mmu.c 140.9 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/sched/signal.h>
40
#include <linux/uaccess.h>
41
#include <linux/hash.h>
42
#include <linux/kern_levels.h>
A
Avi Kivity 已提交
43

A
Avi Kivity 已提交
44 45
#include <asm/page.h>
#include <asm/cmpxchg.h>
46
#include <asm/io.h>
47
#include <asm/vmx.h>
48
#include <asm/kvm_page_track.h>
49
#include "trace.h"
A
Avi Kivity 已提交
50

51 52 53 54 55 56 57
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
58
bool tdp_enabled = false;
59

60 61 62 63
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
64 65 66
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
67
};
68

69
#undef MMU_DEBUG
70 71

#ifdef MMU_DEBUG
72 73
static bool dbg = 0;
module_param(dbg, bool, 0644);
74 75 76

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
#define MMU_WARN_ON(x) WARN_ON(x)
78 79 80
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
81
#define MMU_WARN_ON(x) do { } while (0)
82
#endif
A
Avi Kivity 已提交
83

84 85
#define PTE_PREFETCH_NUM		8

86
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
87 88 89 90 91
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
92
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
93 94 95 96 97 98 99 100

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
101
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
102

103 104 105
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
106 107 108 109 110

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


111
#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
A
Avi Kivity 已提交
112 113
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114 115 116 117 118 119
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
120 121 122 123

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
124 125 126
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127

128
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
129
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
130

131 132 133 134 135
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

136 137 138 139
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

140 141
#include <trace/events/kvm.h>

142 143 144
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

145 146
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
147

148 149
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

150 151 152
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Return values of handle_mmio_page_fault and mmu.page_fault:
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 *
 * For handle_mmio_page_fault only:
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 */
enum {
	RET_PF_RETRY = 0,
	RET_PF_EMULATE = 1,
	RET_PF_INVALID = 2,
};

167 168 169
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
170 171
};

172 173 174 175
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
176
	int level;
177 178 179 180 181 182 183 184
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

185 186 187 188 189 190
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

191
static struct kmem_cache *pte_list_desc_cache;
192
static struct kmem_cache *mmu_page_header_cache;
193
static struct percpu_counter kvm_total_used_mmu_pages;
194

S
Sheng Yang 已提交
195 196 197 198 199
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
200
static u64 __read_mostly shadow_mmio_mask;
201
static u64 __read_mostly shadow_mmio_value;
202
static u64 __read_mostly shadow_present_mask;
203
static u64 __read_mostly shadow_me_mask;
204

205
/*
206 207 208
 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 * tracking.
209 210 211 212 213 214 215 216 217 218 219 220 221 222
 */
static u64 __read_mostly shadow_acc_track_mask;
static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

223
static void mmu_spte_set(u64 *sptep, u64 spte);
224
static void mmu_free_roots(struct kvm_vcpu *vcpu);
225

226
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
227
{
228 229
	BUG_ON((mmio_mask & mmio_value) != mmio_value);
	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
230
	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
231 232 233
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

static inline bool spte_ad_enabled(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return !(spte & shadow_acc_track_value);
}

static inline u64 spte_shadow_accessed_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

257 258
static inline bool is_access_track_spte(u64 spte)
{
259
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
260 261
}

262
/*
263 264 265 266 267 268 269
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
270
 */
271
#define MMIO_SPTE_GEN_LOW_SHIFT		2
272 273
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

274 275 276
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
277
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
278 279 280 281 282

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
283
	WARN_ON(gen & ~MMIO_GEN_MASK);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

301
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
302
{
303
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
304 305
}

306
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
307
			   unsigned access)
308
{
309
	unsigned int gen = kvm_current_mmio_generation(vcpu);
310
	u64 mask = generation_mmio_spte_mask(gen);
311

312
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
313
	mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
314

315
	trace_mark_mmio_spte(sptep, gfn, access, gen);
316
	mmu_spte_set(sptep, mask);
317 318 319 320
}

static bool is_mmio_spte(u64 spte)
{
321
	return (spte & shadow_mmio_mask) == shadow_mmio_value;
322 323 324 325
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
326
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
327
	return (spte & ~mask) >> PAGE_SHIFT;
328 329 330 331
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
332
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
333
	return (spte & ~mask) & ~PAGE_MASK;
334 335
}

336
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
337
			  kvm_pfn_t pfn, unsigned access)
338 339
{
	if (unlikely(is_noslot_pfn(pfn))) {
340
		mark_mmio_spte(vcpu, sptep, gfn, access);
341 342 343 344 345
		return true;
	}

	return false;
}
346

347
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
348
{
349 350
	unsigned int kvm_gen, spte_gen;

351
	kvm_gen = kvm_current_mmio_generation(vcpu);
352 353 354 355
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
356 357
}

358 359 360 361 362 363 364
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
365
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
366
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
367
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
368
{
369 370
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
371
	BUG_ON(acc_track_mask & shadow_acc_track_value);
372

S
Sheng Yang 已提交
373 374 375 376 377
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
378
	shadow_present_mask = p_mask;
379
	shadow_acc_track_mask = acc_track_mask;
380
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
381 382 383
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

384 385 386 387 388 389 390 391 392 393 394 395
void kvm_mmu_clear_all_pte_masks(void)
{
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
}

A
Avi Kivity 已提交
396 397 398 399 400
static int is_cpuid_PSE36(void)
{
	return 1;
}

401 402
static int is_nx(struct kvm_vcpu *vcpu)
{
403
	return vcpu->arch.efer & EFER_NX;
404 405
}

406 407
static int is_shadow_present_pte(u64 pte)
{
408
	return (pte != 0) && !is_mmio_spte(pte);
409 410
}

M
Marcelo Tosatti 已提交
411 412 413 414 415
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

416 417 418 419
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
420
	if (is_large_pte(pte))
421 422 423 424
		return 1;
	return 0;
}

425 426 427 428 429
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
430
static kvm_pfn_t spte_to_pfn(u64 pte)
431
{
432
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
433 434
}

435 436 437 438 439 440 441
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

442
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
443
static void __set_spte(u64 *sptep, u64 spte)
444
{
445
	WRITE_ONCE(*sptep, spte);
446 447
}

448
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
449
{
450
	WRITE_ONCE(*sptep, spte);
451 452 453 454 455 456
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
457 458 459

static u64 __get_spte_lockless(u64 *sptep)
{
460
	return READ_ONCE(*sptep);
461
}
462
#else
463 464 465 466 467 468 469
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
470

471 472 473 474 475 476 477 478 479 480 481 482
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

483 484 485
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
486

487 488 489 490 491 492 493 494 495 496 497 498
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

499
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
500 501
}

502 503 504 505 506 507 508
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

509
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
510 511 512 513 514 515 516 517

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
518
	count_spte_clear(sptep, spte);
519 520 521 522 523 524 525 526 527 528 529
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
530 531
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
532
	count_spte_clear(sptep, spte);
533 534 535

	return orig.spte;
}
536 537 538 539

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
540 541 542 543 544 545 546 547 548 549 550 551 552 553
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
577 578
#endif

579
static bool spte_can_locklessly_be_made_writable(u64 spte)
580
{
581 582
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
583 584
}

585 586
static bool spte_has_volatile_bits(u64 spte)
{
587 588 589
	if (!is_shadow_present_pte(spte))
		return false;

590
	/*
591
	 * Always atomically update spte if it can be updated
592 593 594 595
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
596 597
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
598 599
		return true;

600
	if (spte_ad_enabled(spte)) {
601 602 603 604
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
605

606
	return false;
607 608
}

609
static bool is_accessed_spte(u64 spte)
610
{
611 612 613 614
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
615 616
}

617
static bool is_dirty_spte(u64 spte)
618
{
619 620 621
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
622 623
}

624 625 626 627 628 629 630 631 632 633 634 635
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

636 637 638
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
639
 */
640
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
641
{
642
	u64 old_spte = *sptep;
643

644
	WARN_ON(!is_shadow_present_pte(new_spte));
645

646 647
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
648
		return old_spte;
649
	}
650

651
	if (!spte_has_volatile_bits(old_spte))
652
		__update_clear_spte_fast(sptep, new_spte);
653
	else
654
		old_spte = __update_clear_spte_slow(sptep, new_spte);
655

656 657
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

680 681
	/*
	 * For the spte updated out of mmu-lock is safe, since
682
	 * we always atomically update it, see the comments in
683 684
	 * spte_has_volatile_bits().
	 */
685
	if (spte_can_locklessly_be_made_writable(old_spte) &&
686
	      !is_writable_pte(new_spte))
687
		flush = true;
688

689
	/*
690
	 * Flush TLB when accessed/dirty states are changed in the page tables,
691 692 693
	 * to guarantee consistency between TLB and page tables.
	 */

694 695
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
696
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
697 698 699 700
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
701
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
702
	}
703

704
	return flush;
705 706
}

707 708 709 710
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
711
 * Returns non-zero if the PTE was previously valid.
712 713 714
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
715
	kvm_pfn_t pfn;
716 717 718
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
719
		__update_clear_spte_fast(sptep, 0ull);
720
	else
721
		old_spte = __update_clear_spte_slow(sptep, 0ull);
722

723
	if (!is_shadow_present_pte(old_spte))
724 725 726
		return 0;

	pfn = spte_to_pfn(old_spte);
727 728 729 730 731 732

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
733
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
734

735
	if (is_accessed_spte(old_spte))
736
		kvm_set_pfn_accessed(pfn);
737 738

	if (is_dirty_spte(old_spte))
739
		kvm_set_pfn_dirty(pfn);
740

741 742 743 744 745 746 747 748 749 750
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
751
	__update_clear_spte_fast(sptep, 0ull);
752 753
}

754 755 756 757 758
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

759 760
static u64 mark_spte_for_access_track(u64 spte)
{
761
	if (spte_ad_enabled(spte))
762 763
		return spte & ~shadow_accessed_mask;

764
	if (is_access_track_spte(spte))
765 766 767
		return spte;

	/*
768 769 770
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

787 788 789 790 791 792 793
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

794
	WARN_ON_ONCE(spte_ad_enabled(spte));
795 796 797 798 799 800 801 802 803 804
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

805 806 807 808 809 810 811 812
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

813
	if (spte_ad_enabled(spte)) {
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

831 832
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
833 834 835 836 837
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
838

839 840 841 842
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
843
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
844 845 846 847
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
848 849 850 851 852
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
853
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
854
	local_irq_enable();
855 856
}

857
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
858
				  struct kmem_cache *base_cache, int min)
859 860 861 862
{
	void *obj;

	if (cache->nobjs >= min)
863
		return 0;
864
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
865
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
866
		if (!obj)
867
			return -ENOMEM;
868 869
		cache->objects[cache->nobjs++] = obj;
	}
870
	return 0;
871 872
}

873 874 875 876 877
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

878 879
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
880 881
{
	while (mc->nobjs)
882
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
883 884
}

A
Avi Kivity 已提交
885
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
886
				       int min)
A
Avi Kivity 已提交
887
{
888
	void *page;
A
Avi Kivity 已提交
889 890 891 892

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
893
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
894 895
		if (!page)
			return -ENOMEM;
896
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
897 898 899 900 901 902 903
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
904
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
905 906
}

907
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
908
{
909 910
	int r;

911
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
912
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
913 914
	if (r)
		goto out;
915
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
916 917
	if (r)
		goto out;
918
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
919
				   mmu_page_header_cache, 4);
920 921
out:
	return r;
922 923 924 925
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
926 927
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
928
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
929 930
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
931 932
}

933
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
934 935 936 937 938 939 940 941
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

942
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
943
{
944
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
945 946
}

947
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
948
{
949
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
950 951
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
968
/*
969 970
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
971
 */
972 973 974
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
975 976 977
{
	unsigned long idx;

978
	idx = gfn_to_index(gfn, slot->base_gfn, level);
979
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
980 981
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1005
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1006
{
1007
	struct kvm_memslots *slots;
1008
	struct kvm_memory_slot *slot;
1009
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1010

1011
	kvm->arch.indirect_shadow_pages++;
1012
	gfn = sp->gfn;
1013 1014
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1015 1016 1017 1018 1019 1020

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1021
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1022 1023
}

1024
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1025
{
1026
	struct kvm_memslots *slots;
1027
	struct kvm_memory_slot *slot;
1028
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1029

1030
	kvm->arch.indirect_shadow_pages--;
1031
	gfn = sp->gfn;
1032 1033
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1034 1035 1036 1037
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1038
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1039 1040
}

1041 1042
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
1043
{
1044
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
1045 1046

	if (slot) {
1047
		linfo = lpage_info_slot(gfn, slot, level);
1048
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
1049 1050
	}

1051
	return true;
M
Marcelo Tosatti 已提交
1052 1053
}

1054 1055
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
1056 1057 1058 1059
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1060
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1061 1062
}

1063
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
1064
{
J
Joerg Roedel 已提交
1065
	unsigned long page_size;
1066
	int i, ret = 0;
M
Marcelo Tosatti 已提交
1067

J
Joerg Roedel 已提交
1068
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
1069

1070
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1071 1072 1073 1074 1075 1076
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1077
	return ret;
M
Marcelo Tosatti 已提交
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1091 1092 1093
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1094 1095
{
	struct kvm_memory_slot *slot;
1096

1097
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1098
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1099 1100 1101 1102 1103
		slot = NULL;

	return slot;
}

1104 1105
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1106 1107
{
	int host_level, level, max_level;
1108 1109
	struct kvm_memory_slot *slot;

1110 1111
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1112

1113 1114
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1115 1116 1117
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1118 1119 1120 1121 1122
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1123
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1124 1125

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1126
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1127 1128 1129
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1130 1131
}

1132
/*
1133
 * About rmap_head encoding:
1134
 *
1135 1136
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1137
 * pte_list_desc containing more mappings.
1138 1139 1140 1141
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1142
 */
1143
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1144
			struct kvm_rmap_head *rmap_head)
1145
{
1146
	struct pte_list_desc *desc;
1147
	int i, count = 0;
1148

1149
	if (!rmap_head->val) {
1150
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1151 1152
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1153 1154
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1155
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1156
		desc->sptes[1] = spte;
1157
		rmap_head->val = (unsigned long)desc | 1;
1158
		++count;
1159
	} else {
1160
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1161
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1162
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1163
			desc = desc->more;
1164
			count += PTE_LIST_EXT;
1165
		}
1166 1167
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1168 1169
			desc = desc->more;
		}
A
Avi Kivity 已提交
1170
		for (i = 0; desc->sptes[i]; ++i)
1171
			++count;
A
Avi Kivity 已提交
1172
		desc->sptes[i] = spte;
1173
	}
1174
	return count;
1175 1176
}

1177
static void
1178 1179 1180
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1181 1182 1183
{
	int j;

1184
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1185
		;
A
Avi Kivity 已提交
1186 1187
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1188 1189 1190
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1191
		rmap_head->val = (unsigned long)desc->sptes[0];
1192 1193 1194 1195
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1196
			rmap_head->val = (unsigned long)desc->more | 1;
1197
	mmu_free_pte_list_desc(desc);
1198 1199
}

1200
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1201
{
1202 1203
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1204 1205
	int i;

1206
	if (!rmap_head->val) {
1207
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1208
		BUG();
1209
	} else if (!(rmap_head->val & 1)) {
1210
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1211
		if ((u64 *)rmap_head->val != spte) {
1212
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1213 1214
			BUG();
		}
1215
		rmap_head->val = 0;
1216
	} else {
1217
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1218
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1219 1220
		prev_desc = NULL;
		while (desc) {
1221
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1222
				if (desc->sptes[i] == spte) {
1223 1224
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1225 1226
					return;
				}
1227
			}
1228 1229 1230
			prev_desc = desc;
			desc = desc->more;
		}
1231
		pr_err("pte_list_remove: %p many->many\n", spte);
1232 1233 1234 1235
		BUG();
	}
}

1236 1237
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1238
{
1239
	unsigned long idx;
1240

1241
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1242
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1243 1244
}

1245 1246
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1247
{
1248
	struct kvm_memslots *slots;
1249 1250
	struct kvm_memory_slot *slot;

1251 1252
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1253
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1254 1255
}

1256 1257 1258 1259 1260 1261 1262 1263
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1264 1265 1266
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1267
	struct kvm_rmap_head *rmap_head;
1268 1269 1270

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1271 1272
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1273 1274 1275 1276 1277 1278
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1279
	struct kvm_rmap_head *rmap_head;
1280 1281 1282

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1283 1284
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1304 1305
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1306
{
1307 1308
	u64 *sptep;

1309
	if (!rmap_head->val)
1310 1311
		return NULL;

1312
	if (!(rmap_head->val & 1)) {
1313
		iter->desc = NULL;
1314 1315
		sptep = (u64 *)rmap_head->val;
		goto out;
1316 1317
	}

1318
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1319
	iter->pos = 0;
1320 1321 1322 1323
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1324 1325 1326 1327 1328 1329 1330 1331 1332
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1333 1334
	u64 *sptep;

1335 1336 1337 1338 1339
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1340
				goto out;
1341 1342 1343 1344 1345 1346 1347
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1348 1349
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1350 1351 1352 1353
		}
	}

	return NULL;
1354 1355 1356
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1357 1358
}

1359 1360
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1361
	     _spte_; _spte_ = rmap_get_next(_iter_))
1362

1363
static void drop_spte(struct kvm *kvm, u64 *sptep)
1364
{
1365
	if (mmu_spte_clear_track_bits(sptep))
1366
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1390
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1391
 * spte write-protection is caused by protecting shadow page table.
1392
 *
T
Tiejun Chen 已提交
1393
 * Note: write protection is difference between dirty logging and spte
1394 1395 1396 1397 1398
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1399
 *
1400
 * Return true if tlb need be flushed.
1401
 */
1402
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1403 1404 1405
{
	u64 spte = *sptep;

1406
	if (!is_writable_pte(spte) &&
1407
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1408 1409 1410 1411
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1412 1413
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1414
	spte = spte & ~PT_WRITABLE_MASK;
1415

1416
	return mmu_spte_update(sptep, spte);
1417 1418
}

1419 1420
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1421
				 bool pt_protect)
1422
{
1423 1424
	u64 *sptep;
	struct rmap_iterator iter;
1425
	bool flush = false;
1426

1427
	for_each_rmap_spte(rmap_head, &iter, sptep)
1428
		flush |= spte_write_protect(sptep, pt_protect);
1429

1430
	return flush;
1431 1432
}

1433
static bool spte_clear_dirty(u64 *sptep)
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static bool wrprot_ad_disabled_spte(u64 *sptep)
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
	if (was_writable)
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1460
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1461 1462 1463 1464 1465
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1466
	for_each_rmap_spte(rmap_head, &iter, sptep)
1467 1468 1469 1470
		if (spte_ad_enabled(*sptep))
			flush |= spte_clear_dirty(sptep);
		else
			flush |= wrprot_ad_disabled_spte(sptep);
1471 1472 1473 1474

	return flush;
}

1475
static bool spte_set_dirty(u64 *sptep)
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1486
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1487 1488 1489 1490 1491
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1492
	for_each_rmap_spte(rmap_head, &iter, sptep)
1493 1494
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1495 1496 1497 1498

	return flush;
}

1499
/**
1500
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1501 1502 1503 1504 1505 1506 1507 1508
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1509
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1510 1511
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1512
{
1513
	struct kvm_rmap_head *rmap_head;
1514

1515
	while (mask) {
1516 1517 1518
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1519

1520 1521 1522
		/* clear the first set bit */
		mask &= mask - 1;
	}
1523 1524
}

1525
/**
1526 1527
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1539
	struct kvm_rmap_head *rmap_head;
1540 1541

	while (mask) {
1542 1543 1544
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1545 1546 1547 1548 1549 1550 1551

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1566 1567 1568 1569 1570
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/**
 * kvm_arch_write_log_dirty - emulate dirty page logging
 * @vcpu: Guest mode vcpu
 *
 * Emulate arch specific page modification logging for the
 * nested hypervisor
 */
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
{
	if (kvm_x86_ops->write_log_dirty)
		return kvm_x86_ops->write_log_dirty(vcpu);

	return 0;
}

1588 1589
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1590
{
1591
	struct kvm_rmap_head *rmap_head;
1592
	int i;
1593
	bool write_protected = false;
1594

1595
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1596
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1597
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1598 1599 1600
	}

	return write_protected;
1601 1602
}

1603 1604 1605 1606 1607 1608 1609 1610
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1611
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1612
{
1613 1614
	u64 *sptep;
	struct rmap_iterator iter;
1615
	bool flush = false;
1616

1617
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1618
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1619 1620

		drop_spte(kvm, sptep);
1621
		flush = true;
1622
	}
1623

1624 1625 1626
	return flush;
}

1627
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628 1629 1630
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1631
	return kvm_zap_rmapp(kvm, rmap_head);
1632 1633
}

1634
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1635 1636
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1637
{
1638 1639
	u64 *sptep;
	struct rmap_iterator iter;
1640
	int need_flush = 0;
1641
	u64 new_spte;
1642
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1643
	kvm_pfn_t new_pfn;
1644 1645 1646

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1647

1648
restart:
1649
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1650
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1651
			    sptep, *sptep, gfn, level);
1652

1653
		need_flush = 1;
1654

1655
		if (pte_write(*ptep)) {
1656
			drop_spte(kvm, sptep);
1657
			goto restart;
1658
		} else {
1659
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1660 1661 1662 1663
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1664 1665

			new_spte = mark_spte_for_access_track(new_spte);
1666 1667 1668

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1669 1670
		}
	}
1671

1672 1673 1674 1675 1676 1677
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1688
	struct kvm_rmap_head *rmap;
1689 1690 1691
	int level;

	/* private field. */
1692
	struct kvm_rmap_head *end_rmap;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1746 1747 1748 1749 1750
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1751
					       struct kvm_rmap_head *rmap_head,
1752
					       struct kvm_memory_slot *slot,
1753 1754
					       gfn_t gfn,
					       int level,
1755
					       unsigned long data))
1756
{
1757
	struct kvm_memslots *slots;
1758
	struct kvm_memory_slot *memslot;
1759 1760
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1761
	int i;
1762

1763 1764 1765 1766 1767
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1788 1789
	}

1790
	return ret;
1791 1792
}

1793 1794
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1795 1796
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1797
					 struct kvm_memory_slot *slot,
1798
					 gfn_t gfn, int level,
1799 1800 1801
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1802 1803 1804 1805
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1806 1807 1808
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1809 1810 1811 1812 1813
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1814 1815
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1816
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1817 1818
}

1819
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1820 1821
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1822
{
1823
	u64 *sptep;
1824
	struct rmap_iterator uninitialized_var(iter);
1825 1826
	int young = 0;

1827 1828
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1829

1830
	trace_kvm_age_page(gfn, level, slot, young);
1831 1832 1833
	return young;
}

1834
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1835 1836
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1837
{
1838 1839
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1840

1841 1842 1843 1844
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1845 1846
}

1847 1848
#define RMAP_RECYCLE_THRESHOLD 1000

1849
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1850
{
1851
	struct kvm_rmap_head *rmap_head;
1852 1853 1854
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1855

1856
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1857

1858
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1859 1860 1861
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1862
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1863
{
A
Andres Lagar-Cavilla 已提交
1864
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1865 1866
}

A
Andrea Arcangeli 已提交
1867 1868 1869 1870 1871
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1872
#ifdef MMU_DEBUG
1873
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1874
{
1875 1876 1877
	u64 *pos;
	u64 *end;

1878
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1879
		if (is_shadow_present_pte(*pos)) {
1880
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1881
			       pos, *pos);
A
Avi Kivity 已提交
1882
			return 0;
1883
		}
A
Avi Kivity 已提交
1884 1885
	return 1;
}
1886
#endif
A
Avi Kivity 已提交
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1900
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1901
{
1902
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1903
	hlist_del(&sp->hash_link);
1904 1905
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1906 1907
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1908
	kmem_cache_free(mmu_page_header_cache, sp);
1909 1910
}

1911 1912
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1913
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1914 1915
}

1916
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1917
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1918 1919 1920 1921
{
	if (!parent_pte)
		return;

1922
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1923 1924
}

1925
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1926 1927
				       u64 *parent_pte)
{
1928
	pte_list_remove(parent_pte, &sp->parent_ptes);
1929 1930
}

1931 1932 1933 1934
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1935
	mmu_spte_clear_no_track(parent_pte);
1936 1937
}

1938
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1939
{
1940
	struct kvm_mmu_page *sp;
1941

1942 1943
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1944
	if (!direct)
1945
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1946
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1947 1948 1949 1950 1951 1952

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1953 1954 1955
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1956 1957
}

1958
static void mark_unsync(u64 *spte);
1959
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1960
{
1961 1962 1963 1964 1965 1966
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1967 1968
}

1969
static void mark_unsync(u64 *spte)
1970
{
1971
	struct kvm_mmu_page *sp;
1972
	unsigned int index;
1973

1974
	sp = page_header(__pa(spte));
1975 1976
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1977
		return;
1978
	if (sp->unsync_children++)
1979
		return;
1980
	kvm_mmu_mark_parents_unsync(sp);
1981 1982
}

1983
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1984
			       struct kvm_mmu_page *sp)
1985
{
1986
	return 0;
1987 1988
}

M
Marcelo Tosatti 已提交
1989 1990 1991 1992
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1993 1994
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1995
				 const void *pte)
1996 1997 1998 1999
{
	WARN_ON(1);
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2010 2011
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2012
{
2013
	int i;
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2026 2027 2028 2029 2030 2031 2032
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2033 2034 2035 2036
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2037

2038
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2039
		struct kvm_mmu_page *child;
2040 2041
		u64 ent = sp->spt[i];

2042 2043 2044 2045
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2046 2047 2048 2049 2050 2051 2052 2053

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2054 2055 2056 2057
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2058
				nr_unsync_leaf += ret;
2059
			} else
2060 2061 2062 2063 2064 2065
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2066
			clear_unsync_child_bit(sp, i);
2067 2068
	}

2069 2070 2071
	return nr_unsync_leaf;
}

2072 2073
#define INVALID_INDEX (-1)

2074 2075 2076
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2077
	pvec->nr = 0;
2078 2079 2080
	if (!sp->unsync_children)
		return 0;

2081
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2082
	return __mmu_unsync_walk(sp, pvec);
2083 2084 2085 2086 2087
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2088
	trace_kvm_mmu_sync_page(sp);
2089 2090 2091 2092
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2093 2094 2095 2096
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2097

2098 2099 2100 2101 2102 2103
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
2104
 * for_each_valid_sp() has skipped that kind of pages.
2105
 */
2106
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2107 2108
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2109 2110
		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
		} else
2111 2112

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2113 2114
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2115

2116
/* @sp->gfn should be write-protected at the call site */
2117 2118
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2119
{
2120
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2121
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2122
		return false;
2123 2124
	}

2125
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2126
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2127
		return false;
2128 2129
	}

2130
	return true;
2131 2132
}

2133 2134 2135
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2136
{
2137 2138 2139 2140
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
2141

2142 2143 2144 2145
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2146 2147
}

2148 2149 2150 2151 2152 2153 2154
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2155 2156 2157 2158 2159
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2160
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2161
			 struct list_head *invalid_list)
2162
{
2163 2164
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2165 2166
}

2167
/* @gfn should be write-protected at the call site */
2168 2169
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2170 2171
{
	struct kvm_mmu_page *s;
2172
	bool ret = false;
2173

2174
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2175
		if (!s->unsync)
2176 2177 2178
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2179
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2180 2181
	}

2182
	return ret;
2183 2184
}

2185
struct mmu_page_path {
2186 2187
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2188 2189
};

2190
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2191
		for (i = mmu_pages_first(&pvec, &parents);	\
2192 2193 2194
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2195 2196 2197
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2198 2199 2200 2201 2202
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2203 2204
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2205

P
Paolo Bonzini 已提交
2206 2207 2208
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2209

P
Paolo Bonzini 已提交
2210
		parents->parent[level-2] = sp;
2211 2212 2213 2214 2215
	}

	return n;
}

P
Paolo Bonzini 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2225 2226
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2240
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2241
{
2242 2243 2244 2245 2246 2247 2248 2249 2250
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2251
		WARN_ON(idx == INVALID_INDEX);
2252
		clear_unsync_child_bit(sp, idx);
2253
		level++;
P
Paolo Bonzini 已提交
2254
	} while (!sp->unsync_children);
2255
}
2256

2257 2258 2259 2260 2261 2262 2263
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2264
	LIST_HEAD(invalid_list);
2265
	bool flush = false;
2266 2267

	while (mmu_unsync_walk(parent, &pages)) {
2268
		bool protected = false;
2269 2270

		for_each_sp(pages, sp, parents, i)
2271
			protected |= rmap_write_protect(vcpu, sp->gfn);
2272

2273
		if (protected) {
2274
			kvm_flush_remote_tlbs(vcpu->kvm);
2275 2276
			flush = false;
		}
2277

2278
		for_each_sp(pages, sp, parents, i) {
2279
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2280 2281
			mmu_pages_clear_parents(&parents);
		}
2282 2283 2284 2285 2286
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2287
	}
2288 2289

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2290 2291
}

2292 2293
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2294
	atomic_set(&sp->write_flooding_count,  0);
2295 2296 2297 2298 2299 2300 2301 2302 2303
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2304 2305 2306 2307
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2308
					     int direct,
2309
					     unsigned access)
2310 2311 2312
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2313 2314
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2315
	bool flush = false;
2316
	int collisions = 0;
2317
	LIST_HEAD(invalid_list);
2318

2319
	role = vcpu->arch.mmu.base_role;
2320
	role.level = level;
2321
	role.direct = direct;
2322
	if (role.direct)
2323
		role.cr4_pae = 0;
2324
	role.access = access;
2325 2326
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2327 2328 2329 2330
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2331 2332 2333 2334 2335 2336
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2337 2338
		if (!need_sync && sp->unsync)
			need_sync = true;
2339

2340 2341
		if (sp->role.word != role.word)
			continue;
2342

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2353

2354
		if (sp->unsync_children)
2355
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2356

2357
		__clear_sp_write_flooding_count(sp);
2358
		trace_kvm_mmu_get_page(sp, false);
2359
		goto out;
2360
	}
2361

A
Avi Kivity 已提交
2362
	++vcpu->kvm->stat.mmu_cache_miss;
2363 2364 2365

	sp = kvm_mmu_alloc_page(vcpu, direct);

2366 2367
	sp->gfn = gfn;
	sp->role = role;
2368 2369
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2370
	if (!direct) {
2371 2372 2373 2374 2375 2376 2377 2378
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2379
			kvm_flush_remote_tlbs(vcpu->kvm);
2380 2381

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2382
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2383
	}
2384
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2385
	clear_page(sp->spt);
A
Avi Kivity 已提交
2386
	trace_kvm_mmu_get_page(sp, true);
2387 2388

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2389 2390 2391
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2392
	return sp;
2393 2394
}

2395 2396 2397 2398 2399 2400
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2401

2402 2403
	if (iterator->level == PT64_ROOT_4LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2404 2405 2406
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2421

2422 2423 2424 2425 2426
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2427 2428
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2429
{
2430
	if (is_last_spte(spte, iterator->level)) {
2431 2432 2433 2434
		iterator->level = 0;
		return;
	}

2435
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2436 2437 2438
	--iterator->level;
}

2439 2440
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2441
	__shadow_walk_next(iterator, *iterator->sptep);
2442 2443
}

2444 2445
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2446 2447 2448
{
	u64 spte;

2449
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2450

2451
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2452
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2453 2454 2455 2456 2457

	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2458

2459
	mmu_spte_set(sptep, spte);
2460 2461 2462 2463 2464

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2484
		drop_parent_pte(child, sptep);
2485 2486 2487 2488
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2489
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2490 2491 2492 2493 2494 2495 2496
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2497
		if (is_last_spte(pte, sp->role.level)) {
2498
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2499 2500 2501
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2502
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2503
			drop_parent_pte(child, spte);
2504
		}
X
Xiao Guangrong 已提交
2505 2506 2507 2508
		return true;
	}

	if (is_mmio_spte(pte))
2509
		mmu_spte_clear_no_track(spte);
2510

X
Xiao Guangrong 已提交
2511
	return false;
2512 2513
}

2514
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2515
					 struct kvm_mmu_page *sp)
2516
{
2517 2518
	unsigned i;

2519 2520
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2521 2522
}

2523
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2524
{
2525 2526
	u64 *sptep;
	struct rmap_iterator iter;
2527

2528
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2529
		drop_parent_pte(sp, sptep);
2530 2531
}

2532
static int mmu_zap_unsync_children(struct kvm *kvm,
2533 2534
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2535
{
2536 2537 2538
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2539

2540
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2541
		return 0;
2542 2543 2544 2545 2546

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2547
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2548
			mmu_pages_clear_parents(&parents);
2549
			zapped++;
2550 2551 2552 2553
		}
	}

	return zapped;
2554 2555
}

2556 2557
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2558
{
2559
	int ret;
A
Avi Kivity 已提交
2560

2561
	trace_kvm_mmu_prepare_zap_page(sp);
2562
	++kvm->stat.mmu_shadow_zapped;
2563
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2564
	kvm_mmu_page_unlink_children(kvm, sp);
2565
	kvm_mmu_unlink_parents(kvm, sp);
2566

2567
	if (!sp->role.invalid && !sp->role.direct)
2568
		unaccount_shadowed(kvm, sp);
2569

2570 2571
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2572
	if (!sp->root_count) {
2573 2574
		/* Count self */
		ret++;
2575
		list_move(&sp->link, invalid_list);
2576
		kvm_mod_used_mmu_pages(kvm, -1);
2577
	} else {
A
Avi Kivity 已提交
2578
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2579 2580 2581 2582 2583 2584 2585

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2586
	}
2587 2588

	sp->role.invalid = 1;
2589
	return ret;
2590 2591
}

2592 2593 2594
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2595
	struct kvm_mmu_page *sp, *nsp;
2596 2597 2598 2599

	if (list_empty(invalid_list))
		return;

2600
	/*
2601 2602 2603 2604 2605 2606 2607
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2608 2609
	 */
	kvm_flush_remote_tlbs(kvm);
2610

2611
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2612
		WARN_ON(!sp->role.invalid || sp->root_count);
2613
		kvm_mmu_free_page(sp);
2614
	}
2615 2616
}

2617 2618 2619 2620 2621 2622 2623 2624
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2625 2626
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2627
	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2628 2629
}

2630 2631
/*
 * Changing the number of mmu pages allocated to the vm
2632
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2633
 */
2634
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2635
{
2636
	LIST_HEAD(invalid_list);
2637

2638 2639
	spin_lock(&kvm->mmu_lock);

2640
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2641 2642 2643 2644
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2645

2646
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2647
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2648 2649
	}

2650
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2651 2652

	spin_unlock(&kvm->mmu_lock);
2653 2654
}

2655
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2656
{
2657
	struct kvm_mmu_page *sp;
2658
	LIST_HEAD(invalid_list);
2659 2660
	int r;

2661
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2662
	r = 0;
2663
	spin_lock(&kvm->mmu_lock);
2664
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2665
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2666 2667
			 sp->role.word);
		r = 1;
2668
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2669
	}
2670
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2671 2672
	spin_unlock(&kvm->mmu_lock);

2673
	return r;
2674
}
2675
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2676

2677
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2678 2679 2680 2681 2682 2683 2684 2685
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2686 2687
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2688
{
2689
	struct kvm_mmu_page *sp;
2690

2691 2692
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2693

2694
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2695
		if (!can_unsync)
2696
			return true;
2697

2698 2699
		if (sp->unsync)
			continue;
2700

2701 2702
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2703
	}
2704 2705

	return false;
2706 2707
}

D
Dan Williams 已提交
2708
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2709 2710 2711 2712 2713 2714 2715
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2716
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2717
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2718
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2719
		    bool can_unsync, bool host_writable)
2720
{
2721
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2722
	int ret = 0;
2723
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
2724

2725
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2726 2727
		return 0;

2728 2729 2730 2731
	sp = page_header(__pa(sptep));
	if (sp_ad_disabled(sp))
		spte |= shadow_acc_track_value;

2732 2733 2734 2735 2736 2737
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2738
	spte |= shadow_present_mask;
2739
	if (!speculative)
2740
		spte |= spte_shadow_accessed_mask(spte);
2741

S
Sheng Yang 已提交
2742 2743 2744 2745
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2746

2747
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2748
		spte |= shadow_user_mask;
2749

2750
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2751
		spte |= PT_PAGE_SIZE_MASK;
2752
	if (tdp_enabled)
2753
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2754
			kvm_is_mmio_pfn(pfn));
2755

2756
	if (host_writable)
2757
		spte |= SPTE_HOST_WRITEABLE;
2758 2759
	else
		pte_access &= ~ACC_WRITE_MASK;
2760

2761
	spte |= (u64)pfn << PAGE_SHIFT;
2762
	spte |= shadow_me_mask;
2763

2764
	if (pte_access & ACC_WRITE_MASK) {
2765

X
Xiao Guangrong 已提交
2766
		/*
2767 2768 2769 2770
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2771
		 */
2772
		if (level > PT_PAGE_TABLE_LEVEL &&
2773
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2774
			goto done;
2775

2776
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2777

2778 2779 2780 2781 2782 2783
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2784
		if (!can_unsync && is_writable_pte(*sptep))
2785 2786
			goto set_pte;

2787
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2788
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2789
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2790
			ret = 1;
2791
			pte_access &= ~ACC_WRITE_MASK;
2792
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2793 2794 2795
		}
	}

2796
	if (pte_access & ACC_WRITE_MASK) {
2797
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2798
		spte |= spte_shadow_dirty_mask(spte);
2799
	}
2800

2801 2802 2803
	if (speculative)
		spte = mark_spte_for_access_track(spte);

2804
set_pte:
2805
	if (mmu_spte_update(sptep, spte))
2806
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2807
done:
M
Marcelo Tosatti 已提交
2808 2809 2810
	return ret;
}

2811 2812 2813
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
		       	bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2814 2815
{
	int was_rmapped = 0;
2816
	int rmap_count;
2817
	int ret = RET_PF_RETRY;
M
Marcelo Tosatti 已提交
2818

2819 2820
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2821

2822
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2823 2824 2825 2826
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2827 2828
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2829
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2830
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2831 2832

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2833
			drop_parent_pte(child, sptep);
2834
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2835
		} else if (pfn != spte_to_pfn(*sptep)) {
2836
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2837
				 spte_to_pfn(*sptep), pfn);
2838
			drop_spte(vcpu->kvm, sptep);
2839
			kvm_flush_remote_tlbs(vcpu->kvm);
2840 2841
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2842
	}
2843

2844 2845
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2846
		if (write_fault)
2847
			ret = RET_PF_EMULATE;
2848
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2849
	}
M
Marcelo Tosatti 已提交
2850

2851
	if (unlikely(is_mmio_spte(*sptep)))
2852
		ret = RET_PF_EMULATE;
2853

A
Avi Kivity 已提交
2854
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2855
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2856
		 is_large_pte(*sptep)? "2MB" : "4kB",
2857
		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2858
		 *sptep, sptep);
A
Avi Kivity 已提交
2859
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2860 2861
		++vcpu->kvm->stat.lpages;

2862 2863 2864 2865 2866 2867
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2868
	}
2869

X
Xiao Guangrong 已提交
2870
	kvm_release_pfn_clean(pfn);
2871

2872
	return ret;
2873 2874
}

D
Dan Williams 已提交
2875
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2876 2877 2878 2879
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2880
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2881
	if (!slot)
2882
		return KVM_PFN_ERR_FAULT;
2883

2884
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2885 2886 2887 2888 2889 2890 2891
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2892
	struct kvm_memory_slot *slot;
2893 2894 2895 2896 2897
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2898 2899
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2900 2901
		return -1;

2902
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2903 2904 2905 2906
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2907 2908
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2925
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2940 2941
	sp = page_header(__pa(sptep));

2942
	/*
2943 2944 2945
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2946
	 */
2947
	if (sp_ad_disabled(sp))
2948 2949 2950 2951 2952 2953 2954 2955
		return;

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2956
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2957
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2958
{
2959
	struct kvm_shadow_walk_iterator iterator;
2960
	struct kvm_mmu_page *sp;
2961
	int emulate = 0;
2962
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2963

2964 2965 2966
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2967
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2968
		if (iterator.level == level) {
2969 2970 2971
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2972
			direct_pte_prefetch(vcpu, iterator.sptep);
2973 2974
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2975 2976
		}

2977
		drop_large_spte(vcpu, iterator.sptep);
2978
		if (!is_shadow_present_pte(*iterator.sptep)) {
2979 2980 2981 2982
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2983
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2984
					      iterator.level - 1, 1, ACC_ALL);
2985

2986
			link_shadow_page(vcpu, iterator.sptep, sp);
2987 2988
		}
	}
2989
	return emulate;
A
Avi Kivity 已提交
2990 2991
}

H
Huang Ying 已提交
2992
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2993
{
H
Huang Ying 已提交
2994 2995 2996 2997 2998 2999 3000
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
3001

H
Huang Ying 已提交
3002
	send_sig_info(SIGBUS, &info, tsk);
3003 3004
}

D
Dan Williams 已提交
3005
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3006
{
X
Xiao Guangrong 已提交
3007 3008 3009 3010 3011 3012
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3013
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3014

3015
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3016
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3017
		return RET_PF_RETRY;
3018
	}
3019

3020
	return -EFAULT;
3021 3022
}

3023
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
3024 3025
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
3026
{
D
Dan Williams 已提交
3027
	kvm_pfn_t pfn = *pfnp;
3028 3029 3030 3031 3032 3033 3034 3035 3036
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
3037
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3038
	    level == PT_PAGE_TABLE_LEVEL &&
3039
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3040
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
3059
			kvm_get_pfn(pfn);
3060 3061 3062 3063 3064
			*pfnp = pfn;
		}
	}
}

3065
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
3066
				kvm_pfn_t pfn, unsigned access, int *ret_val)
3067 3068
{
	/* The pfn is invalid, report the error! */
3069
	if (unlikely(is_error_pfn(pfn))) {
3070
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3071
		return true;
3072 3073
	}

3074
	if (unlikely(is_noslot_pfn(pfn)))
3075 3076
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

3077
	return false;
3078 3079
}

3080
static bool page_fault_can_be_fast(u32 error_code)
3081
{
3082 3083 3084 3085 3086 3087 3088
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3089 3090 3091 3092 3093
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3094
	/*
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3106 3107
	 */

3108 3109 3110
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3111 3112
}

3113 3114 3115 3116
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3117
static bool
3118
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3119
			u64 *sptep, u64 old_spte, u64 new_spte)
3120 3121 3122 3123 3124
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3137
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3138 3139
		return false;

3140
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3141 3142 3143 3144 3145 3146 3147
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3148 3149 3150 3151

	return true;
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3173
	struct kvm_mmu_page *sp;
3174
	bool fault_handled = false;
3175
	u64 spte = 0ull;
3176
	uint retry_count = 0;
3177

3178 3179 3180
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

3181
	if (!page_fault_can_be_fast(error_code))
3182 3183 3184 3185
		return false;

	walk_shadow_page_lockless_begin(vcpu);

3186
	do {
3187
		u64 new_spte;
3188

3189 3190 3191 3192 3193
		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
			if (!is_shadow_present_pte(spte) ||
			    iterator.level < level)
				break;

3194 3195 3196
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3197

3198
		/*
3199 3200 3201 3202 3203
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3204 3205 3206 3207
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3208 3209 3210 3211
		if (is_access_allowed(error_code, spte)) {
			fault_handled = true;
			break;
		}
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
		    spte_can_locklessly_be_made_writable(spte))
		{
			new_spte |= PT_WRITABLE_MASK;
3227 3228

			/*
3229 3230 3231 3232 3233 3234 3235 3236 3237
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3238
			 */
3239
			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3240
				break;
3241
		}
3242

3243
		/* Verify that the fault can be handled in the fast path */
3244 3245
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3246 3247 3248 3249 3250 3251 3252 3253
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
		 * Documentation/virtual/kvm/locking.txt to get more detail.
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3254
							iterator.sptep, spte,
3255
							new_spte);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3266

X
Xiao Guangrong 已提交
3267
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3268
			      spte, fault_handled);
3269 3270
	walk_shadow_page_lockless_end(vcpu);

3271
	return fault_handled;
3272 3273
}

3274
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3275
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3276
static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3277

3278 3279
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3280 3281
{
	int r;
3282
	int level;
3283
	bool force_pt_level = false;
D
Dan Williams 已提交
3284
	kvm_pfn_t pfn;
3285
	unsigned long mmu_seq;
3286
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3287

3288
	level = mapping_level(vcpu, gfn, &force_pt_level);
3289 3290 3291 3292 3293 3294 3295 3296
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3297

3298
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3299
	}
M
Marcelo Tosatti 已提交
3300

3301
	if (fast_page_fault(vcpu, v, level, error_code))
3302
		return RET_PF_RETRY;
3303

3304
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3305
	smp_rmb();
3306

3307
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3308
		return RET_PF_RETRY;
3309

3310 3311
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3312

3313
	spin_lock(&vcpu->kvm->mmu_lock);
3314
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3315
		goto out_unlock;
3316 3317
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3318 3319
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3320
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3321 3322
	spin_unlock(&vcpu->kvm->mmu_lock);

3323
	return r;
3324 3325 3326 3327

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
3328
	return RET_PF_RETRY;
3329 3330 3331
}


3332 3333 3334
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3335
	struct kvm_mmu_page *sp;
3336
	LIST_HEAD(invalid_list);
3337

3338
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3339
		return;
3340

3341 3342
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
	    (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3343
	     vcpu->arch.mmu.direct_map)) {
3344
		hpa_t root = vcpu->arch.mmu.root_hpa;
3345

3346
		spin_lock(&vcpu->kvm->mmu_lock);
3347 3348
		sp = page_header(root);
		--sp->root_count;
3349 3350 3351 3352
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3353
		spin_unlock(&vcpu->kvm->mmu_lock);
3354
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3355 3356
		return;
	}
3357 3358

	spin_lock(&vcpu->kvm->mmu_lock);
3359
	for (i = 0; i < 4; ++i) {
3360
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3361

A
Avi Kivity 已提交
3362 3363
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3364 3365
			sp = page_header(root);
			--sp->root_count;
3366
			if (!sp->root_count && sp->role.invalid)
3367 3368
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3369
		}
3370
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3371
	}
3372
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3373
	spin_unlock(&vcpu->kvm->mmu_lock);
3374
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3375 3376
}

3377 3378 3379 3380 3381
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3382
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3383 3384 3385 3386 3387 3388
		ret = 1;
	}

	return ret;
}

3389 3390 3391
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3392
	unsigned i;
3393

3394
	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3395
		spin_lock(&vcpu->kvm->mmu_lock);
3396 3397 3398 3399
		if(make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
			return 1;
		}
3400 3401
		sp = kvm_mmu_get_page(vcpu, 0, 0,
				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3402 3403 3404 3405 3406 3407 3408
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3409
			MMU_WARN_ON(VALID_PAGE(root));
3410
			spin_lock(&vcpu->kvm->mmu_lock);
3411 3412 3413 3414
			if (make_mmu_pages_available(vcpu) < 0) {
				spin_unlock(&vcpu->kvm->mmu_lock);
				return 1;
			}
3415
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3416
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3417 3418 3419 3420 3421
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3422
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3423 3424 3425 3426 3427 3428 3429
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3430
{
3431
	struct kvm_mmu_page *sp;
3432 3433 3434
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3435

3436
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3437

3438 3439 3440 3441 3442 3443 3444
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3445
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3446
		hpa_t root = vcpu->arch.mmu.root_hpa;
3447

3448
		MMU_WARN_ON(VALID_PAGE(root));
3449

3450
		spin_lock(&vcpu->kvm->mmu_lock);
3451 3452 3453 3454
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
			return 1;
		}
3455 3456
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3457 3458
		root = __pa(sp->spt);
		++sp->root_count;
3459
		spin_unlock(&vcpu->kvm->mmu_lock);
3460
		vcpu->arch.mmu.root_hpa = root;
3461
		return 0;
3462
	}
3463

3464 3465
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3466 3467
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3468
	 */
3469
	pm_mask = PT_PRESENT_MASK;
3470
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3471 3472
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3473
	for (i = 0; i < 4; ++i) {
3474
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3475

3476
		MMU_WARN_ON(VALID_PAGE(root));
3477
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3478
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3479
			if (!(pdptr & PT_PRESENT_MASK)) {
3480
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3481 3482
				continue;
			}
A
Avi Kivity 已提交
3483
			root_gfn = pdptr >> PAGE_SHIFT;
3484 3485
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3486
		}
3487
		spin_lock(&vcpu->kvm->mmu_lock);
3488 3489 3490 3491
		if (make_mmu_pages_available(vcpu) < 0) {
			spin_unlock(&vcpu->kvm->mmu_lock);
			return 1;
		}
3492 3493
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3494 3495
		root = __pa(sp->spt);
		++sp->root_count;
3496 3497
		spin_unlock(&vcpu->kvm->mmu_lock);

3498
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3499
	}
3500
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3501 3502 3503 3504 3505

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3506
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3527
	return 0;
3528 3529
}

3530 3531 3532 3533 3534 3535 3536 3537
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3538 3539 3540 3541 3542
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3543 3544 3545
	if (vcpu->arch.mmu.direct_map)
		return;

3546 3547
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3548

3549
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3550
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3551
	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3552 3553 3554
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3555
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3556 3557 3558 3559 3560
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3561
		if (root && VALID_PAGE(root)) {
3562 3563 3564 3565 3566
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3567
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3568 3569 3570 3571 3572 3573
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3574
	spin_unlock(&vcpu->kvm->mmu_lock);
3575
}
N
Nadav Har'El 已提交
3576
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3577

3578
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3579
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3580
{
3581 3582
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3583 3584 3585
	return vaddr;
}

3586
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3587 3588
					 u32 access,
					 struct x86_exception *exception)
3589
{
3590 3591
	if (exception)
		exception->error_code = 0;
3592
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3593 3594
}

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3614
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3615
{
3616 3617 3618 3619 3620 3621 3622
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3623 3624 3625 3626 3627 3628
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3629 3630 3631
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3632 3633
{
	struct kvm_shadow_walk_iterator iterator;
3634
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3635 3636
	int root, leaf;
	bool reserved = false;
3637

3638
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3639
		goto exit;
3640

3641
	walk_shadow_page_lockless_begin(vcpu);
3642

3643 3644
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3645 3646 3647 3648 3649
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3650
		leaf--;
3651

3652 3653
		if (!is_shadow_present_pte(spte))
			break;
3654 3655

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3656
						    iterator.level);
3657 3658
	}

3659 3660
	walk_shadow_page_lockless_end(vcpu);

3661 3662 3663
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3664
		while (root > leaf) {
3665 3666 3667 3668 3669 3670 3671 3672
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3673 3674
}

P
Paolo Bonzini 已提交
3675
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3676 3677
{
	u64 spte;
3678
	bool reserved;
3679

3680
	if (mmio_info_in_cache(vcpu, addr, direct))
3681
		return RET_PF_EMULATE;
3682

3683
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3684
	if (WARN_ON(reserved))
3685
		return -EINVAL;
3686 3687 3688 3689 3690

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3691
		if (!check_mmio_spte(vcpu, spte))
3692
			return RET_PF_INVALID;
3693

3694 3695
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3696 3697

		trace_handle_mmio_page_fault(addr, gfn, access);
3698
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3699
		return RET_PF_EMULATE;
3700 3701 3702 3703 3704 3705
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3706
	return RET_PF_RETRY;
3707
}
3708
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3747
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3748
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3749
{
3750
	gfn_t gfn = gva >> PAGE_SHIFT;
3751
	int r;
A
Avi Kivity 已提交
3752

3753
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3754

3755
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3756
		return RET_PF_EMULATE;
3757

3758 3759 3760
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3761

3762
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3763 3764


3765
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3766
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3767 3768
}

3769
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3770 3771
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3772

3773
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3774
	arch.gfn = gfn;
3775
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3776
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3777

3778
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3779 3780
}

3781
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3782
{
3783
	if (unlikely(!lapic_in_kernel(vcpu) ||
3784 3785 3786
		     kvm_event_needs_reinjection(vcpu)))
		return false;

3787
	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3788 3789
		return false;

3790 3791 3792
	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3793
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3794
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3795
{
3796
	struct kvm_memory_slot *slot;
3797 3798
	bool async;

3799
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3800 3801
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3802 3803 3804
	if (!async)
		return false; /* *pfn has correct page already */

3805
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3806
		trace_kvm_try_async_get_page(gva, gfn);
3807 3808 3809 3810 3811 3812 3813 3814
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3815
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3816 3817 3818
	return false;
}

3819
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3820
				u64 fault_address, char *insn, int insn_len)
3821 3822 3823 3824 3825 3826 3827
{
	int r = 1;

	switch (vcpu->arch.apf.host_apf_reason) {
	default:
		trace_kvm_page_fault(fault_address, error_code);

3828
		if (kvm_event_needs_reinjection(vcpu))
3829 3830 3831 3832 3833 3834 3835
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
3836
		kvm_async_pf_task_wait(fault_address, 0);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		vcpu->arch.apf.host_apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3860
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3861
			  bool prefault)
3862
{
D
Dan Williams 已提交
3863
	kvm_pfn_t pfn;
3864
	int r;
3865
	int level;
3866
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3867
	gfn_t gfn = gpa >> PAGE_SHIFT;
3868
	unsigned long mmu_seq;
3869 3870
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3871

3872
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3873

3874
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3875
		return RET_PF_EMULATE;
3876

3877 3878 3879 3880
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3881 3882 3883
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3884
	if (likely(!force_pt_level)) {
3885 3886 3887
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3888
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3889
	}
3890

3891
	if (fast_page_fault(vcpu, gpa, level, error_code))
3892
		return RET_PF_RETRY;
3893

3894
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3895
	smp_rmb();
3896

3897
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3898
		return RET_PF_RETRY;
3899

3900 3901 3902
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3903
	spin_lock(&vcpu->kvm->mmu_lock);
3904
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3905
		goto out_unlock;
3906 3907
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
3908 3909
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3910
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3911 3912 3913
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3914 3915 3916 3917

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
3918
	return RET_PF_RETRY;
3919 3920
}

3921 3922
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3923 3924 3925
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3926
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3927
	context->invlpg = nonpaging_invlpg;
3928
	context->update_pte = nonpaging_update_pte;
3929
	context->root_level = 0;
A
Avi Kivity 已提交
3930
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3931
	context->root_hpa = INVALID_PAGE;
3932
	context->direct_map = true;
3933
	context->nx = false;
A
Avi Kivity 已提交
3934 3935
}

3936
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3937
{
3938
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3939 3940
}

3941 3942
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3943
	return kvm_read_cr3(vcpu);
3944 3945
}

3946 3947
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3948
{
3949
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3950 3951
}

3952
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3953
			   unsigned access, int *nr_present)
3954 3955 3956 3957 3958 3959 3960 3961
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3962
		mark_mmio_spte(vcpu, sptep, gfn, access);
3963 3964 3965 3966 3967 3968
		return true;
	}

	return false;
}

3969 3970
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3971
{
3972 3973 3974 3975 3976 3977 3978
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3979 3980 3981 3982 3983 3984 3985
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;

3986
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3987 3988
}

3989 3990 3991 3992 3993
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3994 3995 3996 3997 3998 3999 4000 4001
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4002 4003 4004 4005
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4006
			bool pse, bool amd)
4007 4008
{
	u64 exb_bit_rsvd = 0;
4009
	u64 gbpages_bit_rsvd = 0;
4010
	u64 nonleaf_bit8_rsvd = 0;
4011

4012
	rsvd_check->bad_mt_xwr = 0;
4013

4014
	if (!nx)
4015
		exb_bit_rsvd = rsvd_bits(63, 63);
4016
	if (!gbpages)
4017
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4018 4019 4020 4021 4022

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4023
	if (amd)
4024 4025
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4026
	switch (level) {
4027 4028
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4029 4030 4031 4032
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4033

4034
		if (!pse) {
4035
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4036 4037 4038
			break;
		}

4039 4040
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4041
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4042 4043
		else
			/* 32 bits PSE 4MB page */
4044
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4045 4046
		break;
	case PT32E_ROOT_LEVEL:
4047
		rsvd_check->rsvd_bits_mask[0][2] =
4048
			rsvd_bits(maxphyaddr, 63) |
4049
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4050
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4051
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4052
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4053
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4054
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4055 4056
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4057 4058
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4059
		break;
4060 4061 4062 4063 4064 4065
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4066
	case PT64_ROOT_4LEVEL:
4067 4068
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4069
			rsvd_bits(maxphyaddr, 51);
4070 4071
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4072
			rsvd_bits(maxphyaddr, 51);
4073 4074 4075 4076 4077 4078 4079
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4080
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4081
			rsvd_bits(13, 29);
4082
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4083 4084
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4085 4086
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4087 4088 4089 4090
		break;
	}
}

4091 4092 4093 4094 4095
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4096 4097
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4098
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4099 4100
}

4101 4102 4103
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4104
{
4105
	u64 bad_mt_xwr;
4106

4107 4108
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4109
	rsvd_check->rsvd_bits_mask[0][3] =
4110
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4111
	rsvd_check->rsvd_bits_mask[0][2] =
4112
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4113
	rsvd_check->rsvd_bits_mask[0][1] =
4114
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4115
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4116 4117

	/* large page */
4118
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4119 4120
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4121
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4122
	rsvd_check->rsvd_bits_mask[1][1] =
4123
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4124
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4125

4126 4127 4128 4129 4130 4131 4132 4133
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4134
	}
4135
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4136 4137
}

4138 4139 4140 4141 4142 4143 4144
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4145 4146 4147 4148 4149 4150 4151 4152
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4153
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4154 4155
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4156

4157 4158 4159 4160
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4161 4162
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4163
				boot_cpu_data.x86_phys_bits,
4164
				context->shadow_root_level, uses_nx,
4165 4166
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4167 4168 4169 4170 4171 4172 4173 4174 4175

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4176 4177 4178
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4179 4180 4181 4182 4183 4184
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4185 4186 4187 4188 4189 4190 4191 4192
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4193 4194 4195 4196 4197
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4198
	if (boot_cpu_is_amd())
4199
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4200 4201
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
4202 4203
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4204
	else
4205
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4206 4207 4208
					    boot_cpu_data.x86_phys_bits,
					    false);

4209 4210 4211 4212 4213 4214 4215
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4240 4241
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4242
{
4243 4244 4245 4246 4247 4248 4249 4250 4251
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4252 4253

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4254 4255
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4256
		/*
4257 4258
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4259
		 */
4260

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
		/* Faults from writes to non-writable pages */
		u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
		/* Faults from user mode accesses to supervisor pages */
		u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
		/* Faults from fetches of non-executable pages*/
		u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
			 * conditions are ture:
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4306
		}
4307 4308

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4309 4310 4311
	}
}

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4387
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4388
{
4389 4390 4391 4392 4393
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4394 4395
}

4396 4397 4398
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4399
{
4400
	context->nx = is_nx(vcpu);
4401
	context->root_level = level;
4402

4403
	reset_rsvds_bits_mask(vcpu, context);
4404
	update_permission_bitmask(vcpu, context, false);
4405
	update_pkru_bitmask(vcpu, context, false);
4406
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4407

4408
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4409 4410
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4411
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4412
	context->invlpg = paging64_invlpg;
4413
	context->update_pte = paging64_update_pte;
4414
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4415
	context->root_hpa = INVALID_PAGE;
4416
	context->direct_map = false;
A
Avi Kivity 已提交
4417 4418
}

4419 4420
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4421
{
4422 4423 4424 4425
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4426 4427
}

4428 4429
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4430
{
4431
	context->nx = false;
4432
	context->root_level = PT32_ROOT_LEVEL;
4433

4434
	reset_rsvds_bits_mask(vcpu, context);
4435
	update_permission_bitmask(vcpu, context, false);
4436
	update_pkru_bitmask(vcpu, context, false);
4437
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4438 4439 4440

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4441
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4442
	context->invlpg = paging32_invlpg;
4443
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4444
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4445
	context->root_hpa = INVALID_PAGE;
4446
	context->direct_map = false;
A
Avi Kivity 已提交
4447 4448
}

4449 4450
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4451
{
4452
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4453 4454
}

4455
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4456
{
4457
	struct kvm_mmu *context = &vcpu->arch.mmu;
4458

4459
	context->base_role.word = 0;
4460
	context->base_role.smm = is_smm(vcpu);
4461
	context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4462
	context->page_fault = tdp_page_fault;
4463
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4464
	context->invlpg = nonpaging_invlpg;
4465
	context->update_pte = nonpaging_update_pte;
4466
	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4467
	context->root_hpa = INVALID_PAGE;
4468
	context->direct_map = true;
4469
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4470
	context->get_cr3 = get_cr3;
4471
	context->get_pdptr = kvm_pdptr_read;
4472
	context->inject_page_fault = kvm_inject_page_fault;
4473 4474

	if (!is_paging(vcpu)) {
4475
		context->nx = false;
4476 4477 4478
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4479
		context->nx = is_nx(vcpu);
4480 4481
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4482 4483
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4484
	} else if (is_pae(vcpu)) {
4485
		context->nx = is_nx(vcpu);
4486
		context->root_level = PT32E_ROOT_LEVEL;
4487 4488
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4489
	} else {
4490
		context->nx = false;
4491
		context->root_level = PT32_ROOT_LEVEL;
4492 4493
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4494 4495
	}

4496
	update_permission_bitmask(vcpu, context, false);
4497
	update_pkru_bitmask(vcpu, context, false);
4498
	update_last_nonleaf_level(vcpu, context);
4499
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4500 4501
}

4502
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4503
{
4504
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4505
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4506 4507
	struct kvm_mmu *context = &vcpu->arch.mmu;

4508
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4509 4510

	if (!is_paging(vcpu))
4511
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4512
	else if (is_long_mode(vcpu))
4513
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4514
	else if (is_pae(vcpu))
4515
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4516
	else
4517
		paging32_init_context(vcpu, context);
4518

4519 4520 4521 4522
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4523
		= smep && !is_write_protection(vcpu);
4524 4525
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4526
	context->base_role.smm = is_smm(vcpu);
4527
	reset_shadow_zero_bits_mask(vcpu, context);
4528 4529 4530
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4531 4532
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
			     bool accessed_dirty)
N
Nadav Har'El 已提交
4533
{
4534 4535
	struct kvm_mmu *context = &vcpu->arch.mmu;

4536
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4537

4538
	context->shadow_root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4539 4540

	context->nx = true;
4541
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4542 4543 4544 4545 4546
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
4547
	context->root_level = PT64_ROOT_4LEVEL;
N
Nadav Har'El 已提交
4548 4549
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;
4550
	context->base_role.ad_disabled = !accessed_dirty;
N
Nadav Har'El 已提交
4551 4552

	update_permission_bitmask(vcpu, context, true);
4553
	update_pkru_bitmask(vcpu, context, true);
4554
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4555
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4556
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4557 4558 4559
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4560
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4561
{
4562 4563 4564 4565 4566 4567 4568
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4569 4570
}

4571
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4572 4573 4574 4575
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4576
	g_context->get_pdptr         = kvm_pdptr_read;
4577 4578 4579
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4580 4581 4582 4583 4584 4585
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4586 4587
	 */
	if (!is_paging(vcpu)) {
4588
		g_context->nx = false;
4589 4590 4591
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4592
		g_context->nx = is_nx(vcpu);
4593 4594
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4595
		reset_rsvds_bits_mask(vcpu, g_context);
4596 4597
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4598
		g_context->nx = is_nx(vcpu);
4599
		g_context->root_level = PT32E_ROOT_LEVEL;
4600
		reset_rsvds_bits_mask(vcpu, g_context);
4601 4602
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4603
		g_context->nx = false;
4604
		g_context->root_level = PT32_ROOT_LEVEL;
4605
		reset_rsvds_bits_mask(vcpu, g_context);
4606 4607 4608
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4609
	update_permission_bitmask(vcpu, g_context, false);
4610
	update_pkru_bitmask(vcpu, g_context, false);
4611
	update_last_nonleaf_level(vcpu, g_context);
4612 4613
}

4614
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4615
{
4616
	if (mmu_is_nested(vcpu))
4617
		init_kvm_nested_mmu(vcpu);
4618
	else if (tdp_enabled)
4619
		init_kvm_tdp_mmu(vcpu);
4620
	else
4621
		init_kvm_softmmu(vcpu);
4622 4623
}

4624
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4625
{
4626
	kvm_mmu_unload(vcpu);
4627
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4628
}
4629
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4630 4631

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4632
{
4633 4634
	int r;

4635
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4636 4637
	if (r)
		goto out;
4638
	r = mmu_alloc_roots(vcpu);
4639
	kvm_mmu_sync_roots(vcpu);
4640 4641
	if (r)
		goto out;
4642
	/* set_cr3() should ensure TLB has been flushed */
4643
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4644 4645
out:
	return r;
A
Avi Kivity 已提交
4646
}
A
Avi Kivity 已提交
4647 4648 4649 4650 4651
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4652
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4653
}
4654
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4655

4656
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4657 4658
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4659
{
4660
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4661 4662
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4663
        }
4664

A
Avi Kivity 已提交
4665
	++vcpu->kvm->stat.mmu_pte_updated;
4666
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4667 4668
}

4669 4670 4671 4672 4673 4674 4675 4676
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4677 4678
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4679 4680 4681
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4682 4683
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4684
{
4685 4686
	u64 gentry;
	int r;
4687 4688 4689

	/*
	 * Assume that the pte write on a page table of the same type
4690 4691
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4692
	 */
4693
	if (is_pae(vcpu) && *bytes == 4) {
4694
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4695 4696
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4697
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4698 4699
		if (r)
			gentry = 0;
4700 4701 4702
		new = (const u8 *)&gentry;
	}

4703
	switch (*bytes) {
4704 4705 4706 4707 4708 4709 4710 4711 4712
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4713 4714
	}

4715 4716 4717 4718 4719 4720 4721
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4722
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4723
{
4724 4725 4726 4727
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4728
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4729
		return false;
4730

4731 4732
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4749 4750 4751 4752 4753 4754 4755 4756

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4794
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4795 4796
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4797 4798 4799 4800 4801 4802
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4803
	bool remote_flush, local_flush;
4804 4805 4806 4807 4808 4809 4810
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4811
	mask.smm = 1;
4812
	mask.ad_disabled = 1;
4813 4814 4815 4816 4817

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4818
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4819 4820
		return;

4821
	remote_flush = local_flush = false;
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4836
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4837

4838
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4839
		if (detect_write_misaligned(sp, gpa, bytes) ||
4840
		      detect_write_flooding(sp)) {
4841
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4842
			++vcpu->kvm->stat.mmu_flooded;
4843 4844
			continue;
		}
4845 4846 4847 4848 4849

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4850
		local_flush = true;
4851
		while (npte--) {
4852
			entry = *spte;
4853
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4854 4855
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4856
			      & mask.word) && rmap_can_add(vcpu))
4857
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4858
			if (need_remote_flush(entry, *spte))
4859
				remote_flush = true;
4860
			++spte;
4861 4862
		}
	}
4863
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4864
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4865
	spin_unlock(&vcpu->kvm->mmu_lock);
4866 4867
}

4868 4869
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4870 4871
	gpa_t gpa;
	int r;
4872

4873
	if (vcpu->arch.mmu.direct_map)
4874 4875
		return 0;

4876
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4877 4878

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4879

4880
	return r;
4881
}
4882
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4883

4884
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4885
{
4886
	LIST_HEAD(invalid_list);
4887

4888
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4889
		return 0;
4890

4891 4892 4893
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4894

A
Avi Kivity 已提交
4895
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4896
	}
4897
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4898 4899 4900 4901

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
A
Avi Kivity 已提交
4902 4903
}

4904
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4905
		       void *insn, int insn_len)
4906
{
4907
	int r, emulation_type = EMULTYPE_RETRY;
4908
	enum emulation_result er;
4909
	bool direct = vcpu->arch.mmu.direct_map;
4910

4911 4912 4913 4914 4915
	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
	if (vcpu->arch.mmu.direct_map) {
		vcpu->arch.gpa_available = true;
		vcpu->arch.gpa_val = cr2;
	}
4916

4917
	r = RET_PF_INVALID;
4918 4919
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
4920
		if (r == RET_PF_EMULATE) {
4921 4922 4923 4924
			emulation_type = 0;
			goto emulate;
		}
	}
4925

4926 4927 4928 4929 4930 4931 4932 4933
	if (r == RET_PF_INVALID) {
		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
					      false);
		WARN_ON(r == RET_PF_INVALID);
	}

	if (r == RET_PF_RETRY)
		return 1;
4934
	if (r < 0)
4935
		return r;
4936

4937 4938 4939 4940 4941 4942 4943
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
4944
	if (vcpu->arch.mmu.direct_map &&
4945
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4946 4947 4948 4949
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
		return 1;
	}

4950
	if (mmio_info_in_cache(vcpu, cr2, direct))
4951
		emulation_type = 0;
4952
emulate:
4953
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4954 4955 4956 4957

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4958
	case EMULATE_USER_EXIT:
4959
		++vcpu->stat.mmio_exits;
4960
		/* fall through */
4961
	case EMULATE_FAIL:
4962
		return 0;
4963 4964 4965 4966 4967 4968
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4969 4970 4971
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4972
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4973 4974 4975 4976
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4977 4978 4979 4980 4981 4982
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4983 4984 4985 4986 4987 4988
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4989 4990
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4991
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4992
	free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4993 4994 4995 4996
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4997
	struct page *page;
A
Avi Kivity 已提交
4998 4999
	int i;

5000 5001 5002 5003 5004 5005 5006
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
5007 5008
		return -ENOMEM;

5009
	vcpu->arch.mmu.pae_root = page_address(page);
5010
	for (i = 0; i < 4; ++i)
5011
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5012

A
Avi Kivity 已提交
5013 5014 5015
	return 0;
}

5016
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5017
{
5018 5019 5020 5021
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
5022

5023 5024
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
5025

5026
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5027
{
5028
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5029

5030
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
5031 5032
}

5033
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5034 5035
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5036 5037 5038 5039
{
	kvm_mmu_invalidate_zap_all_pages(kvm);
}

5040 5041 5042 5043 5044
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
5045
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

5056
/* The return value indicates if tlb flush on all vcpus is needed. */
5057
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
5125 5126 5127 5128
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5129
	int i;
X
Xiao Guangrong 已提交
5130 5131

	spin_lock(&kvm->mmu_lock);
5132 5133 5134 5135 5136 5137 5138 5139 5140
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5141

5142 5143 5144 5145
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
5146 5147 5148 5149 5150
	}

	spin_unlock(&kvm->mmu_lock);
}

5151 5152
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5153
{
5154
	return __rmap_write_protect(kvm, rmap_head, false);
5155 5156
}

5157 5158
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
5159
{
5160
	bool flush;
A
Avi Kivity 已提交
5161

5162
	spin_lock(&kvm->mmu_lock);
5163 5164
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
5165
	spin_unlock(&kvm->mmu_lock);
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5185 5186
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
5187
}
5188

5189
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5190
					 struct kvm_rmap_head *rmap_head)
5191 5192 5193 5194
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5195
	kvm_pfn_t pfn;
5196 5197
	struct kvm_mmu_page *sp;

5198
restart:
5199
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5200 5201 5202 5203
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
5204 5205 5206 5207 5208
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5209 5210 5211
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
5212
			PageTransCompoundMap(pfn_to_page(pfn))) {
5213 5214
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
5215 5216
			goto restart;
		}
5217 5218 5219 5220 5221 5222
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5223
				   const struct kvm_memory_slot *memslot)
5224
{
5225
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5226
	spin_lock(&kvm->mmu_lock);
5227 5228
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5229 5230 5231
	spin_unlock(&kvm->mmu_lock);
}

5232 5233 5234
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5235
	bool flush;
5236 5237

	spin_lock(&kvm->mmu_lock);
5238
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5257
	bool flush;
5258 5259

	spin_lock(&kvm->mmu_lock);
5260 5261
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5275
	bool flush;
5276 5277

	spin_lock(&kvm->mmu_lock);
5278
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
5289
#define BATCH_ZAP_PAGES	10
5290 5291 5292
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
5293
	int batch = 0;
5294 5295 5296 5297

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
5298 5299
		int ret;

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

5315 5316 5317 5318
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
5319
		if (batch >= BATCH_ZAP_PAGES &&
5320
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
5321
			batch = 0;
5322 5323 5324
			goto restart;
		}

5325 5326
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
5327 5328 5329
		batch += ret;

		if (ret)
5330 5331 5332
			goto restart;
	}

5333 5334 5335 5336
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
5337
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
5352
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5353 5354
	kvm->arch.mmu_valid_gen++;

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5366 5367 5368 5369
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5370 5371 5372 5373 5374
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5375
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5376 5377 5378 5379 5380
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
5381
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5382
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5383
		kvm_mmu_invalidate_zap_all_pages(kvm);
5384
	}
5385 5386
}

5387 5388
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5389 5390
{
	struct kvm *kvm;
5391
	int nr_to_scan = sc->nr_to_scan;
5392
	unsigned long freed = 0;
5393

5394
	spin_lock(&kvm_lock);
5395 5396

	list_for_each_entry(kvm, &vm_list, vm_list) {
5397
		int idx;
5398
		LIST_HEAD(invalid_list);
5399

5400 5401 5402 5403 5404 5405 5406 5407
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5408 5409 5410 5411 5412 5413
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5414 5415
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
5416 5417
			continue;

5418
		idx = srcu_read_lock(&kvm->srcu);
5419 5420
		spin_lock(&kvm->mmu_lock);

5421 5422 5423 5424 5425 5426
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5427 5428
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5429
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5430

5431
unlock:
5432
		spin_unlock(&kvm->mmu_lock);
5433
		srcu_read_unlock(&kvm->srcu, idx);
5434

5435 5436 5437 5438 5439
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5440 5441
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5442 5443
	}

5444
	spin_unlock(&kvm_lock);
5445 5446 5447 5448 5449 5450
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5451
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5452 5453 5454
}

static struct shrinker mmu_shrinker = {
5455 5456
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5457 5458 5459
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5460
static void mmu_destroy_caches(void)
5461
{
5462 5463
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5464 5465 5466 5467
}

int kvm_mmu_module_init(void)
{
5468 5469
	kvm_mmu_clear_all_pte_masks();

5470 5471
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5472
					    0, SLAB_ACCOUNT, NULL);
5473
	if (!pte_list_desc_cache)
5474 5475
		goto nomem;

5476 5477
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5478
						  0, SLAB_ACCOUNT, NULL);
5479 5480 5481
	if (!mmu_page_header_cache)
		goto nomem;

5482
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5483 5484
		goto nomem;

5485 5486
	register_shrinker(&mmu_shrinker);

5487 5488 5489
	return 0;

nomem:
5490
	mmu_destroy_caches();
5491 5492 5493
	return -ENOMEM;
}

5494 5495 5496 5497 5498 5499 5500
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5501
	struct kvm_memslots *slots;
5502
	struct kvm_memory_slot *memslot;
5503
	int i;
5504

5505 5506
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5507

5508 5509 5510
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5511 5512 5513

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5514
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5515 5516 5517 5518

	return nr_mmu_pages;
}

5519 5520
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5521
	kvm_mmu_unload(vcpu);
5522 5523
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5524 5525 5526 5527 5528 5529 5530
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5531 5532
	mmu_audit_disable();
}