mmu.c 135.4 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/uaccess.h>
40
#include <linux/hash.h>
41
#include <linux/kern_levels.h>
A
Avi Kivity 已提交
42

A
Avi Kivity 已提交
43 44
#include <asm/page.h>
#include <asm/cmpxchg.h>
45
#include <asm/io.h>
46
#include <asm/vmx.h>
47
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
48

49 50 51 52 53 54 55
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
56
bool tdp_enabled = false;
57

58 59 60 61
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
62 63 64
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
65
};
66

67
#undef MMU_DEBUG
68 69

#ifdef MMU_DEBUG
70 71
static bool dbg = 0;
module_param(dbg, bool, 0644);
72 73 74

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
75
#define MMU_WARN_ON(x) WARN_ON(x)
76 77 78
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
79
#define MMU_WARN_ON(x) do { } while (0)
80
#endif
A
Avi Kivity 已提交
81

82 83
#define PTE_PREFETCH_NUM		8

84
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
85 86 87 88 89
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
90
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
91 92 93 94 95 96 97 98

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
100

101 102 103
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
104 105 106 107 108

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


109
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
110 111
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
112 113 114 115 116 117
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
118 119 120 121

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
122 123 124
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
125

126 127
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
128

129 130 131 132 133
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

134 135 136 137
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

138 139
#include <trace/events/kvm.h>

140 141 142
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

143 144
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
145

146 147
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

148 149 150
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

151 152 153
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
154 155
};

156 157 158 159
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
160
	int level;
161 162 163 164 165 166 167 168
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

169 170 171 172 173 174
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

175
static struct kmem_cache *pte_list_desc_cache;
176
static struct kmem_cache *mmu_page_header_cache;
177
static struct percpu_counter kvm_total_used_mmu_pages;
178

S
Sheng Yang 已提交
179 180 181 182 183
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
184
static u64 __read_mostly shadow_mmio_mask;
185
static u64 __read_mostly shadow_present_mask;
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * The mask/value to distinguish a PTE that has been marked not-present for
 * access tracking purposes.
 * The mask would be either 0 if access tracking is disabled, or
 * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
 */
static u64 __read_mostly shadow_acc_track_mask;
static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

206
static void mmu_spte_set(u64 *sptep, u64 spte);
207
static void mmu_free_roots(struct kvm_vcpu *vcpu);
208 209 210 211 212 213 214

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

215 216 217 218 219 220
static inline bool is_access_track_spte(u64 spte)
{
	/* Always false if shadow_acc_track_mask is zero.  */
	return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
}

221
/*
222 223 224 225 226 227 228
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
229
 */
230
#define MMIO_SPTE_GEN_LOW_SHIFT		2
231 232
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

233 234 235
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
236
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
237 238 239 240 241

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
242
	WARN_ON(gen & ~MMIO_GEN_MASK);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

260
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
261
{
262
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
263 264
}

265
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
266
			   unsigned access)
267
{
268
	unsigned int gen = kvm_current_mmio_generation(vcpu);
269
	u64 mask = generation_mmio_spte_mask(gen);
270

271
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
272 273
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

274
	trace_mark_mmio_spte(sptep, gfn, access, gen);
275
	mmu_spte_set(sptep, mask);
276 277 278 279 280 281 282 283 284
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
285
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
286
	return (spte & ~mask) >> PAGE_SHIFT;
287 288 289 290
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
291
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
292
	return (spte & ~mask) & ~PAGE_MASK;
293 294
}

295
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
296
			  kvm_pfn_t pfn, unsigned access)
297 298
{
	if (unlikely(is_noslot_pfn(pfn))) {
299
		mark_mmio_spte(vcpu, sptep, gfn, access);
300 301 302 303 304
		return true;
	}

	return false;
}
305

306
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
307
{
308 309
	unsigned int kvm_gen, spte_gen;

310
	kvm_gen = kvm_current_mmio_generation(vcpu);
311 312 313 314
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
315 316
}

S
Sheng Yang 已提交
317
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
318 319
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
		u64 acc_track_mask)
S
Sheng Yang 已提交
320 321 322 323 324 325
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
326
	shadow_present_mask = p_mask;
327 328
	shadow_acc_track_mask = acc_track_mask;
	WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
S
Sheng Yang 已提交
329 330 331
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

332 333 334 335 336 337 338 339 340 341 342 343
void kvm_mmu_clear_all_pte_masks(void)
{
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_mmio_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
}

A
Avi Kivity 已提交
344 345 346 347 348
static int is_cpuid_PSE36(void)
{
	return 1;
}

349 350
static int is_nx(struct kvm_vcpu *vcpu)
{
351
	return vcpu->arch.efer & EFER_NX;
352 353
}

354 355
static int is_shadow_present_pte(u64 pte)
{
356
	return (pte != 0) && !is_mmio_spte(pte);
357 358
}

M
Marcelo Tosatti 已提交
359 360 361 362 363
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

364 365 366 367
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
368
	if (is_large_pte(pte))
369 370 371 372
		return 1;
	return 0;
}

D
Dan Williams 已提交
373
static kvm_pfn_t spte_to_pfn(u64 pte)
374
{
375
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
376 377
}

378 379 380 381 382 383 384
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

385
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
386
static void __set_spte(u64 *sptep, u64 spte)
387
{
388
	WRITE_ONCE(*sptep, spte);
389 390
}

391
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
392
{
393
	WRITE_ONCE(*sptep, spte);
394 395 396 397 398 399
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
400 401 402 403 404

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
405
#else
406 407 408 409 410 411 412
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
413

414 415 416 417 418 419 420 421 422 423 424 425
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

426 427 428
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
429

430 431 432 433 434 435 436 437 438 439 440 441
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

442
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
443 444
}

445 446 447 448 449 450 451
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

452
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
453 454 455 456 457 458 459 460

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
461
	count_spte_clear(sptep, spte);
462 463 464 465 466 467 468 469 470 471 472
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
473 474
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
475
	count_spte_clear(sptep, spte);
476 477 478

	return orig.spte;
}
479 480 481 482

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
483 484 485 486 487 488 489 490 491 492 493 494 495 496
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
520 521
#endif

522
static bool spte_can_locklessly_be_made_writable(u64 spte)
523
{
524 525
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
526 527
}

528 529
static bool spte_has_volatile_bits(u64 spte)
{
530 531 532
	if (!is_shadow_present_pte(spte))
		return false;

533
	/*
534
	 * Always atomically update spte if it can be updated
535 536 537 538
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
539 540
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
541 542
		return true;

543 544 545 546 547
	if (shadow_accessed_mask) {
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
548

549
	return false;
550 551
}

552
static bool is_accessed_spte(u64 spte)
553
{
554
	return shadow_accessed_mask ? spte & shadow_accessed_mask
555
				    : !is_access_track_spte(spte);
556 557
}

558
static bool is_dirty_spte(u64 spte)
559
{
560 561
	return shadow_dirty_mask ? spte & shadow_dirty_mask
				 : spte & PT_WRITABLE_MASK;
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

576 577 578
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
579
 */
580
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
581
{
582
	u64 old_spte = *sptep;
583

584
	WARN_ON(!is_shadow_present_pte(new_spte));
585

586 587
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
588
		return old_spte;
589
	}
590

591
	if (!spte_has_volatile_bits(old_spte))
592
		__update_clear_spte_fast(sptep, new_spte);
593
	else
594
		old_spte = __update_clear_spte_slow(sptep, new_spte);
595

596 597
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

620 621
	/*
	 * For the spte updated out of mmu-lock is safe, since
622
	 * we always atomically update it, see the comments in
623 624
	 * spte_has_volatile_bits().
	 */
625
	if (spte_can_locklessly_be_made_writable(old_spte) &&
626
	      !is_writable_pte(new_spte))
627
		flush = true;
628

629
	/*
630
	 * Flush TLB when accessed/dirty states are changed in the page tables,
631 632 633
	 * to guarantee consistency between TLB and page tables.
	 */

634 635
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
636
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
637 638 639 640
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
641
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
642
	}
643

644
	return flush;
645 646
}

647 648 649 650
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
651
 * Returns non-zero if the PTE was previously valid.
652 653 654
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
655
	kvm_pfn_t pfn;
656 657 658
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
659
		__update_clear_spte_fast(sptep, 0ull);
660
	else
661
		old_spte = __update_clear_spte_slow(sptep, 0ull);
662

663
	if (!is_shadow_present_pte(old_spte))
664 665 666
		return 0;

	pfn = spte_to_pfn(old_spte);
667 668 669 670 671 672

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
673
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
674

675
	if (is_accessed_spte(old_spte))
676
		kvm_set_pfn_accessed(pfn);
677 678

	if (is_dirty_spte(old_spte))
679
		kvm_set_pfn_dirty(pfn);
680

681 682 683 684 685 686 687 688 689 690
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
691
	__update_clear_spte_fast(sptep, 0ull);
692 693
}

694 695 696 697 698
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
static u64 mark_spte_for_access_track(u64 spte)
{
	if (shadow_accessed_mask != 0)
		return spte & ~shadow_accessed_mask;

	if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
		return spte;

	/*
	 * Verify that the write-protection that we do below will be fixable
	 * via the fast page fault path. Currently, that is always the case, at
	 * least when using EPT (which is when access tracking would be used).
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;
	spte |= shadow_acc_track_value;

	return spte;
}

/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

	if (shadow_accessed_mask) {
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

754 755
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
756 757 758 759 760
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
761

762 763 764 765
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
766
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
767 768 769 770
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
771 772 773 774 775
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
776
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
777
	local_irq_enable();
778 779
}

780
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
781
				  struct kmem_cache *base_cache, int min)
782 783 784 785
{
	void *obj;

	if (cache->nobjs >= min)
786
		return 0;
787
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
788
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
789
		if (!obj)
790
			return -ENOMEM;
791 792
		cache->objects[cache->nobjs++] = obj;
	}
793
	return 0;
794 795
}

796 797 798 799 800
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

801 802
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
803 804
{
	while (mc->nobjs)
805
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
806 807
}

A
Avi Kivity 已提交
808
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
809
				       int min)
A
Avi Kivity 已提交
810
{
811
	void *page;
A
Avi Kivity 已提交
812 813 814 815

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
816
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
817 818
		if (!page)
			return -ENOMEM;
819
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
820 821 822 823 824 825 826
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
827
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
828 829
}

830
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
831
{
832 833
	int r;

834
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
835
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
836 837
	if (r)
		goto out;
838
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
839 840
	if (r)
		goto out;
841
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
842
				   mmu_page_header_cache, 4);
843 844
out:
	return r;
845 846 847 848
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
849 850
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
851
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
852 853
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
854 855
}

856
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
857 858 859 860 861 862 863 864
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

865
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
866
{
867
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
868 869
}

870
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
871
{
872
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
873 874
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
891
/*
892 893
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
894
 */
895 896 897
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
898 899 900
{
	unsigned long idx;

901
	idx = gfn_to_index(gfn, slot->base_gfn, level);
902
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
903 904
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

928
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
929
{
930
	struct kvm_memslots *slots;
931
	struct kvm_memory_slot *slot;
932
	gfn_t gfn;
M
Marcelo Tosatti 已提交
933

934
	kvm->arch.indirect_shadow_pages++;
935
	gfn = sp->gfn;
936 937
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
938 939 940 941 942 943

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

944
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
945 946
}

947
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
948
{
949
	struct kvm_memslots *slots;
950
	struct kvm_memory_slot *slot;
951
	gfn_t gfn;
M
Marcelo Tosatti 已提交
952

953
	kvm->arch.indirect_shadow_pages--;
954
	gfn = sp->gfn;
955 956
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
957 958 959 960
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

961
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
962 963
}

964 965
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
966
{
967
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
968 969

	if (slot) {
970
		linfo = lpage_info_slot(gfn, slot, level);
971
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
972 973
	}

974
	return true;
M
Marcelo Tosatti 已提交
975 976
}

977 978
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
979 980 981 982
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
983
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
984 985
}

986
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
987
{
J
Joerg Roedel 已提交
988
	unsigned long page_size;
989
	int i, ret = 0;
M
Marcelo Tosatti 已提交
990

J
Joerg Roedel 已提交
991
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
992

993
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
994 995 996 997 998 999
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

1000
	return ret;
M
Marcelo Tosatti 已提交
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

1014 1015 1016
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1017 1018
{
	struct kvm_memory_slot *slot;
1019

1020
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1021
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1022 1023 1024 1025 1026
		slot = NULL;

	return slot;
}

1027 1028
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
1029 1030
{
	int host_level, level, max_level;
1031 1032
	struct kvm_memory_slot *slot;

1033 1034
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
1035

1036 1037
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1038 1039 1040
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

1041 1042 1043 1044 1045
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
1046
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1047 1048

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1049
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1050 1051 1052
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
1053 1054
}

1055
/*
1056
 * About rmap_head encoding:
1057
 *
1058 1059
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1060
 * pte_list_desc containing more mappings.
1061 1062 1063 1064
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1065
 */
1066
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1067
			struct kvm_rmap_head *rmap_head)
1068
{
1069
	struct pte_list_desc *desc;
1070
	int i, count = 0;
1071

1072
	if (!rmap_head->val) {
1073
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1074 1075
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1076 1077
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1078
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1079
		desc->sptes[1] = spte;
1080
		rmap_head->val = (unsigned long)desc | 1;
1081
		++count;
1082
	} else {
1083
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1084
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1085
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1086
			desc = desc->more;
1087
			count += PTE_LIST_EXT;
1088
		}
1089 1090
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1091 1092
			desc = desc->more;
		}
A
Avi Kivity 已提交
1093
		for (i = 0; desc->sptes[i]; ++i)
1094
			++count;
A
Avi Kivity 已提交
1095
		desc->sptes[i] = spte;
1096
	}
1097
	return count;
1098 1099
}

1100
static void
1101 1102 1103
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1104 1105 1106
{
	int j;

1107
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1108
		;
A
Avi Kivity 已提交
1109 1110
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1111 1112 1113
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1114
		rmap_head->val = (unsigned long)desc->sptes[0];
1115 1116 1117 1118
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1119
			rmap_head->val = (unsigned long)desc->more | 1;
1120
	mmu_free_pte_list_desc(desc);
1121 1122
}

1123
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1124
{
1125 1126
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1127 1128
	int i;

1129
	if (!rmap_head->val) {
1130
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1131
		BUG();
1132
	} else if (!(rmap_head->val & 1)) {
1133
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1134
		if ((u64 *)rmap_head->val != spte) {
1135
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1136 1137
			BUG();
		}
1138
		rmap_head->val = 0;
1139
	} else {
1140
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1141
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1142 1143
		prev_desc = NULL;
		while (desc) {
1144
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1145
				if (desc->sptes[i] == spte) {
1146 1147
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1148 1149
					return;
				}
1150
			}
1151 1152 1153
			prev_desc = desc;
			desc = desc->more;
		}
1154
		pr_err("pte_list_remove: %p many->many\n", spte);
1155 1156 1157 1158
		BUG();
	}
}

1159 1160
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1161
{
1162
	unsigned long idx;
1163

1164
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1165
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1166 1167
}

1168 1169
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1170
{
1171
	struct kvm_memslots *slots;
1172 1173
	struct kvm_memory_slot *slot;

1174 1175
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1176
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1187 1188 1189
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1190
	struct kvm_rmap_head *rmap_head;
1191 1192 1193

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1194 1195
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1196 1197 1198 1199 1200 1201
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1202
	struct kvm_rmap_head *rmap_head;
1203 1204 1205

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1206 1207
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1227 1228
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1229
{
1230 1231
	u64 *sptep;

1232
	if (!rmap_head->val)
1233 1234
		return NULL;

1235
	if (!(rmap_head->val & 1)) {
1236
		iter->desc = NULL;
1237 1238
		sptep = (u64 *)rmap_head->val;
		goto out;
1239 1240
	}

1241
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1242
	iter->pos = 0;
1243 1244 1245 1246
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1247 1248 1249 1250 1251 1252 1253 1254 1255
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1256 1257
	u64 *sptep;

1258 1259 1260 1261 1262
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1263
				goto out;
1264 1265 1266 1267 1268 1269 1270
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1271 1272
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1273 1274 1275 1276
		}
	}

	return NULL;
1277 1278 1279
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1280 1281
}

1282 1283
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1284
	     _spte_; _spte_ = rmap_get_next(_iter_))
1285

1286
static void drop_spte(struct kvm *kvm, u64 *sptep)
1287
{
1288
	if (mmu_spte_clear_track_bits(sptep))
1289
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1313
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1314
 * spte write-protection is caused by protecting shadow page table.
1315
 *
T
Tiejun Chen 已提交
1316
 * Note: write protection is difference between dirty logging and spte
1317 1318 1319 1320 1321
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1322
 *
1323
 * Return true if tlb need be flushed.
1324
 */
1325
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1326 1327 1328
{
	u64 spte = *sptep;

1329
	if (!is_writable_pte(spte) &&
1330
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1331 1332 1333 1334
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1335 1336
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1337
	spte = spte & ~PT_WRITABLE_MASK;
1338

1339
	return mmu_spte_update(sptep, spte);
1340 1341
}

1342 1343
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1344
				 bool pt_protect)
1345
{
1346 1347
	u64 *sptep;
	struct rmap_iterator iter;
1348
	bool flush = false;
1349

1350
	for_each_rmap_spte(rmap_head, &iter, sptep)
1351
		flush |= spte_write_protect(sptep, pt_protect);
1352

1353
	return flush;
1354 1355
}

1356
static bool spte_clear_dirty(u64 *sptep)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1367
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1368 1369 1370 1371 1372
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1373
	for_each_rmap_spte(rmap_head, &iter, sptep)
1374
		flush |= spte_clear_dirty(sptep);
1375 1376 1377 1378

	return flush;
}

1379
static bool spte_set_dirty(u64 *sptep)
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1390
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1391 1392 1393 1394 1395
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1396
	for_each_rmap_spte(rmap_head, &iter, sptep)
1397
		flush |= spte_set_dirty(sptep);
1398 1399 1400 1401

	return flush;
}

1402
/**
1403
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1404 1405 1406 1407 1408 1409 1410 1411
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1412
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1413 1414
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1415
{
1416
	struct kvm_rmap_head *rmap_head;
1417

1418
	while (mask) {
1419 1420 1421
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1422

1423 1424 1425
		/* clear the first set bit */
		mask &= mask - 1;
	}
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1441
	struct kvm_rmap_head *rmap_head;
1442 1443

	while (mask) {
1444 1445 1446
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1447 1448 1449 1450 1451 1452 1453

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1468 1469 1470 1471 1472
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1473 1474
}

1475 1476
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1477
{
1478
	struct kvm_rmap_head *rmap_head;
1479
	int i;
1480
	bool write_protected = false;
1481

1482
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1483
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1484
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1485 1486 1487
	}

	return write_protected;
1488 1489
}

1490 1491 1492 1493 1494 1495 1496 1497
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1498
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1499
{
1500 1501
	u64 *sptep;
	struct rmap_iterator iter;
1502
	bool flush = false;
1503

1504
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1505
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1506 1507

		drop_spte(kvm, sptep);
1508
		flush = true;
1509
	}
1510

1511 1512 1513
	return flush;
}

1514
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1515 1516 1517
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1518
	return kvm_zap_rmapp(kvm, rmap_head);
1519 1520
}

1521
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1522 1523
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1524
{
1525 1526
	u64 *sptep;
	struct rmap_iterator iter;
1527
	int need_flush = 0;
1528
	u64 new_spte;
1529
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1530
	kvm_pfn_t new_pfn;
1531 1532 1533

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1534

1535
restart:
1536
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1537
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1538
			    sptep, *sptep, gfn, level);
1539

1540
		need_flush = 1;
1541

1542
		if (pte_write(*ptep)) {
1543
			drop_spte(kvm, sptep);
1544
			goto restart;
1545
		} else {
1546
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1547 1548 1549 1550
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1551 1552

			new_spte = mark_spte_for_access_track(new_spte);
1553 1554 1555

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1556 1557
		}
	}
1558

1559 1560 1561 1562 1563 1564
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1575
	struct kvm_rmap_head *rmap;
1576 1577 1578
	int level;

	/* private field. */
1579
	struct kvm_rmap_head *end_rmap;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1633 1634 1635 1636 1637
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1638
					       struct kvm_rmap_head *rmap_head,
1639
					       struct kvm_memory_slot *slot,
1640 1641
					       gfn_t gfn,
					       int level,
1642
					       unsigned long data))
1643
{
1644
	struct kvm_memslots *slots;
1645
	struct kvm_memory_slot *memslot;
1646 1647
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1648
	int i;
1649

1650 1651 1652 1653 1654
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1655

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1675 1676
	}

1677
	return ret;
1678 1679
}

1680 1681
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1682 1683
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1684
					 struct kvm_memory_slot *slot,
1685
					 gfn_t gfn, int level,
1686 1687 1688
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1689 1690 1691 1692
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1693 1694 1695
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1696 1697 1698 1699 1700
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1701 1702
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1703
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1704 1705
}

1706
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1707 1708
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1709
{
1710
	u64 *sptep;
1711
	struct rmap_iterator uninitialized_var(iter);
1712 1713
	int young = 0;

1714 1715
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1716

1717
	trace_kvm_age_page(gfn, level, slot, young);
1718 1719 1720
	return young;
}

1721
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1722 1723
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1724
{
1725 1726
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1727 1728

	/*
1729 1730 1731
	 * If there's no access bit in the secondary pte set by the hardware and
	 * fast access tracking is also not enabled, it's up to gup-fast/gup to
	 * set the access bit in the primary pte or in the page structure.
A
Andrea Arcangeli 已提交
1732
	 */
1733
	if (!shadow_accessed_mask && !shadow_acc_track_mask)
A
Andrea Arcangeli 已提交
1734 1735
		goto out;

1736 1737 1738
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
A
Andrea Arcangeli 已提交
1739
out:
1740
	return 0;
A
Andrea Arcangeli 已提交
1741 1742
}

1743 1744
#define RMAP_RECYCLE_THRESHOLD 1000

1745
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1746
{
1747
	struct kvm_rmap_head *rmap_head;
1748 1749 1750
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1751

1752
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1753

1754
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1755 1756 1757
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1758
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1759
{
A
Andres Lagar-Cavilla 已提交
1760 1761 1762 1763 1764 1765 1766 1767
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1768
	if (!shadow_accessed_mask && !shadow_acc_track_mask)
A
Andres Lagar-Cavilla 已提交
1769 1770 1771 1772
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1773 1774
}

A
Andrea Arcangeli 已提交
1775 1776 1777 1778 1779
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1780
#ifdef MMU_DEBUG
1781
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1782
{
1783 1784 1785
	u64 *pos;
	u64 *end;

1786
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1787
		if (is_shadow_present_pte(*pos)) {
1788
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1789
			       pos, *pos);
A
Avi Kivity 已提交
1790
			return 0;
1791
		}
A
Avi Kivity 已提交
1792 1793
	return 1;
}
1794
#endif
A
Avi Kivity 已提交
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1808
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1809
{
1810
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1811
	hlist_del(&sp->hash_link);
1812 1813
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1814 1815
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1816
	kmem_cache_free(mmu_page_header_cache, sp);
1817 1818
}

1819 1820
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1821
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1822 1823
}

1824
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1825
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1826 1827 1828 1829
{
	if (!parent_pte)
		return;

1830
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1831 1832
}

1833
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1834 1835
				       u64 *parent_pte)
{
1836
	pte_list_remove(parent_pte, &sp->parent_ptes);
1837 1838
}

1839 1840 1841 1842
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1843
	mmu_spte_clear_no_track(parent_pte);
1844 1845
}

1846
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1847
{
1848
	struct kvm_mmu_page *sp;
1849

1850 1851
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1852
	if (!direct)
1853
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1854
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1855 1856 1857 1858 1859 1860

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1861 1862 1863
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1864 1865
}

1866
static void mark_unsync(u64 *spte);
1867
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1868
{
1869 1870 1871 1872 1873 1874
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1875 1876
}

1877
static void mark_unsync(u64 *spte)
1878
{
1879
	struct kvm_mmu_page *sp;
1880
	unsigned int index;
1881

1882
	sp = page_header(__pa(spte));
1883 1884
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1885
		return;
1886
	if (sp->unsync_children++)
1887
		return;
1888
	kvm_mmu_mark_parents_unsync(sp);
1889 1890
}

1891
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1892
			       struct kvm_mmu_page *sp)
1893
{
1894
	return 0;
1895 1896
}

M
Marcelo Tosatti 已提交
1897 1898 1899 1900
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1901 1902
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1903
				 const void *pte)
1904 1905 1906 1907
{
	WARN_ON(1);
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1918 1919
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1920
{
1921
	int i;
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1934 1935 1936 1937 1938 1939 1940
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1941 1942 1943 1944
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1945

1946
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1947
		struct kvm_mmu_page *child;
1948 1949
		u64 ent = sp->spt[i];

1950 1951 1952 1953
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1954 1955 1956 1957 1958 1959 1960 1961

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1962 1963 1964 1965
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1966
				nr_unsync_leaf += ret;
1967
			} else
1968 1969 1970 1971 1972 1973
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1974
			clear_unsync_child_bit(sp, i);
1975 1976
	}

1977 1978 1979
	return nr_unsync_leaf;
}

1980 1981
#define INVALID_INDEX (-1)

1982 1983 1984
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1985
	pvec->nr = 0;
1986 1987 1988
	if (!sp->unsync_children)
		return 0;

1989
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1990
	return __mmu_unsync_walk(sp, pvec);
1991 1992 1993 1994 1995
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1996
	trace_kvm_mmu_sync_page(sp);
1997 1998 1999 2000
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2001 2002 2003 2004
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2005

2006 2007 2008 2009 2010 2011
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
2012
 * for_each_valid_sp() has skipped that kind of pages.
2013
 */
2014
#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2015 2016
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2017 2018
		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
		} else
2019 2020

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2021 2022
	for_each_valid_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2023

2024
/* @sp->gfn should be write-protected at the call site */
2025 2026
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2027
{
2028
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2029
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2030
		return false;
2031 2032
	}

2033
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2034
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2035
		return false;
2036 2037
	}

2038
	return true;
2039 2040
}

2041 2042 2043
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2044
{
2045 2046 2047 2048
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
2049

2050 2051 2052 2053
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2054 2055
}

2056 2057 2058 2059 2060 2061 2062
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2063 2064 2065 2066 2067
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2068
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2069
			 struct list_head *invalid_list)
2070
{
2071 2072
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2073 2074
}

2075
/* @gfn should be write-protected at the call site */
2076 2077
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2078 2079
{
	struct kvm_mmu_page *s;
2080
	bool ret = false;
2081

2082
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2083
		if (!s->unsync)
2084 2085 2086
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2087
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2088 2089
	}

2090
	return ret;
2091 2092
}

2093
struct mmu_page_path {
P
Paolo Bonzini 已提交
2094 2095
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
	unsigned int idx[PT64_ROOT_LEVEL];
2096 2097
};

2098
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2099
		for (i = mmu_pages_first(&pvec, &parents);	\
2100 2101 2102
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2103 2104 2105
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2106 2107 2108 2109 2110
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2111 2112
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2113

P
Paolo Bonzini 已提交
2114 2115 2116
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2117

P
Paolo Bonzini 已提交
2118
		parents->parent[level-2] = sp;
2119 2120 2121 2122 2123
	}

	return n;
}

P
Paolo Bonzini 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2133 2134
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2148
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2149
{
2150 2151 2152 2153 2154 2155 2156 2157 2158
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2159
		WARN_ON(idx == INVALID_INDEX);
2160
		clear_unsync_child_bit(sp, idx);
2161
		level++;
P
Paolo Bonzini 已提交
2162
	} while (!sp->unsync_children);
2163
}
2164

2165 2166 2167 2168 2169 2170 2171
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2172
	LIST_HEAD(invalid_list);
2173
	bool flush = false;
2174 2175

	while (mmu_unsync_walk(parent, &pages)) {
2176
		bool protected = false;
2177 2178

		for_each_sp(pages, sp, parents, i)
2179
			protected |= rmap_write_protect(vcpu, sp->gfn);
2180

2181
		if (protected) {
2182
			kvm_flush_remote_tlbs(vcpu->kvm);
2183 2184
			flush = false;
		}
2185

2186
		for_each_sp(pages, sp, parents, i) {
2187
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2188 2189
			mmu_pages_clear_parents(&parents);
		}
2190 2191 2192 2193 2194
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2195
	}
2196 2197

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2198 2199
}

2200 2201
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2202
	atomic_set(&sp->write_flooding_count,  0);
2203 2204 2205 2206 2207 2208 2209 2210 2211
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2212 2213 2214 2215
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2216
					     int direct,
2217
					     unsigned access)
2218 2219 2220
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2221 2222
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2223
	bool flush = false;
2224
	int collisions = 0;
2225
	LIST_HEAD(invalid_list);
2226

2227
	role = vcpu->arch.mmu.base_role;
2228
	role.level = level;
2229
	role.direct = direct;
2230
	if (role.direct)
2231
		role.cr4_pae = 0;
2232
	role.access = access;
2233 2234
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2235 2236 2237 2238
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2239 2240 2241 2242 2243 2244
	for_each_valid_sp(vcpu->kvm, sp, gfn) {
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2245 2246
		if (!need_sync && sp->unsync)
			need_sync = true;
2247

2248 2249
		if (sp->role.word != role.word)
			continue;
2250

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2261

2262
		if (sp->unsync_children)
2263
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2264

2265
		__clear_sp_write_flooding_count(sp);
2266
		trace_kvm_mmu_get_page(sp, false);
2267
		goto out;
2268
	}
2269

A
Avi Kivity 已提交
2270
	++vcpu->kvm->stat.mmu_cache_miss;
2271 2272 2273

	sp = kvm_mmu_alloc_page(vcpu, direct);

2274 2275
	sp->gfn = gfn;
	sp->role = role;
2276 2277
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2278
	if (!direct) {
2279 2280 2281 2282 2283 2284 2285 2286
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2287
			kvm_flush_remote_tlbs(vcpu->kvm);
2288 2289

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2290
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2291
	}
2292
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2293
	clear_page(sp->spt);
A
Avi Kivity 已提交
2294
	trace_kvm_mmu_get_page(sp, true);
2295 2296

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2297 2298 2299
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2300
	return sp;
2301 2302
}

2303 2304 2305 2306 2307 2308
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2309 2310 2311 2312 2313 2314

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2329

2330 2331 2332 2333 2334
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2335 2336
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2337
{
2338
	if (is_last_spte(spte, iterator->level)) {
2339 2340 2341 2342
		iterator->level = 0;
		return;
	}

2343
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2344 2345 2346
	--iterator->level;
}

2347 2348 2349 2350 2351
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2352 2353
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2354 2355 2356
{
	u64 spte;

2357
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2358

2359
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2360
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2361

2362
	mmu_spte_set(sptep, spte);
2363 2364 2365 2366 2367

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2368 2369
}

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2387
		drop_parent_pte(child, sptep);
2388 2389 2390 2391
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2392
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2393 2394 2395 2396 2397 2398 2399
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2400
		if (is_last_spte(pte, sp->role.level)) {
2401
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2402 2403 2404
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2405
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2406
			drop_parent_pte(child, spte);
2407
		}
X
Xiao Guangrong 已提交
2408 2409 2410 2411
		return true;
	}

	if (is_mmio_spte(pte))
2412
		mmu_spte_clear_no_track(spte);
2413

X
Xiao Guangrong 已提交
2414
	return false;
2415 2416
}

2417
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2418
					 struct kvm_mmu_page *sp)
2419
{
2420 2421
	unsigned i;

2422 2423
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2424 2425
}

2426
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2427
{
2428 2429
	u64 *sptep;
	struct rmap_iterator iter;
2430

2431
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2432
		drop_parent_pte(sp, sptep);
2433 2434
}

2435
static int mmu_zap_unsync_children(struct kvm *kvm,
2436 2437
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2438
{
2439 2440 2441
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2442

2443
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2444
		return 0;
2445 2446 2447 2448 2449

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2450
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2451
			mmu_pages_clear_parents(&parents);
2452
			zapped++;
2453 2454 2455 2456
		}
	}

	return zapped;
2457 2458
}

2459 2460
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2461
{
2462
	int ret;
A
Avi Kivity 已提交
2463

2464
	trace_kvm_mmu_prepare_zap_page(sp);
2465
	++kvm->stat.mmu_shadow_zapped;
2466
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2467
	kvm_mmu_page_unlink_children(kvm, sp);
2468
	kvm_mmu_unlink_parents(kvm, sp);
2469

2470
	if (!sp->role.invalid && !sp->role.direct)
2471
		unaccount_shadowed(kvm, sp);
2472

2473 2474
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2475
	if (!sp->root_count) {
2476 2477
		/* Count self */
		ret++;
2478
		list_move(&sp->link, invalid_list);
2479
		kvm_mod_used_mmu_pages(kvm, -1);
2480
	} else {
A
Avi Kivity 已提交
2481
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2482 2483 2484 2485 2486 2487 2488

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2489
	}
2490 2491

	sp->role.invalid = 1;
2492
	return ret;
2493 2494
}

2495 2496 2497
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2498
	struct kvm_mmu_page *sp, *nsp;
2499 2500 2501 2502

	if (list_empty(invalid_list))
		return;

2503
	/*
2504 2505 2506 2507 2508 2509 2510
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2511 2512
	 */
	kvm_flush_remote_tlbs(kvm);
2513

2514
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2515
		WARN_ON(!sp->role.invalid || sp->root_count);
2516
		kvm_mmu_free_page(sp);
2517
	}
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2528 2529
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2530 2531 2532 2533 2534
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2535 2536
/*
 * Changing the number of mmu pages allocated to the vm
2537
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2538
 */
2539
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2540
{
2541
	LIST_HEAD(invalid_list);
2542

2543 2544
	spin_lock(&kvm->mmu_lock);

2545
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2546 2547 2548 2549
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2550

2551
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2552
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2553 2554
	}

2555
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2556 2557

	spin_unlock(&kvm->mmu_lock);
2558 2559
}

2560
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2561
{
2562
	struct kvm_mmu_page *sp;
2563
	LIST_HEAD(invalid_list);
2564 2565
	int r;

2566
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2567
	r = 0;
2568
	spin_lock(&kvm->mmu_lock);
2569
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2570
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2571 2572
			 sp->role.word);
		r = 1;
2573
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2574
	}
2575
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2576 2577
	spin_unlock(&kvm->mmu_lock);

2578
	return r;
2579
}
2580
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2581

2582
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2583 2584 2585 2586 2587 2588 2589 2590
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2591 2592
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2593
{
2594
	struct kvm_mmu_page *sp;
2595

2596 2597
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2598

2599
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2600
		if (!can_unsync)
2601
			return true;
2602

2603 2604
		if (sp->unsync)
			continue;
2605

2606 2607
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2608
	}
2609 2610

	return false;
2611 2612
}

D
Dan Williams 已提交
2613
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2614 2615 2616 2617 2618 2619 2620
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2621
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2622
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2623
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2624
		    bool can_unsync, bool host_writable)
2625
{
2626
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2627
	int ret = 0;
S
Sheng Yang 已提交
2628

2629
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2630 2631
		return 0;

2632 2633 2634 2635 2636 2637
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
2638
	spte |= shadow_present_mask;
2639
	if (!speculative)
2640
		spte |= shadow_accessed_mask;
2641

S
Sheng Yang 已提交
2642 2643 2644 2645
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2646

2647
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2648
		spte |= shadow_user_mask;
2649

2650
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2651
		spte |= PT_PAGE_SIZE_MASK;
2652
	if (tdp_enabled)
2653
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2654
			kvm_is_mmio_pfn(pfn));
2655

2656
	if (host_writable)
2657
		spte |= SPTE_HOST_WRITEABLE;
2658 2659
	else
		pte_access &= ~ACC_WRITE_MASK;
2660

2661
	spte |= (u64)pfn << PAGE_SHIFT;
2662

2663
	if (pte_access & ACC_WRITE_MASK) {
2664

X
Xiao Guangrong 已提交
2665
		/*
2666 2667 2668 2669
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2670
		 */
2671
		if (level > PT_PAGE_TABLE_LEVEL &&
2672
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2673
			goto done;
2674

2675
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2676

2677 2678 2679 2680 2681 2682
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2683
		if (!can_unsync && is_writable_pte(*sptep))
2684 2685
			goto set_pte;

2686
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2687
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2688
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2689
			ret = 1;
2690
			pte_access &= ~ACC_WRITE_MASK;
2691
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2692 2693 2694
		}
	}

2695
	if (pte_access & ACC_WRITE_MASK) {
2696
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2697 2698
		spte |= shadow_dirty_mask;
	}
2699

2700 2701 2702
	if (speculative)
		spte = mark_spte_for_access_track(spte);

2703
set_pte:
2704
	if (mmu_spte_update(sptep, spte))
2705
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2706
done:
M
Marcelo Tosatti 已提交
2707 2708 2709
	return ret;
}

2710
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2711
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2712
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2713 2714
{
	int was_rmapped = 0;
2715
	int rmap_count;
2716
	bool emulate = false;
M
Marcelo Tosatti 已提交
2717

2718 2719
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2720

2721
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2722 2723 2724 2725
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2726 2727
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2728
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2729
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2730 2731

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2732
			drop_parent_pte(child, sptep);
2733
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2734
		} else if (pfn != spte_to_pfn(*sptep)) {
2735
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2736
				 spte_to_pfn(*sptep), pfn);
2737
			drop_spte(vcpu->kvm, sptep);
2738
			kvm_flush_remote_tlbs(vcpu->kvm);
2739 2740
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2741
	}
2742

2743 2744
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2745
		if (write_fault)
2746
			emulate = true;
2747
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2748
	}
M
Marcelo Tosatti 已提交
2749

2750 2751
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2752

A
Avi Kivity 已提交
2753
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2754
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2755
		 is_large_pte(*sptep)? "2MB" : "4kB",
2756
		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2757
		 *sptep, sptep);
A
Avi Kivity 已提交
2758
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2759 2760
		++vcpu->kvm->stat.lpages;

2761 2762 2763 2764 2765 2766
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2767
	}
2768

X
Xiao Guangrong 已提交
2769
	kvm_release_pfn_clean(pfn);
2770 2771

	return emulate;
2772 2773
}

D
Dan Williams 已提交
2774
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2775 2776 2777 2778
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2779
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2780
	if (!slot)
2781
		return KVM_PFN_ERR_FAULT;
2782

2783
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2784 2785 2786 2787 2788 2789 2790
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2791
	struct kvm_memory_slot *slot;
2792 2793 2794 2795 2796
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2797 2798
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2799 2800
		return -1;

2801
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2802 2803 2804 2805
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2806 2807
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2824
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2855
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2856
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2857
{
2858
	struct kvm_shadow_walk_iterator iterator;
2859
	struct kvm_mmu_page *sp;
2860
	int emulate = 0;
2861
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2862

2863 2864 2865
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2866
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2867
		if (iterator.level == level) {
2868 2869 2870
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2871
			direct_pte_prefetch(vcpu, iterator.sptep);
2872 2873
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2874 2875
		}

2876
		drop_large_spte(vcpu, iterator.sptep);
2877
		if (!is_shadow_present_pte(*iterator.sptep)) {
2878 2879 2880 2881
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2882
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2883
					      iterator.level - 1, 1, ACC_ALL);
2884

2885
			link_shadow_page(vcpu, iterator.sptep, sp);
2886 2887
		}
	}
2888
	return emulate;
A
Avi Kivity 已提交
2889 2890
}

H
Huang Ying 已提交
2891
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2892
{
H
Huang Ying 已提交
2893 2894 2895 2896 2897 2898 2899
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2900

H
Huang Ying 已提交
2901
	send_sig_info(SIGBUS, &info, tsk);
2902 2903
}

D
Dan Williams 已提交
2904
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2905
{
X
Xiao Guangrong 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2915
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2916
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2917
		return 0;
2918
	}
2919

2920
	return -EFAULT;
2921 2922
}

2923
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2924 2925
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2926
{
D
Dan Williams 已提交
2927
	kvm_pfn_t pfn = *pfnp;
2928 2929 2930 2931 2932 2933 2934 2935 2936
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2937
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2938
	    level == PT_PAGE_TABLE_LEVEL &&
2939
	    PageTransCompoundMap(pfn_to_page(pfn)) &&
2940
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2959
			kvm_get_pfn(pfn);
2960 2961 2962 2963 2964
			*pfnp = pfn;
		}
	}
}

2965
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2966
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2967 2968
{
	/* The pfn is invalid, report the error! */
2969
	if (unlikely(is_error_pfn(pfn))) {
2970
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2971
		return true;
2972 2973
	}

2974
	if (unlikely(is_noslot_pfn(pfn)))
2975 2976
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

2977
	return false;
2978 2979
}

2980
static bool page_fault_can_be_fast(u32 error_code)
2981
{
2982 2983 2984 2985 2986 2987 2988
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2989 2990 2991 2992 2993
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2994
	/*
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3006 3007
	 */

3008 3009 3010
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3011 3012
}

3013 3014 3015 3016
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3017
static bool
3018
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3019 3020
			u64 *sptep, u64 old_spte,
			bool remove_write_prot, bool remove_acc_track)
3021 3022
{
	gfn_t gfn;
3023
	u64 new_spte = old_spte;
3024 3025 3026

	WARN_ON(!sp->role.direct);

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	if (remove_acc_track) {
		u64 saved_bits = (old_spte >> shadow_acc_track_saved_bits_shift)
				 & shadow_acc_track_saved_bits_mask;

		new_spte &= ~shadow_acc_track_mask;
		new_spte &= ~(shadow_acc_track_saved_bits_mask <<
			      shadow_acc_track_saved_bits_shift);
		new_spte |= saved_bits;
	}

	if (remove_write_prot)
		new_spte |= PT_WRITABLE_MASK;
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3052
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3053 3054
		return false;

3055 3056 3057 3058 3059 3060 3061 3062
	if (remove_write_prot) {
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
3076
	struct kvm_mmu_page *sp;
3077
	bool fault_handled = false;
3078
	u64 spte = 0ull;
3079
	uint retry_count = 0;
3080

3081 3082 3083
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

3084
	if (!page_fault_can_be_fast(error_code))
3085 3086 3087 3088 3089 3090 3091
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

3092
	do {
3093 3094
		bool remove_write_prot = false;
		bool remove_acc_track;
3095

3096 3097 3098
		sp = page_header(__pa(iterator.sptep));
		if (!is_last_spte(spte, sp->role.level))
			break;
3099

3100
		/*
3101 3102 3103 3104 3105
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3106 3107 3108 3109
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

		if (error_code & PFERR_FETCH_MASK) {
			if ((spte & (shadow_x_mask | shadow_nx_mask))
			    == shadow_x_mask) {
				fault_handled = true;
				break;
			}
		} else if (error_code & PFERR_WRITE_MASK) {
			if (is_writable_pte(spte)) {
				fault_handled = true;
				break;
			}

			/*
			 * Currently, to simplify the code, write-protection can
			 * be removed in the fast path only if the SPTE was
			 * write-protected for dirty-logging.
			 */
			remove_write_prot =
				spte_can_locklessly_be_made_writable(spte);
		} else {
			/* Fault was on Read access */
			if (spte & PT_PRESENT_MASK) {
				fault_handled = true;
				break;
			}
3136
		}
3137

3138 3139 3140 3141
		remove_acc_track = is_access_track_spte(spte);

		/* Verify that the fault can be handled in the fast path */
		if (!remove_acc_track && !remove_write_prot)
3142
			break;
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		/*
		 * Do not fix write-permission on the large spte since we only
		 * dirty the first page into the dirty-bitmap in
		 * fast_pf_fix_direct_spte() that means other pages are missed
		 * if its slot is dirty-logged.
		 *
		 * Instead, we let the slow page fault path create a normal spte
		 * to fix the access.
		 *
		 * See the comments in kvm_arch_commit_memory_region().
		 */
3155
		if (sp->role.level > PT_PAGE_TABLE_LEVEL && remove_write_prot)
3156 3157 3158 3159 3160 3161 3162 3163
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
		 * Documentation/virtual/kvm/locking.txt to get more detail.
		 */
		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3164 3165 3166
							iterator.sptep, spte,
							remove_write_prot,
							remove_acc_track);
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
		if (fault_handled)
			break;

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

		spte = mmu_spte_get_lockless(iterator.sptep);

	} while (true);
3179

X
Xiao Guangrong 已提交
3180
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3181
			      spte, fault_handled);
3182 3183
	walk_shadow_page_lockless_end(vcpu);

3184
	return fault_handled;
3185 3186
}

3187
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3188
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3189
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3190

3191 3192
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3193 3194
{
	int r;
3195
	int level;
3196
	bool force_pt_level = false;
D
Dan Williams 已提交
3197
	kvm_pfn_t pfn;
3198
	unsigned long mmu_seq;
3199
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3200

3201
	level = mapping_level(vcpu, gfn, &force_pt_level);
3202 3203 3204 3205 3206 3207 3208 3209
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3210

3211
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3212
	}
M
Marcelo Tosatti 已提交
3213

3214 3215 3216
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3217
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3218
	smp_rmb();
3219

3220
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3221
		return 0;
3222

3223 3224
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3225

3226
	spin_lock(&vcpu->kvm->mmu_lock);
3227
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3228
		goto out_unlock;
3229
	make_mmu_pages_available(vcpu);
3230 3231
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3232
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3233 3234
	spin_unlock(&vcpu->kvm->mmu_lock);

3235
	return r;
3236 3237 3238 3239 3240

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3241 3242 3243
}


3244 3245 3246
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3247
	struct kvm_mmu_page *sp;
3248
	LIST_HEAD(invalid_list);
3249

3250
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3251
		return;
3252

3253 3254 3255
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3256
		hpa_t root = vcpu->arch.mmu.root_hpa;
3257

3258
		spin_lock(&vcpu->kvm->mmu_lock);
3259 3260
		sp = page_header(root);
		--sp->root_count;
3261 3262 3263 3264
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3265
		spin_unlock(&vcpu->kvm->mmu_lock);
3266
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3267 3268
		return;
	}
3269 3270

	spin_lock(&vcpu->kvm->mmu_lock);
3271
	for (i = 0; i < 4; ++i) {
3272
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3273

A
Avi Kivity 已提交
3274 3275
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3276 3277
			sp = page_header(root);
			--sp->root_count;
3278
			if (!sp->root_count && sp->role.invalid)
3279 3280
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3281
		}
3282
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3283
	}
3284
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3285
	spin_unlock(&vcpu->kvm->mmu_lock);
3286
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3287 3288
}

3289 3290 3291 3292 3293
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3294
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3295 3296 3297 3298 3299 3300
		ret = 1;
	}

	return ret;
}

3301 3302 3303
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3304
	unsigned i;
3305 3306 3307

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3308
		make_mmu_pages_available(vcpu);
3309
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3310 3311 3312 3313 3314 3315 3316
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3317
			MMU_WARN_ON(VALID_PAGE(root));
3318
			spin_lock(&vcpu->kvm->mmu_lock);
3319
			make_mmu_pages_available(vcpu);
3320
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3321
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3322 3323 3324 3325 3326
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3327
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3328 3329 3330 3331 3332 3333 3334
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3335
{
3336
	struct kvm_mmu_page *sp;
3337 3338 3339
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3340

3341
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3342

3343 3344 3345 3346 3347 3348 3349 3350
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3351
		hpa_t root = vcpu->arch.mmu.root_hpa;
3352

3353
		MMU_WARN_ON(VALID_PAGE(root));
3354

3355
		spin_lock(&vcpu->kvm->mmu_lock);
3356
		make_mmu_pages_available(vcpu);
3357
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3358
				      0, ACC_ALL);
3359 3360
		root = __pa(sp->spt);
		++sp->root_count;
3361
		spin_unlock(&vcpu->kvm->mmu_lock);
3362
		vcpu->arch.mmu.root_hpa = root;
3363
		return 0;
3364
	}
3365

3366 3367
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3368 3369
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3370
	 */
3371 3372 3373 3374
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3375
	for (i = 0; i < 4; ++i) {
3376
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3377

3378
		MMU_WARN_ON(VALID_PAGE(root));
3379
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3380
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
B
Bandan Das 已提交
3381
			if (!(pdptr & PT_PRESENT_MASK)) {
3382
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3383 3384
				continue;
			}
A
Avi Kivity 已提交
3385
			root_gfn = pdptr >> PAGE_SHIFT;
3386 3387
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3388
		}
3389
		spin_lock(&vcpu->kvm->mmu_lock);
3390
		make_mmu_pages_available(vcpu);
3391 3392
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3393 3394
		root = __pa(sp->spt);
		++sp->root_count;
3395 3396
		spin_unlock(&vcpu->kvm->mmu_lock);

3397
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3398
	}
3399
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3426
	return 0;
3427 3428
}

3429 3430 3431 3432 3433 3434 3435 3436
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3437 3438 3439 3440 3441
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3442 3443 3444
	if (vcpu->arch.mmu.direct_map)
		return;

3445 3446
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3447

3448
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3449
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3450
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3451 3452 3453
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3454
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3455 3456 3457 3458 3459
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3460
		if (root && VALID_PAGE(root)) {
3461 3462 3463 3464 3465
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3466
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3467 3468 3469 3470 3471 3472
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3473
	spin_unlock(&vcpu->kvm->mmu_lock);
3474
}
N
Nadav Har'El 已提交
3475
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3476

3477
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3478
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3479
{
3480 3481
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3482 3483 3484
	return vaddr;
}

3485
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3486 3487
					 u32 access,
					 struct x86_exception *exception)
3488
{
3489 3490
	if (exception)
		exception->error_code = 0;
3491
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3492 3493
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3513
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3514 3515 3516 3517 3518 3519 3520
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3521 3522 3523
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3524 3525
{
	struct kvm_shadow_walk_iterator iterator;
3526 3527 3528
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3529

3530
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3531
		goto exit;
3532

3533
	walk_shadow_page_lockless_begin(vcpu);
3534

3535 3536
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3537 3538 3539 3540 3541
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3542
		leaf--;
3543

3544 3545
		if (!is_shadow_present_pte(spte))
			break;
3546 3547

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3548
						    iterator.level);
3549 3550
	}

3551 3552
	walk_shadow_page_lockless_end(vcpu);

3553 3554 3555
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3556
		while (root > leaf) {
3557 3558 3559 3560 3561 3562 3563 3564
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3565 3566
}

3567
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3568 3569
{
	u64 spte;
3570
	bool reserved;
3571

3572
	if (mmio_info_in_cache(vcpu, addr, direct))
3573
		return RET_MMIO_PF_EMULATE;
3574

3575
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3576
	if (WARN_ON(reserved))
3577
		return RET_MMIO_PF_BUG;
3578 3579 3580 3581 3582

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3583
		if (!check_mmio_spte(vcpu, spte))
3584 3585
			return RET_MMIO_PF_INVALID;

3586 3587
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3588 3589

		trace_handle_mmio_page_fault(addr, gfn, access);
3590
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3591
		return RET_MMIO_PF_EMULATE;
3592 3593 3594 3595 3596 3597
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3598
	return RET_MMIO_PF_RETRY;
3599
}
3600
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3601

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3639
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3640
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3641
{
3642
	gfn_t gfn = gva >> PAGE_SHIFT;
3643
	int r;
A
Avi Kivity 已提交
3644

3645
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3646

3647 3648
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3649

3650 3651 3652
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3653

3654
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3655 3656


3657
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3658
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3659 3660
}

3661
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3662 3663
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3664

3665
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3666
	arch.gfn = gfn;
3667
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3668
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3669

3670
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3671 3672 3673 3674
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3675
	if (unlikely(!lapic_in_kernel(vcpu) ||
3676 3677 3678 3679 3680 3681
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3682
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3683
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3684
{
3685
	struct kvm_memory_slot *slot;
3686 3687
	bool async;

3688
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3689 3690
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3691 3692 3693
	if (!async)
		return false; /* *pfn has correct page already */

3694
	if (!prefault && can_do_async_pf(vcpu)) {
3695
		trace_kvm_try_async_get_page(gva, gfn);
3696 3697 3698 3699 3700 3701 3702 3703
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3704
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3705 3706 3707
	return false;
}

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3718
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3719
			  bool prefault)
3720
{
D
Dan Williams 已提交
3721
	kvm_pfn_t pfn;
3722
	int r;
3723
	int level;
3724
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3725
	gfn_t gfn = gpa >> PAGE_SHIFT;
3726
	unsigned long mmu_seq;
3727 3728
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3729

3730
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3731

3732 3733
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3734

3735 3736 3737 3738
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3739 3740 3741
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3742
	if (likely(!force_pt_level)) {
3743 3744 3745
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3746
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3747
	}
3748

3749 3750 3751
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3752
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3753
	smp_rmb();
3754

3755
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3756 3757
		return 0;

3758 3759 3760
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3761
	spin_lock(&vcpu->kvm->mmu_lock);
3762
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3763
		goto out_unlock;
3764
	make_mmu_pages_available(vcpu);
3765 3766
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3767
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3768 3769 3770
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3771 3772 3773 3774 3775

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3776 3777
}

3778 3779
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3780 3781 3782
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3783
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3784
	context->invlpg = nonpaging_invlpg;
3785
	context->update_pte = nonpaging_update_pte;
3786
	context->root_level = 0;
A
Avi Kivity 已提交
3787
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3788
	context->root_hpa = INVALID_PAGE;
3789
	context->direct_map = true;
3790
	context->nx = false;
A
Avi Kivity 已提交
3791 3792
}

3793
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3794
{
3795
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3796 3797
}

3798 3799
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3800
	return kvm_read_cr3(vcpu);
3801 3802
}

3803 3804
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3805
{
3806
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3807 3808
}

3809
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3810
			   unsigned access, int *nr_present)
3811 3812 3813 3814 3815 3816 3817 3818
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3819
		mark_mmio_spte(vcpu, sptep, gfn, access);
3820 3821 3822 3823 3824 3825
		return true;
	}

	return false;
}

3826 3827
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3828
{
3829 3830 3831 3832 3833 3834
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
A
Avi Kivity 已提交
3835

3836 3837 3838 3839 3840 3841 3842 3843
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3844 3845
}

3846 3847 3848 3849 3850
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3851 3852 3853 3854 3855 3856 3857 3858
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3859 3860 3861 3862
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3863
			bool pse, bool amd)
3864 3865
{
	u64 exb_bit_rsvd = 0;
3866
	u64 gbpages_bit_rsvd = 0;
3867
	u64 nonleaf_bit8_rsvd = 0;
3868

3869
	rsvd_check->bad_mt_xwr = 0;
3870

3871
	if (!nx)
3872
		exb_bit_rsvd = rsvd_bits(63, 63);
3873
	if (!gbpages)
3874
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3875 3876 3877 3878 3879

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3880
	if (amd)
3881 3882
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3883
	switch (level) {
3884 3885
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3886 3887 3888 3889
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3890

3891
		if (!pse) {
3892
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3893 3894 3895
			break;
		}

3896 3897
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3898
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3899 3900
		else
			/* 32 bits PSE 4MB page */
3901
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3902 3903
		break;
	case PT32E_ROOT_LEVEL:
3904
		rsvd_check->rsvd_bits_mask[0][2] =
3905
			rsvd_bits(maxphyaddr, 63) |
3906
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3907
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3908
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3909
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3910
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3911
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3912 3913
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3914 3915
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3916 3917
		break;
	case PT64_ROOT_LEVEL:
3918 3919
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3920
			rsvd_bits(maxphyaddr, 51);
3921 3922
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3923
			rsvd_bits(maxphyaddr, 51);
3924 3925 3926 3927 3928 3929 3930
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3931
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3932
			rsvd_bits(13, 29);
3933
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3934 3935
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3936 3937
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3938 3939 3940 3941
		break;
	}
}

3942 3943 3944 3945 3946 3947
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3948
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3949 3950
}

3951 3952 3953
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3954
{
3955
	u64 bad_mt_xwr;
3956

3957
	rsvd_check->rsvd_bits_mask[0][3] =
3958
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3959
	rsvd_check->rsvd_bits_mask[0][2] =
3960
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3961
	rsvd_check->rsvd_bits_mask[0][1] =
3962
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3963
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3964 3965

	/* large page */
3966 3967
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3968
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3969
	rsvd_check->rsvd_bits_mask[1][1] =
3970
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3971
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3972

3973 3974 3975 3976 3977 3978 3979 3980
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3981
	}
3982
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3983 3984
}

3985 3986 3987 3988 3989 3990 3991
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3992 3993 3994 3995 3996 3997 3998 3999
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4000 4001
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;

4002 4003 4004 4005
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4006 4007
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
4008
				context->shadow_root_level, uses_nx,
4009 4010
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
4011 4012 4013
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4014 4015 4016 4017 4018 4019
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4020 4021 4022 4023 4024 4025 4026 4027
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4028
	if (boot_cpu_is_amd())
4029 4030 4031
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
4032 4033
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

4053 4054
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4055 4056 4057
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
4058
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
4059

F
Feng Wu 已提交
4060
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
4061
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4062 4063 4064 4065 4066 4067
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
4068 4069 4070 4071 4072 4073
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
4074 4075 4076 4077 4078
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

4079 4080 4081 4082 4083 4084
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
4085
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
4106
			}
4107

F
Feng Wu 已提交
4108 4109
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
4110 4111 4112 4113 4114 4115
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4191
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4192
{
4193 4194 4195 4196 4197
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4198 4199
}

4200 4201 4202
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4203
{
4204
	context->nx = is_nx(vcpu);
4205
	context->root_level = level;
4206

4207
	reset_rsvds_bits_mask(vcpu, context);
4208
	update_permission_bitmask(vcpu, context, false);
4209
	update_pkru_bitmask(vcpu, context, false);
4210
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4211

4212
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4213 4214
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4215
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4216
	context->invlpg = paging64_invlpg;
4217
	context->update_pte = paging64_update_pte;
4218
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4219
	context->root_hpa = INVALID_PAGE;
4220
	context->direct_map = false;
A
Avi Kivity 已提交
4221 4222
}

4223 4224
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4225
{
4226
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4227 4228
}

4229 4230
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4231
{
4232
	context->nx = false;
4233
	context->root_level = PT32_ROOT_LEVEL;
4234

4235
	reset_rsvds_bits_mask(vcpu, context);
4236
	update_permission_bitmask(vcpu, context, false);
4237
	update_pkru_bitmask(vcpu, context, false);
4238
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4239 4240 4241

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4242
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4243
	context->invlpg = paging32_invlpg;
4244
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4245
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4246
	context->root_hpa = INVALID_PAGE;
4247
	context->direct_map = false;
A
Avi Kivity 已提交
4248 4249
}

4250 4251
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4252
{
4253
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4254 4255
}

4256
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4257
{
4258
	struct kvm_mmu *context = &vcpu->arch.mmu;
4259

4260
	context->base_role.word = 0;
4261
	context->base_role.smm = is_smm(vcpu);
4262
	context->page_fault = tdp_page_fault;
4263
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4264
	context->invlpg = nonpaging_invlpg;
4265
	context->update_pte = nonpaging_update_pte;
4266
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4267
	context->root_hpa = INVALID_PAGE;
4268
	context->direct_map = true;
4269
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4270
	context->get_cr3 = get_cr3;
4271
	context->get_pdptr = kvm_pdptr_read;
4272
	context->inject_page_fault = kvm_inject_page_fault;
4273 4274

	if (!is_paging(vcpu)) {
4275
		context->nx = false;
4276 4277 4278
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4279
		context->nx = is_nx(vcpu);
4280
		context->root_level = PT64_ROOT_LEVEL;
4281 4282
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4283
	} else if (is_pae(vcpu)) {
4284
		context->nx = is_nx(vcpu);
4285
		context->root_level = PT32E_ROOT_LEVEL;
4286 4287
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4288
	} else {
4289
		context->nx = false;
4290
		context->root_level = PT32_ROOT_LEVEL;
4291 4292
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4293 4294
	}

4295
	update_permission_bitmask(vcpu, context, false);
4296
	update_pkru_bitmask(vcpu, context, false);
4297
	update_last_nonleaf_level(vcpu, context);
4298
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4299 4300
}

4301
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4302
{
4303
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4304
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4305 4306
	struct kvm_mmu *context = &vcpu->arch.mmu;

4307
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4308 4309

	if (!is_paging(vcpu))
4310
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4311
	else if (is_long_mode(vcpu))
4312
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4313
	else if (is_pae(vcpu))
4314
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4315
	else
4316
		paging32_init_context(vcpu, context);
4317

4318 4319 4320 4321
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4322
		= smep && !is_write_protection(vcpu);
4323 4324
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4325
	context->base_role.smm = is_smm(vcpu);
4326
	reset_shadow_zero_bits_mask(vcpu, context);
4327 4328 4329
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4330
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4331
{
4332 4333
	struct kvm_mmu *context = &vcpu->arch.mmu;

4334
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
4349
	update_pkru_bitmask(vcpu, context, true);
N
Nadav Har'El 已提交
4350
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4351
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4352 4353 4354
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4355
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4356
{
4357 4358 4359 4360 4361 4362 4363
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4364 4365
}

4366
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4367 4368 4369 4370
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4371
	g_context->get_pdptr         = kvm_pdptr_read;
4372 4373 4374
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4375 4376 4377 4378 4379 4380
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4381 4382
	 */
	if (!is_paging(vcpu)) {
4383
		g_context->nx = false;
4384 4385 4386
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4387
		g_context->nx = is_nx(vcpu);
4388
		g_context->root_level = PT64_ROOT_LEVEL;
4389
		reset_rsvds_bits_mask(vcpu, g_context);
4390 4391
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4392
		g_context->nx = is_nx(vcpu);
4393
		g_context->root_level = PT32E_ROOT_LEVEL;
4394
		reset_rsvds_bits_mask(vcpu, g_context);
4395 4396
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4397
		g_context->nx = false;
4398
		g_context->root_level = PT32_ROOT_LEVEL;
4399
		reset_rsvds_bits_mask(vcpu, g_context);
4400 4401 4402
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4403
	update_permission_bitmask(vcpu, g_context, false);
4404
	update_pkru_bitmask(vcpu, g_context, false);
4405
	update_last_nonleaf_level(vcpu, g_context);
4406 4407
}

4408
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4409
{
4410
	if (mmu_is_nested(vcpu))
4411
		init_kvm_nested_mmu(vcpu);
4412
	else if (tdp_enabled)
4413
		init_kvm_tdp_mmu(vcpu);
4414
	else
4415
		init_kvm_softmmu(vcpu);
4416 4417
}

4418
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4419
{
4420
	kvm_mmu_unload(vcpu);
4421
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4422
}
4423
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4424 4425

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4426
{
4427 4428
	int r;

4429
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4430 4431
	if (r)
		goto out;
4432
	r = mmu_alloc_roots(vcpu);
4433
	kvm_mmu_sync_roots(vcpu);
4434 4435
	if (r)
		goto out;
4436
	/* set_cr3() should ensure TLB has been flushed */
4437
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4438 4439
out:
	return r;
A
Avi Kivity 已提交
4440
}
A
Avi Kivity 已提交
4441 4442 4443 4444 4445
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4446
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4447
}
4448
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4449

4450
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4451 4452
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4453
{
4454
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4455 4456
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4457
        }
4458

A
Avi Kivity 已提交
4459
	++vcpu->kvm->stat.mmu_pte_updated;
4460
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4461 4462
}

4463 4464 4465 4466 4467 4468 4469 4470
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4471 4472
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4473 4474 4475
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4476 4477
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4478
{
4479 4480
	u64 gentry;
	int r;
4481 4482 4483

	/*
	 * Assume that the pte write on a page table of the same type
4484 4485
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4486
	 */
4487
	if (is_pae(vcpu) && *bytes == 4) {
4488
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4489 4490
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4491
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4492 4493
		if (r)
			gentry = 0;
4494 4495 4496
		new = (const u8 *)&gentry;
	}

4497
	switch (*bytes) {
4498 4499 4500 4501 4502 4503 4504 4505 4506
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4507 4508
	}

4509 4510 4511 4512 4513 4514 4515
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4516
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4517
{
4518 4519 4520 4521
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4522
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4523
		return false;
4524

4525 4526
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4543 4544 4545 4546 4547 4548 4549 4550

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4588
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4589 4590
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4591 4592 4593 4594 4595 4596
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4597
	bool remote_flush, local_flush;
4598 4599 4600 4601 4602 4603 4604
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4605
	mask.smm = 1;
4606 4607 4608 4609 4610 4611 4612 4613

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4614
	remote_flush = local_flush = false;
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4629
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4630

4631
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4632
		if (detect_write_misaligned(sp, gpa, bytes) ||
4633
		      detect_write_flooding(sp)) {
4634
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4635
			++vcpu->kvm->stat.mmu_flooded;
4636 4637
			continue;
		}
4638 4639 4640 4641 4642

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4643
		local_flush = true;
4644
		while (npte--) {
4645
			entry = *spte;
4646
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4647 4648
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4649
			      & mask.word) && rmap_can_add(vcpu))
4650
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4651
			if (need_remote_flush(entry, *spte))
4652
				remote_flush = true;
4653
			++spte;
4654 4655
		}
	}
4656
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4657
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4658
	spin_unlock(&vcpu->kvm->mmu_lock);
4659 4660
}

4661 4662
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4663 4664
	gpa_t gpa;
	int r;
4665

4666
	if (vcpu->arch.mmu.direct_map)
4667 4668
		return 0;

4669
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4670 4671

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4672

4673
	return r;
4674
}
4675
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4676

4677
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4678
{
4679
	LIST_HEAD(invalid_list);
4680

4681 4682 4683
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4684 4685 4686
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4687

A
Avi Kivity 已提交
4688
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4689
	}
4690
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4691 4692
}

4693
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4694
		       void *insn, int insn_len)
4695
{
4696
	int r, emulation_type = EMULTYPE_RETRY;
4697
	enum emulation_result er;
4698
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}
4711

4712 4713
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
				      false);
4714
	if (r < 0)
4715 4716 4717
		return r;
	if (!r)
		return 1;
4718

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 *
	 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
	 *       in PFERR_NEXT_GUEST_PAGE)
	 */
	if (error_code == PFERR_NESTED_GUEST_PAGE) {
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
		return 1;
	}

4734
	if (mmio_info_in_cache(vcpu, cr2, direct))
4735
		emulation_type = 0;
4736
emulate:
4737
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4738 4739 4740 4741

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4742
	case EMULATE_USER_EXIT:
4743
		++vcpu->stat.mmio_exits;
4744
		/* fall through */
4745
	case EMULATE_FAIL:
4746
		return 0;
4747 4748 4749 4750 4751 4752
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4753 4754 4755
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4756
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4757 4758 4759 4760
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4761 4762 4763 4764 4765 4766
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4767 4768 4769 4770 4771 4772
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4773 4774
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4775
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4776 4777
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4778 4779 4780 4781
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4782
	struct page *page;
A
Avi Kivity 已提交
4783 4784
	int i;

4785 4786 4787 4788 4789 4790 4791
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4792 4793
		return -ENOMEM;

4794
	vcpu->arch.mmu.pae_root = page_address(page);
4795
	for (i = 0; i < 4; ++i)
4796
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4797

A
Avi Kivity 已提交
4798 4799 4800
	return 0;
}

4801
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4802
{
4803 4804 4805 4806
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4807

4808 4809
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4810

4811
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4812
{
4813
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4814

4815
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4816 4817
}

4818
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4819 4820
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
4821 4822 4823 4824
{
	kvm_mmu_invalidate_zap_all_pages(kvm);
}

4825 4826 4827 4828 4829
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
4830
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

4841
/* The return value indicates if tlb flush on all vcpus is needed. */
4842
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4910 4911 4912 4913
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4914
	int i;
X
Xiao Guangrong 已提交
4915 4916

	spin_lock(&kvm->mmu_lock);
4917 4918 4919 4920 4921 4922 4923 4924 4925
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4926

4927 4928 4929 4930
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4931 4932 4933 4934 4935
	}

	spin_unlock(&kvm->mmu_lock);
}

4936 4937
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4938
{
4939
	return __rmap_write_protect(kvm, rmap_head, false);
4940 4941
}

4942 4943
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4944
{
4945
	bool flush;
A
Avi Kivity 已提交
4946

4947
	spin_lock(&kvm->mmu_lock);
4948 4949
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4950
	spin_unlock(&kvm->mmu_lock);
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4970 4971
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4972
}
4973

4974
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4975
					 struct kvm_rmap_head *rmap_head)
4976 4977 4978 4979
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4980
	kvm_pfn_t pfn;
4981 4982
	struct kvm_mmu_page *sp;

4983
restart:
4984
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4985 4986 4987 4988
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4989 4990 4991 4992 4993
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4994 4995 4996
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
4997
			PageTransCompoundMap(pfn_to_page(pfn))) {
4998 4999
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
5000 5001
			goto restart;
		}
5002 5003 5004 5005 5006 5007
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5008
				   const struct kvm_memory_slot *memslot)
5009
{
5010
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5011
	spin_lock(&kvm->mmu_lock);
5012 5013
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5014 5015 5016
	spin_unlock(&kvm->mmu_lock);
}

5017 5018 5019
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5020
	bool flush;
5021 5022

	spin_lock(&kvm->mmu_lock);
5023
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5042
	bool flush;
5043 5044

	spin_lock(&kvm->mmu_lock);
5045 5046
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5060
	bool flush;
5061 5062

	spin_lock(&kvm->mmu_lock);
5063
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
5074
#define BATCH_ZAP_PAGES	10
5075 5076 5077
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
5078
	int batch = 0;
5079 5080 5081 5082

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
5083 5084
		int ret;

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

5100 5101 5102 5103
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
5104
		if (batch >= BATCH_ZAP_PAGES &&
5105
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
5106
			batch = 0;
5107 5108 5109
			goto restart;
		}

5110 5111
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
5112 5113 5114
		batch += ret;

		if (ret)
5115 5116 5117
			goto restart;
	}

5118 5119 5120 5121
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
5122
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
5137
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5138 5139
	kvm->arch.mmu_valid_gen++;

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5151 5152 5153 5154
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5155 5156 5157 5158 5159
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5160
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5161 5162 5163 5164 5165
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
5166
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5167
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5168
		kvm_mmu_invalidate_zap_all_pages(kvm);
5169
	}
5170 5171
}

5172 5173
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5174 5175
{
	struct kvm *kvm;
5176
	int nr_to_scan = sc->nr_to_scan;
5177
	unsigned long freed = 0;
5178

5179
	spin_lock(&kvm_lock);
5180 5181

	list_for_each_entry(kvm, &vm_list, vm_list) {
5182
		int idx;
5183
		LIST_HEAD(invalid_list);
5184

5185 5186 5187 5188 5189 5190 5191 5192
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5193 5194 5195 5196 5197 5198
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5199 5200
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
5201 5202
			continue;

5203
		idx = srcu_read_lock(&kvm->srcu);
5204 5205
		spin_lock(&kvm->mmu_lock);

5206 5207 5208 5209 5210 5211
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5212 5213
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
5214
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5215

5216
unlock:
5217
		spin_unlock(&kvm->mmu_lock);
5218
		srcu_read_unlock(&kvm->srcu, idx);
5219

5220 5221 5222 5223 5224
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5225 5226
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5227 5228
	}

5229
	spin_unlock(&kvm_lock);
5230 5231 5232 5233 5234 5235
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5236
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5237 5238 5239
}

static struct shrinker mmu_shrinker = {
5240 5241
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5242 5243 5244
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5245
static void mmu_destroy_caches(void)
5246
{
5247 5248
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
5249 5250
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
5251 5252 5253 5254
}

int kvm_mmu_module_init(void)
{
5255 5256
	kvm_mmu_clear_all_pte_masks();

5257 5258
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5259
					    0, 0, NULL);
5260
	if (!pte_list_desc_cache)
5261 5262
		goto nomem;

5263 5264
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5265
						  0, 0, NULL);
5266 5267 5268
	if (!mmu_page_header_cache)
		goto nomem;

5269
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5270 5271
		goto nomem;

5272 5273
	register_shrinker(&mmu_shrinker);

5274 5275 5276
	return 0;

nomem:
5277
	mmu_destroy_caches();
5278 5279 5280
	return -ENOMEM;
}

5281 5282 5283 5284 5285 5286 5287
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5288
	struct kvm_memslots *slots;
5289
	struct kvm_memory_slot *memslot;
5290
	int i;
5291

5292 5293
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5294

5295 5296 5297
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5298 5299 5300

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5301
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5302 5303 5304 5305

	return nr_mmu_pages;
}

5306 5307
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5308
	kvm_mmu_unload(vcpu);
5309 5310
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5311 5312 5313 5314 5315 5316 5317
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5318 5319
	mmu_audit_disable();
}