 1775 1776
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1777 1778
}

1779
static void mark_unsync(u64 *spte)
1780
{
1781
	struct kvm_mmu_page *sp;
1782
	unsigned int index;
1783

1784
	sp = page_header(__pa(spte));
1785 1786
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1787
		return;
1788
	if (sp->unsync_children++)
1789
		return;
1790
	kvm_mmu_mark_parents_unsync(sp);
1791 1792
}

1793
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1794
			       struct kvm_mmu_page *sp)
1795
{
1796
	return 0;
1797 1798
}

M
Marcelo Tosatti 已提交
1799 1800 1801 1802
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1803 1804
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1805
				 const void *pte)
1806 1807 1808 1809
{
	WARN_ON(1);
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1820 1821
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1822
{
1823
	int i;
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1836 1837 1838 1839 1840 1841 1842
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1843 1844 1845 1846
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1847

1848
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1849
		struct kvm_mmu_page *child;
1850 1851
		u64 ent = sp->spt[i];

1852 1853 1854 1855
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1856 1857 1858 1859 1860 1861 1862 1863

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1864 1865 1866 1867
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1868
				nr_unsync_leaf += ret;
1869
			} else
1870 1871 1872 1873 1874 1875
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1876
			clear_unsync_child_bit(sp, i);
1877 1878
	}

1879 1880 1881
	return nr_unsync_leaf;
}

1882 1883
#define INVALID_INDEX (-1)

1884 1885 1886
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1887
	pvec->nr = 0;
1888 1889 1890
	if (!sp->unsync_children)
		return 0;

1891
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1892
	return __mmu_unsync_walk(sp, pvec);
1893 1894 1895 1896 1897
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1898
	trace_kvm_mmu_sync_page(sp);
1899 1900 1901 1902
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1903 1904 1905 1906
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1907

1908 1909 1910 1911 1912 1913
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
1914
 * for_each_gfn_valid_sp() has skipped that kind of pages.
1915
 */
1916
#define for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
1917 1918
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1919 1920
		if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
			|| (_sp)->role.invalid) {} else
1921 1922

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1923 1924
	for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct) {} else
1925

1926
/* @sp->gfn should be write-protected at the call site */
1927 1928
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1929
{
1930
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1931
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1932
		return false;
1933 1934
	}

1935
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1936
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1937
		return false;
1938 1939
	}

1940
	return true;
1941 1942
}

1943 1944 1945
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1946
{
1947 1948 1949 1950
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
1951

1952 1953 1954 1955
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1956 1957
}

1958 1959 1960 1961 1962 1963 1964
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1965 1966 1967 1968 1969
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1970
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1971
			 struct list_head *invalid_list)
1972
{
1973 1974
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1975 1976
}

1977
/* @gfn should be write-protected at the call site */
1978 1979
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1980 1981
{
	struct kvm_mmu_page *s;
1982
	bool ret = false;
1983

1984
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1985
		if (!s->unsync)
1986 1987 1988
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1989
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1990 1991
	}

1992
	return ret;
1993 1994
}

1995
struct mmu_page_path {
P
Paolo Bonzini 已提交
1996 1997
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
	unsigned int idx[PT64_ROOT_LEVEL];
1998 1999
};

2000
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2001
		for (i = mmu_pages_first(&pvec, &parents);	\
2002 2003 2004
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2005 2006 2007
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2008 2009 2010 2011 2012
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2013 2014
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2015

P
Paolo Bonzini 已提交
2016 2017 2018
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2019

P
Paolo Bonzini 已提交
2020
		parents->parent[level-2] = sp;
2021 2022 2023 2024 2025
	}

	return n;
}

P
Paolo Bonzini 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2035 2036
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2050
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2051
{
2052 2053 2054 2055 2056 2057 2058 2059 2060
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2061
		WARN_ON(idx == INVALID_INDEX);
2062
		clear_unsync_child_bit(sp, idx);
2063
		level++;
P
Paolo Bonzini 已提交
2064
	} while (!sp->unsync_children);
2065
}
2066

2067 2068 2069 2070 2071 2072 2073
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2074
	LIST_HEAD(invalid_list);
2075
	bool flush = false;
2076 2077

	while (mmu_unsync_walk(parent, &pages)) {
2078
		bool protected = false;
2079 2080

		for_each_sp(pages, sp, parents, i)
2081
			protected |= rmap_write_protect(vcpu, sp->gfn);
2082

2083
		if (protected) {
2084
			kvm_flush_remote_tlbs(vcpu->kvm);
2085 2086
			flush = false;
		}
2087

2088
		for_each_sp(pages, sp, parents, i) {
2089
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2090 2091
			mmu_pages_clear_parents(&parents);
		}
2092 2093 2094 2095 2096
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2097
	}
2098 2099

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2100 2101
}

2102 2103
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2104
	atomic_set(&sp->write_flooding_count,  0);
2105 2106 2107 2108 2109 2110 2111 2112 2113
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2114 2115 2116 2117
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2118
					     int direct,
2119
					     unsigned access)
2120 2121 2122
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2123 2124
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2125 2126
	bool flush = false;
	LIST_HEAD(invalid_list);
2127

2128
	role = vcpu->arch.mmu.base_role;
2129
	role.level = level;
2130
	role.direct = direct;
2131
	if (role.direct)
2132
		role.cr4_pae = 0;
2133
	role.access = access;
2134 2135
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2136 2137 2138 2139
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2140
	for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2141 2142
		if (!need_sync && sp->unsync)
			need_sync = true;
2143

2144 2145
		if (sp->role.word != role.word)
			continue;
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2157

2158
		if (sp->unsync_children)
2159
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2160

2161
		__clear_sp_write_flooding_count(sp);
2162 2163 2164
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
2165

A
Avi Kivity 已提交
2166
	++vcpu->kvm->stat.mmu_cache_miss;
2167 2168 2169

	sp = kvm_mmu_alloc_page(vcpu, direct);

2170 2171
	sp->gfn = gfn;
	sp->role = role;
2172 2173
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2174
	if (!direct) {
2175 2176 2177 2178 2179 2180 2181 2182
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2183
			kvm_flush_remote_tlbs(vcpu->kvm);
2184 2185

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2186
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2187
	}
2188
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2189
	clear_page(sp->spt);
A
Avi Kivity 已提交
2190
	trace_kvm_mmu_get_page(sp, true);
2191 2192

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2193
	return sp;
2194 2195
}

2196 2197 2198 2199 2200 2201
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2202 2203 2204 2205 2206 2207

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2222

2223 2224 2225 2226 2227
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2228 2229
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2230
{
2231
	if (is_last_spte(spte, iterator->level)) {
2232 2233 2234 2235
		iterator->level = 0;
		return;
	}

2236
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2237 2238 2239
	--iterator->level;
}

2240 2241 2242 2243 2244
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2245 2246
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2247 2248 2249
{
	u64 spte;

2250
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2251

2252
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2253
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2254

2255
	mmu_spte_set(sptep, spte);
2256 2257 2258 2259 2260

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2261 2262
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2280
		drop_parent_pte(child, sptep);
2281 2282 2283 2284
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2285
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2286 2287 2288 2289 2290 2291 2292
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2293
		if (is_last_spte(pte, sp->role.level)) {
2294
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2295 2296 2297
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2298
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2299
			drop_parent_pte(child, spte);
2300
		}
X
Xiao Guangrong 已提交
2301 2302 2303 2304
		return true;
	}

	if (is_mmio_spte(pte))
2305
		mmu_spte_clear_no_track(spte);
2306

X
Xiao Guangrong 已提交
2307
	return false;
2308 2309
}

2310
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2311
					 struct kvm_mmu_page *sp)
2312
{
2313 2314
	unsigned i;

2315 2316
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2317 2318
}

2319
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2320
{
2321 2322
	u64 *sptep;
	struct rmap_iterator iter;
2323

2324
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2325
		drop_parent_pte(sp, sptep);
2326 2327
}

2328
static int mmu_zap_unsync_children(struct kvm *kvm,
2329 2330
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2331
{
2332 2333 2334
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2335

2336
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2337
		return 0;
2338 2339 2340 2341 2342

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2343
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2344
			mmu_pages_clear_parents(&parents);
2345
			zapped++;
2346 2347 2348 2349
		}
	}

	return zapped;
2350 2351
}

2352 2353
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2354
{
2355
	int ret;
A
Avi Kivity 已提交
2356

2357
	trace_kvm_mmu_prepare_zap_page(sp);
2358
	++kvm->stat.mmu_shadow_zapped;
2359
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2360
	kvm_mmu_page_unlink_children(kvm, sp);
2361
	kvm_mmu_unlink_parents(kvm, sp);
2362

2363
	if (!sp->role.invalid && !sp->role.direct)
2364
		unaccount_shadowed(kvm, sp);
2365

2366 2367
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2368
	if (!sp->root_count) {
2369 2370
		/* Count self */
		ret++;
2371
		list_move(&sp->link, invalid_list);
2372
		kvm_mod_used_mmu_pages(kvm, -1);
2373
	} else {
A
Avi Kivity 已提交
2374
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2375 2376 2377 2378 2379 2380 2381

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2382
	}
2383 2384

	sp->role.invalid = 1;
2385
	return ret;
2386 2387
}

2388 2389 2390
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2391
	struct kvm_mmu_page *sp, *nsp;
2392 2393 2394 2395

	if (list_empty(invalid_list))
		return;

2396
	/*
2397 2398 2399 2400 2401 2402 2403
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2404 2405
	 */
	kvm_flush_remote_tlbs(kvm);
2406

2407
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2408
		WARN_ON(!sp->role.invalid || sp->root_count);
2409
		kvm_mmu_free_page(sp);
2410
	}
2411 2412
}

2413 2414 2415 2416 2417 2418 2419 2420
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2421 2422
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2423 2424 2425 2426 2427
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2428 2429
/*
 * Changing the number of mmu pages allocated to the vm
2430
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2431
 */
2432
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2433
{
2434
	LIST_HEAD(invalid_list);
2435

2436 2437
	spin_lock(&kvm->mmu_lock);

2438
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2439 2440 2441 2442
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2443

2444
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2445
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2446 2447
	}

2448
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2449 2450

	spin_unlock(&kvm->mmu_lock);
2451 2452
}

2453
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2454
{
2455
	struct kvm_mmu_page *sp;
2456
	LIST_HEAD(invalid_list);
2457 2458
	int r;

2459
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2460
	r = 0;
2461
	spin_lock(&kvm->mmu_lock);
2462
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2463
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2464 2465
			 sp->role.word);
		r = 1;
2466
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2467
	}
2468
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2469 2470
	spin_unlock(&kvm->mmu_lock);

2471
	return r;
2472
}
2473
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2474

2475
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2476 2477 2478 2479 2480 2481 2482 2483
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2484 2485
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2486
{
2487
	struct kvm_mmu_page *sp;
2488

2489 2490
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2491

2492
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2493
		if (!can_unsync)
2494
			return true;
2495

2496 2497
		if (sp->unsync)
			continue;
2498

2499 2500
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2501
	}
2502 2503

	return false;
2504 2505
}

D
Dan Williams 已提交
2506
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2507 2508 2509 2510 2511 2512 2513
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2514
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2515
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2516
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2517
		    bool can_unsync, bool host_writable)
2518
{
2519
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2520
	int ret = 0;
S
Sheng Yang 已提交
2521

2522
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2523 2524
		return 0;

2525
	spte |= shadow_present_mask;
2526
	if (!speculative)
2527
		spte |= shadow_accessed_mask;
2528

S
Sheng Yang 已提交
2529 2530 2531 2532
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2533

2534
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2535
		spte |= shadow_user_mask;
2536

2537
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2538
		spte |= PT_PAGE_SIZE_MASK;
2539
	if (tdp_enabled)
2540
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2541
			kvm_is_mmio_pfn(pfn));
2542

2543
	if (host_writable)
2544
		spte |= SPTE_HOST_WRITEABLE;
2545 2546
	else
		pte_access &= ~ACC_WRITE_MASK;
2547

2548
	spte |= (u64)pfn << PAGE_SHIFT;
2549

2550
	if (pte_access & ACC_WRITE_MASK) {
2551

X
Xiao Guangrong 已提交
2552
		/*
2553 2554 2555 2556
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2557
		 */
2558
		if (level > PT_PAGE_TABLE_LEVEL &&
2559
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2560
			goto done;
2561

2562
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2563

2564 2565 2566 2567 2568 2569
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2570
		if (!can_unsync && is_writable_pte(*sptep))
2571 2572
			goto set_pte;

2573
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2574
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2575
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2576
			ret = 1;
2577
			pte_access &= ~ACC_WRITE_MASK;
2578
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2579 2580 2581
		}
	}

2582
	if (pte_access & ACC_WRITE_MASK) {
2583
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2584 2585
		spte |= shadow_dirty_mask;
	}
2586

2587
set_pte:
2588
	if (mmu_spte_update(sptep, spte))
2589
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2590
done:
M
Marcelo Tosatti 已提交
2591 2592 2593
	return ret;
}

2594
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2595
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2596
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2597 2598
{
	int was_rmapped = 0;
2599
	int rmap_count;
2600
	bool emulate = false;
M
Marcelo Tosatti 已提交
2601

2602 2603
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2604

2605
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2606 2607 2608 2609
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2610 2611
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2612
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2613
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2614 2615

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2616
			drop_parent_pte(child, sptep);
2617
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2618
		} else if (pfn != spte_to_pfn(*sptep)) {
2619
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2620
				 spte_to_pfn(*sptep), pfn);
2621
			drop_spte(vcpu->kvm, sptep);
2622
			kvm_flush_remote_tlbs(vcpu->kvm);
2623 2624
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2625
	}
2626

2627 2628
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2629
		if (write_fault)
2630
			emulate = true;
2631
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2632
	}
M
Marcelo Tosatti 已提交
2633

2634 2635
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2636

A
Avi Kivity 已提交
2637
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2638
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2639
		 is_large_pte(*sptep)? "2MB" : "4kB",
2640 2641
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2642
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2643 2644
		++vcpu->kvm->stat.lpages;

2645 2646 2647 2648 2649 2650
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2651
	}
2652

X
Xiao Guangrong 已提交
2653
	kvm_release_pfn_clean(pfn);
2654 2655

	return emulate;
2656 2657
}

D
Dan Williams 已提交
2658
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2659 2660 2661 2662
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2663
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2664
	if (!slot)
2665
		return KVM_PFN_ERR_FAULT;
2666

2667
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2668 2669 2670 2671 2672 2673 2674
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2675
	struct kvm_memory_slot *slot;
2676 2677 2678 2679 2680
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2681 2682
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2683 2684
		return -1;

2685
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2686 2687 2688 2689
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2690 2691
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2708
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2739
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2740
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2741
{
2742
	struct kvm_shadow_walk_iterator iterator;
2743
	struct kvm_mmu_page *sp;
2744
	int emulate = 0;
2745
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2746

2747 2748 2749
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2750
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2751
		if (iterator.level == level) {
2752 2753 2754
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2755
			direct_pte_prefetch(vcpu, iterator.sptep);
2756 2757
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2758 2759
		}

2760
		drop_large_spte(vcpu, iterator.sptep);
2761
		if (!is_shadow_present_pte(*iterator.sptep)) {
2762 2763 2764 2765
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2766
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2767
					      iterator.level - 1, 1, ACC_ALL);
2768

2769
			link_shadow_page(vcpu, iterator.sptep, sp);
2770 2771
		}
	}
2772
	return emulate;
A
Avi Kivity 已提交
2773 2774
}

H
Huang Ying 已提交
2775
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2776
{
H
Huang Ying 已提交
2777 2778 2779 2780 2781 2782 2783
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2784

H
Huang Ying 已提交
2785
	send_sig_info(SIGBUS, &info, tsk);
2786 2787
}

D
Dan Williams 已提交
2788
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2789
{
X
Xiao Guangrong 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2799
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2800
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2801
		return 0;
2802
	}
2803

2804
	return -EFAULT;
2805 2806
}

2807
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2808 2809
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2810
{
D
Dan Williams 已提交
2811
	kvm_pfn_t pfn = *pfnp;
2812 2813 2814 2815 2816 2817 2818 2819 2820
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2821
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2822
	    level == PT_PAGE_TABLE_LEVEL &&
2823
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
2824
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2843
			kvm_get_pfn(pfn);
2844 2845 2846 2847 2848
			*pfnp = pfn;
		}
	}
}

2849
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2850
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2851 2852
{
	/* The pfn is invalid, report the error! */
2853
	if (unlikely(is_error_pfn(pfn))) {
2854
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2855
		return true;
2856 2857
	}

2858
	if (unlikely(is_noslot_pfn(pfn)))
2859 2860
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

2861
	return false;
2862 2863
}

2864
static bool page_fault_can_be_fast(u32 error_code)
2865
{
2866 2867 2868 2869 2870 2871 2872
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2886 2887
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2911
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2912
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2926
	struct kvm_mmu_page *sp;
2927 2928 2929
	bool ret = false;
	u64 spte = 0ull;

2930 2931 2932
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2933
	if (!page_fault_can_be_fast(error_code))
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
2945
	if (!is_shadow_present_pte(spte)) {
2946 2947 2948 2949
		ret = true;
		goto exit;
	}

2950 2951
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2985 2986 2987 2988 2989
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2990
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2991
exit:
X
Xiao Guangrong 已提交
2992 2993
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2994 2995 2996 2997 2998
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2999
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3000
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3001
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3002

3003 3004
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3005 3006
{
	int r;
3007
	int level;
3008
	bool force_pt_level = false;
D
Dan Williams 已提交
3009
	kvm_pfn_t pfn;
3010
	unsigned long mmu_seq;
3011
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3012

3013
	level = mapping_level(vcpu, gfn, &force_pt_level);
3014 3015 3016 3017 3018 3019 3020 3021
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3022

3023
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3024
	}
M
Marcelo Tosatti 已提交
3025

3026 3027 3028
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3029
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3030
	smp_rmb();
3031

3032
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3033
		return 0;
3034

3035 3036
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3037

3038
	spin_lock(&vcpu->kvm->mmu_lock);
3039
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3040
		goto out_unlock;
3041
	make_mmu_pages_available(vcpu);
3042 3043
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3044
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3045 3046
	spin_unlock(&vcpu->kvm->mmu_lock);

3047
	return r;
3048 3049 3050 3051 3052

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3053 3054 3055
}


3056 3057 3058
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3059
	struct kvm_mmu_page *sp;
3060
	LIST_HEAD(invalid_list);
3061

3062
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3063
		return;
3064

3065 3066 3067
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3068
		hpa_t root = vcpu->arch.mmu.root_hpa;
3069

3070
		spin_lock(&vcpu->kvm->mmu_lock);
3071 3072
		sp = page_header(root);
		--sp->root_count;
3073 3074 3075 3076
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3077
		spin_unlock(&vcpu->kvm->mmu_lock);
3078
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3079 3080
		return;
	}
3081 3082

	spin_lock(&vcpu->kvm->mmu_lock);
3083
	for (i = 0; i < 4; ++i) {
3084
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3085

A
Avi Kivity 已提交
3086 3087
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3088 3089
			sp = page_header(root);
			--sp->root_count;
3090
			if (!sp->root_count && sp->role.invalid)
3091 3092
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3093
		}
3094
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3095
	}
3096
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3097
	spin_unlock(&vcpu->kvm->mmu_lock);
3098
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3099 3100
}

3101 3102 3103 3104 3105
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3106
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3107 3108 3109 3110 3111 3112
		ret = 1;
	}

	return ret;
}

3113 3114 3115
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3116
	unsigned i;
3117 3118 3119

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3120
		make_mmu_pages_available(vcpu);
3121
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3122 3123 3124 3125 3126 3127 3128
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3129
			MMU_WARN_ON(VALID_PAGE(root));
3130
			spin_lock(&vcpu->kvm->mmu_lock);
3131
			make_mmu_pages_available(vcpu);
3132
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3133
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3134 3135 3136 3137 3138
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3139
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3140 3141 3142 3143 3144 3145 3146
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3147
{
3148
	struct kvm_mmu_page *sp;
3149 3150 3151
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3152

3153
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3154

3155 3156 3157 3158 3159 3160 3161 3162
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3163
		hpa_t root = vcpu->arch.mmu.root_hpa;
3164

3165
		MMU_WARN_ON(VALID_PAGE(root));
3166

3167
		spin_lock(&vcpu->kvm->mmu_lock);
3168
		make_mmu_pages_available(vcpu);
3169
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3170
				      0, ACC_ALL);
3171 3172
		root = __pa(sp->spt);
		++sp->root_count;
3173
		spin_unlock(&vcpu->kvm->mmu_lock);
3174
		vcpu->arch.mmu.root_hpa = root;
3175
		return 0;
3176
	}
3177

3178 3179
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3180 3181
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3182
	 */
3183 3184 3185 3186
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3187
	for (i = 0; i < 4; ++i) {
3188
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3189

3190
		MMU_WARN_ON(VALID_PAGE(root));
3191
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3192
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3193
			if (!(pdptr & PT_PRESENT_MASK)) {
3194
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3195 3196
				continue;
			}
A
Avi Kivity 已提交
3197
			root_gfn = pdptr >> PAGE_SHIFT;
3198 3199
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3200
		}
3201
		spin_lock(&vcpu->kvm->mmu_lock);
3202
		make_mmu_pages_available(vcpu);
3203 3204
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3205 3206
		root = __pa(sp->spt);
		++sp->root_count;
3207 3208
		spin_unlock(&vcpu->kvm->mmu_lock);

3209
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3210
	}
3211
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3238
	return 0;
3239 3240
}

3241 3242 3243 3244 3245 3246 3247 3248
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3249 3250 3251 3252 3253
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3254 3255 3256
	if (vcpu->arch.mmu.direct_map)
		return;

3257 3258
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3259

3260
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3261
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3262
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3263 3264 3265
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3266
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3267 3268 3269 3270 3271
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3272
		if (root && VALID_PAGE(root)) {
3273 3274 3275 3276 3277
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3278
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3279 3280 3281 3282 3283 3284
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3285
	spin_unlock(&vcpu->kvm->mmu_lock);
3286
}
N
Nadav Har'El 已提交
3287
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3288

3289
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3290
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3291
{
3292 3293
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3294 3295 3296
	return vaddr;
}

3297
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3298 3299
					 u32 access,
					 struct x86_exception *exception)
3300
{
3301 3302
	if (exception)
		exception->error_code = 0;
3303
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3304 3305
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3325
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3326 3327 3328 3329 3330 3331 3332
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3333 3334 3335
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3336 3337
{
	struct kvm_shadow_walk_iterator iterator;
3338 3339 3340
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3341

3342
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3343
		goto exit;
3344

3345
	walk_shadow_page_lockless_begin(vcpu);
3346

3347 3348
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3349 3350 3351 3352 3353
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3354
		leaf--;
3355

3356 3357
		if (!is_shadow_present_pte(spte))
			break;
3358 3359

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3360
						    iterator.level);
3361 3362
	}

3363 3364
	walk_shadow_page_lockless_end(vcpu);

3365 3366 3367
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3368
		while (root > leaf) {
3369 3370 3371 3372 3373 3374 3375 3376
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3377 3378
}

3379
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3380 3381
{
	u64 spte;
3382
	bool reserved;
3383

3384
	if (mmio_info_in_cache(vcpu, addr, direct))
3385
		return RET_MMIO_PF_EMULATE;
3386

3387
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3388
	if (WARN_ON(reserved))
3389
		return RET_MMIO_PF_BUG;
3390 3391 3392 3393 3394

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3395
		if (!check_mmio_spte(vcpu, spte))
3396 3397
			return RET_MMIO_PF_INVALID;

3398 3399
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3400 3401

		trace_handle_mmio_page_fault(addr, gfn, access);
3402
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3403
		return RET_MMIO_PF_EMULATE;
3404 3405 3406 3407 3408 3409
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3410
	return RET_MMIO_PF_RETRY;
3411
}
3412
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3451
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3452
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3453
{
3454
	gfn_t gfn = gva >> PAGE_SHIFT;
3455
	int r;
A
Avi Kivity 已提交
3456

3457
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3458

3459 3460
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3461

3462 3463 3464
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3465

3466
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3467 3468


3469
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3470
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3471 3472
}

3473
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3474 3475
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3476

3477
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3478
	arch.gfn = gfn;
3479
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3480
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3481

3482
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3483 3484 3485 3486
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3487
	if (unlikely(!lapic_in_kernel(vcpu) ||
3488 3489 3490 3491 3492 3493
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3494
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3495
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3496
{
3497
	struct kvm_memory_slot *slot;
3498 3499
	bool async;

3500
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3501 3502
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3503 3504 3505
	if (!async)
		return false; /* *pfn has correct page already */

3506
	if (!prefault && can_do_async_pf(vcpu)) {
3507
		trace_kvm_try_async_get_page(gva, gfn);
3508 3509 3510 3511 3512 3513 3514 3515
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3516
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3517 3518 3519
	return false;
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3530
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3531
			  bool prefault)
3532
{
D
Dan Williams 已提交
3533
	kvm_pfn_t pfn;
3534
	int r;
3535
	int level;
3536
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3537
	gfn_t gfn = gpa >> PAGE_SHIFT;
3538
	unsigned long mmu_seq;
3539 3540
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3541

3542
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3543

3544 3545
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3546

3547 3548 3549 3550
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3551 3552 3553
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3554
	if (likely(!force_pt_level)) {
3555 3556 3557
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3558
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3559
	}
3560

3561 3562 3563
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3564
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3565
	smp_rmb();
3566

3567
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3568 3569
		return 0;

3570 3571 3572
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3573
	spin_lock(&vcpu->kvm->mmu_lock);
3574
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3575
		goto out_unlock;
3576
	make_mmu_pages_available(vcpu);
3577 3578
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3579
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3580 3581 3582
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3583 3584 3585 3586 3587

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3588 3589
}

3590 3591
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3592 3593 3594
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3595
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3596
	context->invlpg = nonpaging_invlpg;
3597
	context->update_pte = nonpaging_update_pte;
3598
	context->root_level = 0;
A
Avi Kivity 已提交
3599
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3600
	context->root_hpa = INVALID_PAGE;
3601
	context->direct_map = true;
3602
	context->nx = false;
A
Avi Kivity 已提交
3603 3604
}

3605
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3606
{
3607
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3608 3609
}

3610 3611
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3612
	return kvm_read_cr3(vcpu);
3613 3614
}

3615 3616
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3617
{
3618
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3619 3620
}

3621
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3622
			   unsigned access, int *nr_present)
3623 3624 3625 3626 3627 3628 3629 3630
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3631
		mark_mmio_spte(vcpu, sptep, gfn, access);
3632 3633 3634 3635 3636 3637
		return true;
	}

	return false;
}

3638 3639
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3640
{
3641 3642 3643 3644 3645 3646
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
A
Avi Kivity 已提交
3647

3648 3649 3650 3651 3652 3653 3654 3655
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3656 3657
}

3658 3659 3660 3661 3662
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3663 3664 3665 3666 3667 3668 3669 3670
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3671 3672 3673 3674
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3675
			bool pse, bool amd)
3676 3677
{
	u64 exb_bit_rsvd = 0;
3678
	u64 gbpages_bit_rsvd = 0;
3679
	u64 nonleaf_bit8_rsvd = 0;
3680

3681
	rsvd_check->bad_mt_xwr = 0;
3682

3683
	if (!nx)
3684
		exb_bit_rsvd = rsvd_bits(63, 63);
3685
	if (!gbpages)
3686
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3687 3688 3689 3690 3691

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3692
	if (amd)
3693 3694
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3695
	switch (level) {
3696 3697
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3698 3699 3700 3701
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3702

3703
		if (!pse) {
3704
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3705 3706 3707
			break;
		}

3708 3709
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3710
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3711 3712
		else
			/* 32 bits PSE 4MB page */
3713
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3714 3715
		break;
	case PT32E_ROOT_LEVEL:
3716
		rsvd_check->rsvd_bits_mask[0][2] =
3717
			rsvd_bits(maxphyaddr, 63) |
3718
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3719
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3720
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3721
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3722
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3723
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3724 3725
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3726 3727
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3728 3729
		break;
	case PT64_ROOT_LEVEL:
3730 3731
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3732
			rsvd_bits(maxphyaddr, 51);
3733 3734
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3735
			rsvd_bits(maxphyaddr, 51);
3736 3737 3738 3739 3740 3741 3742
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3743
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3744
			rsvd_bits(13, 29);
3745
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3746 3747
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3748 3749
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3750 3751 3752 3753
		break;
	}
}

3754 3755 3756 3757 3758 3759
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3760
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3761 3762
}

3763 3764 3765
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3766
{
3767
	u64 bad_mt_xwr;
3768

3769
	rsvd_check->rsvd_bits_mask[0][3] =
3770
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3771
	rsvd_check->rsvd_bits_mask[0][2] =
3772
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3773
	rsvd_check->rsvd_bits_mask[0][1] =
3774
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3775
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3776 3777

	/* large page */
3778 3779
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3780
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3781
	rsvd_check->rsvd_bits_mask[1][1] =
3782
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3783
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3784

3785 3786 3787 3788 3789 3790 3791 3792
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3793
	}
3794
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3795 3796
}

3797 3798 3799 3800 3801 3802 3803
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3804 3805 3806 3807 3808 3809 3810 3811
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
3812 3813
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;

3814 3815 3816 3817
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
3818 3819
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
3820
				context->shadow_root_level, uses_nx,
3821 3822
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
3823 3824 3825
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

3826 3827 3828 3829 3830 3831
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

3832 3833 3834 3835 3836 3837 3838 3839
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
3840
	if (boot_cpu_is_amd())
3841 3842 3843
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
3844 3845
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

3865 3866
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3867 3868 3869
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3870
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3871

F
Feng Wu 已提交
3872
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3873
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3874 3875 3876 3877 3878 3879
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3880 3881 3882 3883 3884 3885
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3886 3887 3888 3889 3890
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3891 3892 3893 3894 3895 3896
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3897
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3918 3919 3920
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3921

F
Feng Wu 已提交
3922 3923
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3924 3925 3926 3927 3928 3929
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4005
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4006
{
4007 4008 4009 4010 4011
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4012 4013
}

4014 4015 4016
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4017
{
4018
	context->nx = is_nx(vcpu);
4019
	context->root_level = level;
4020

4021
	reset_rsvds_bits_mask(vcpu, context);
4022
	update_permission_bitmask(vcpu, context, false);
4023
	update_pkru_bitmask(vcpu, context, false);
4024
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4025

4026
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4027 4028
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4029
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4030
	context->invlpg = paging64_invlpg;
4031
	context->update_pte = paging64_update_pte;
4032
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4033
	context->root_hpa = INVALID_PAGE;
4034
	context->direct_map = false;
A
Avi Kivity 已提交
4035 4036
}

4037 4038
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4039
{
4040
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4041 4042
}

4043 4044
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4045
{
4046
	context->nx = false;
4047
	context->root_level = PT32_ROOT_LEVEL;
4048

4049
	reset_rsvds_bits_mask(vcpu, context);
4050
	update_permission_bitmask(vcpu, context, false);
4051
	update_pkru_bitmask(vcpu, context, false);
4052
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4053 4054 4055

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4056
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4057
	context->invlpg = paging32_invlpg;
4058
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4059
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4060
	context->root_hpa = INVALID_PAGE;
4061
	context->direct_map = false;
A
Avi Kivity 已提交
4062 4063
}

4064 4065
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4066
{
4067
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4068 4069
}

4070
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4071
{
4072
	struct kvm_mmu *context = &vcpu->arch.mmu;
4073

4074
	context->base_role.word = 0;
4075
	context->base_role.smm = is_smm(vcpu);
4076
	context->page_fault = tdp_page_fault;
4077
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4078
	context->invlpg = nonpaging_invlpg;
4079
	context->update_pte = nonpaging_update_pte;
4080
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4081
	context->root_hpa = INVALID_PAGE;
4082
	context->direct_map = true;
4083
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4084
	context->get_cr3 = get_cr3;
4085
	context->get_pdptr = kvm_pdptr_read;
4086
	context->inject_page_fault = kvm_inject_page_fault;
4087 4088

	if (!is_paging(vcpu)) {
4089
		context->nx = false;
4090 4091 4092
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4093
		context->nx = is_nx(vcpu);
4094
		context->root_level = PT64_ROOT_LEVEL;
4095 4096
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4097
	} else if (is_pae(vcpu)) {
4098
		context->nx = is_nx(vcpu);
4099
		context->root_level = PT32E_ROOT_LEVEL;
4100 4101
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4102
	} else {
4103
		context->nx = false;
4104
		context->root_level = PT32_ROOT_LEVEL;
4105 4106
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4107 4108
	}

4109
	update_permission_bitmask(vcpu, context, false);
4110
	update_pkru_bitmask(vcpu, context, false);
4111
	update_last_nonleaf_level(vcpu, context);
4112
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4113 4114
}

4115
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4116
{
4117
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4118
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4119 4120
	struct kvm_mmu *context = &vcpu->arch.mmu;

4121
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4122 4123

	if (!is_paging(vcpu))
4124
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4125
	else if (is_long_mode(vcpu))
4126
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4127
	else if (is_pae(vcpu))
4128
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4129
	else
4130
		paging32_init_context(vcpu, context);
4131

4132 4133 4134 4135
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4136
		= smep && !is_write_protection(vcpu);
4137 4138
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4139
	context->base_role.smm = is_smm(vcpu);
4140
	reset_shadow_zero_bits_mask(vcpu, context);
4141 4142 4143
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4144
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4145
{
4146 4147
	struct kvm_mmu *context = &vcpu->arch.mmu;

4148
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
4163
	update_pkru_bitmask(vcpu, context, true);
N
Nadav Har'El 已提交
4164
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4165
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4166 4167 4168
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4169
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4170
{
4171 4172 4173 4174 4175 4176 4177
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4178 4179
}

4180
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4181 4182 4183 4184
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4185
	g_context->get_pdptr         = kvm_pdptr_read;
4186 4187 4188
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4189 4190 4191 4192 4193 4194
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4195 4196
	 */
	if (!is_paging(vcpu)) {
4197
		g_context->nx = false;
4198 4199 4200
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4201
		g_context->nx = is_nx(vcpu);
4202
		g_context->root_level = PT64_ROOT_LEVEL;
4203
		reset_rsvds_bits_mask(vcpu, g_context);
4204 4205
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4206
		g_context->nx = is_nx(vcpu);
4207
		g_context->root_level = PT32E_ROOT_LEVEL;
4208
		reset_rsvds_bits_mask(vcpu, g_context);
4209 4210
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4211
		g_context->nx = false;
4212
		g_context->root_level = PT32_ROOT_LEVEL;
4213
		reset_rsvds_bits_mask(vcpu, g_context);
4214 4215 4216
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4217
	update_permission_bitmask(vcpu, g_context, false);
4218
	update_pkru_bitmask(vcpu, g_context, false);
4219
	update_last_nonleaf_level(vcpu, g_context);
4220 4221
}

4222
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4223
{
4224
	if (mmu_is_nested(vcpu))
4225
		init_kvm_nested_mmu(vcpu);
4226
	else if (tdp_enabled)
4227
		init_kvm_tdp_mmu(vcpu);
4228
	else
4229
		init_kvm_softmmu(vcpu);
4230 4231
}

4232
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4233
{
4234
	kvm_mmu_unload(vcpu);
4235
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4236
}
4237
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4238 4239

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4240
{
4241 4242
	int r;

4243
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4244 4245
	if (r)
		goto out;
4246
	r = mmu_alloc_roots(vcpu);
4247
	kvm_mmu_sync_roots(vcpu);
4248 4249
	if (r)
		goto out;
4250
	/* set_cr3() should ensure TLB has been flushed */
4251
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4252 4253
out:
	return r;
A
Avi Kivity 已提交
4254
}
A
Avi Kivity 已提交
4255 4256 4257 4258 4259
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4260
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4261
}
4262
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4263

4264
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4265 4266
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4267
{
4268
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4269 4270
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4271
        }
4272

A
Avi Kivity 已提交
4273
	++vcpu->kvm->stat.mmu_pte_updated;
4274
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4275 4276
}

4277 4278 4279 4280 4281 4282 4283 4284
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4285 4286
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4287 4288 4289
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4290 4291
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4292
{
4293 4294
	u64 gentry;
	int r;
4295 4296 4297

	/*
	 * Assume that the pte write on a page table of the same type
4298 4299
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4300
	 */
4301
	if (is_pae(vcpu) && *bytes == 4) {
4302
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4303 4304
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4305
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4306 4307
		if (r)
			gentry = 0;
4308 4309 4310
		new = (const u8 *)&gentry;
	}

4311
	switch (*bytes) {
4312 4313 4314 4315 4316 4317 4318 4319 4320
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4321 4322
	}

4323 4324 4325 4326 4327 4328 4329
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4330
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4331
{
4332 4333 4334 4335
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4336
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4337
		return false;
4338

4339 4340
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4357 4358 4359 4360 4361 4362 4363 4364

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4402 4403
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
			      const u8 *new, int bytes)
4404 4405 4406 4407 4408 4409
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4410
	bool remote_flush, local_flush;
4411 4412 4413 4414 4415 4416 4417
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4418
	mask.smm = 1;
4419 4420 4421 4422 4423 4424 4425 4426

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4427
	remote_flush = local_flush = false;
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4442
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4443

4444
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4445
		if (detect_write_misaligned(sp, gpa, bytes) ||
4446
		      detect_write_flooding(sp)) {
4447
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4448
			++vcpu->kvm->stat.mmu_flooded;
4449 4450
			continue;
		}
4451 4452 4453 4454 4455

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4456
		local_flush = true;
4457
		while (npte--) {
4458
			entry = *spte;
4459
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4460 4461
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4462
			      & mask.word) && rmap_can_add(vcpu))
4463
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4464
			if (need_remote_flush(entry, *spte))
4465
				remote_flush = true;
4466
			++spte;
4467 4468
		}
	}
4469
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4470
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4471
	spin_unlock(&vcpu->kvm->mmu_lock);
4472 4473
}

4474 4475
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4476 4477
	gpa_t gpa;
	int r;
4478

4479
	if (vcpu->arch.mmu.direct_map)
4480 4481
		return 0;

4482
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4483 4484

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4485

4486
	return r;
4487
}
4488
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4489

4490
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4491
{
4492
	LIST_HEAD(invalid_list);
4493

4494 4495 4496
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4497 4498 4499
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4500

A
Avi Kivity 已提交
4501
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4502
	}
4503
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4504 4505
}

4506 4507
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4508
{
4509
	int r, emulation_type = EMULTYPE_RETRY;
4510
	enum emulation_result er;
4511
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4512

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}
4524

G
Gleb Natapov 已提交
4525
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4526
	if (r < 0)
4527 4528 4529
		return r;
	if (!r)
		return 1;
4530

4531
	if (mmio_info_in_cache(vcpu, cr2, direct))
4532
		emulation_type = 0;
4533
emulate:
4534
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4535 4536 4537 4538

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4539
	case EMULATE_USER_EXIT:
4540
		++vcpu->stat.mmio_exits;
4541
		/* fall through */
4542
	case EMULATE_FAIL:
4543
		return 0;
4544 4545 4546 4547 4548 4549
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4550 4551 4552
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4553
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4554 4555 4556 4557
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4558 4559 4560 4561 4562 4563
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4564 4565 4566 4567 4568 4569
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4570 4571
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4572
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4573 4574
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4575 4576 4577 4578
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4579
	struct page *page;
A
Avi Kivity 已提交
4580 4581
	int i;

4582 4583 4584 4585 4586 4587 4588
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4589 4590
		return -ENOMEM;

4591
	vcpu->arch.mmu.pae_root = page_address(page);
4592
	for (i = 0; i < 4; ++i)
4593
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4594

A
Avi Kivity 已提交
4595 4596 4597
	return 0;
}

4598
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4599
{
4600 4601 4602 4603
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4604

4605 4606
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4607

4608
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4609
{
4610
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4611

4612
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4613 4614
}

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

4630
/* The return value indicates if tlb flush on all vcpus is needed. */
4631
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4699 4700 4701 4702
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4703
	int i;
X
Xiao Guangrong 已提交
4704 4705

	spin_lock(&kvm->mmu_lock);
4706 4707 4708 4709 4710 4711 4712 4713 4714
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4715

4716 4717 4718 4719
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4720 4721 4722 4723 4724
	}

	spin_unlock(&kvm->mmu_lock);
}

4725 4726
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4727
{
4728
	return __rmap_write_protect(kvm, rmap_head, false);
4729 4730
}

4731 4732
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4733
{
4734
	bool flush;
A
Avi Kivity 已提交
4735

4736
	spin_lock(&kvm->mmu_lock);
4737 4738
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4739
	spin_unlock(&kvm->mmu_lock);
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4759 4760
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4761
}
4762

4763
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4764
					 struct kvm_rmap_head *rmap_head)
4765 4766 4767 4768
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4769
	kvm_pfn_t pfn;
4770 4771
	struct kvm_mmu_page *sp;

4772
restart:
4773
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4774 4775 4776 4777
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4778 4779 4780 4781 4782
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4783 4784 4785
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
4786
			PageTransCompoundMap(pfn_to_page(pfn))) {
4787 4788
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4789 4790
			goto restart;
		}
4791 4792 4793 4794 4795 4796
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4797
				   const struct kvm_memory_slot *memslot)
4798
{
4799
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4800
	spin_lock(&kvm->mmu_lock);
4801 4802
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4803 4804 4805
	spin_unlock(&kvm->mmu_lock);
}

4806 4807 4808
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4809
	bool flush;
4810 4811

	spin_lock(&kvm->mmu_lock);
4812
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4831
	bool flush;
4832 4833

	spin_lock(&kvm->mmu_lock);
4834 4835
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4849
	bool flush;
4850 4851

	spin_lock(&kvm->mmu_lock);
4852
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4863
#define BATCH_ZAP_PAGES	10
4864 4865 4866
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4867
	int batch = 0;
4868 4869 4870 4871

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4872 4873
		int ret;

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4889 4890 4891 4892
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4893
		if (batch >= BATCH_ZAP_PAGES &&
4894
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4895
			batch = 0;
4896 4897 4898
			goto restart;
		}

4899 4900
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4901 4902 4903
		batch += ret;

		if (ret)
4904 4905 4906
			goto restart;
	}

4907 4908 4909 4910
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4911
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4926
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4927 4928
	kvm->arch.mmu_valid_gen++;

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4940 4941 4942 4943
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4944 4945 4946 4947 4948
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4949
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4950 4951 4952 4953 4954
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4955
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4956
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4957
		kvm_mmu_invalidate_zap_all_pages(kvm);
4958
	}
4959 4960
}

4961 4962
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4963 4964
{
	struct kvm *kvm;
4965
	int nr_to_scan = sc->nr_to_scan;
4966
	unsigned long freed = 0;
4967

4968
	spin_lock(&kvm_lock);
4969 4970

	list_for_each_entry(kvm, &vm_list, vm_list) {
4971
		int idx;
4972
		LIST_HEAD(invalid_list);
4973

4974 4975 4976 4977 4978 4979 4980 4981
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4982 4983 4984 4985 4986 4987
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4988 4989
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4990 4991
			continue;

4992
		idx = srcu_read_lock(&kvm->srcu);
4993 4994
		spin_lock(&kvm->mmu_lock);

4995 4996 4997 4998 4999 5000
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5001 5002
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5003
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5004

5005
unlock:
5006
		spin_unlock(&kvm->mmu_lock);
5007
		srcu_read_unlock(&kvm->srcu, idx);
5008

5009 5010 5011 5012 5013
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5014 5015
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5016 5017
	}

5018
	spin_unlock(&kvm_lock);
5019 5020 5021 5022 5023 5024
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5025
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5026 5027 5028
}

static struct shrinker mmu_shrinker = {
5029 5030
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5031 5032 5033
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5034
static void mmu_destroy_caches(void)
5035
{
5036 5037
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
5038 5039
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
5040 5041 5042 5043
}

int kvm_mmu_module_init(void)
{
5044 5045
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5046
					    0, 0, NULL);
5047
	if (!pte_list_desc_cache)
5048 5049
		goto nomem;

5050 5051
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5052
						  0, 0, NULL);
5053 5054 5055
	if (!mmu_page_header_cache)
		goto nomem;

5056
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5057 5058
		goto nomem;

5059 5060
	register_shrinker(&mmu_shrinker);

5061 5062 5063
	return 0;

nomem:
5064
	mmu_destroy_caches();
5065 5066 5067
	return -ENOMEM;
}

5068 5069 5070 5071 5072 5073 5074
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5075
	struct kvm_memslots *slots;
5076
	struct kvm_memory_slot *memslot;
5077
	int i;
5078

5079 5080
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5081

5082 5083 5084
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5085 5086 5087

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5088
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5089 5090 5091 5092

	return nr_mmu_pages;
}

5093 5094
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5095
	kvm_mmu_unload(vcpu);
5096 5097
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5098 5099 5100 5101 5102 5103 5104
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5105 5106
	mmu_audit_disable();
}