intel_breadcrumbs.c 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30 31 32 33 34 35
#ifdef CONFIG_SMP
#define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
#else
#define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
#endif

36
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
37
{
38
	struct intel_wait *wait;
39 40
	unsigned int result = 0;

41 42 43
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
44
	if (wait) {
45 46 47 48 49 50 51 52 53 54 55 56
		/*
		 * N.B. Since task_asleep() and ttwu are not atomic, the
		 * waiter may actually go to sleep after the check, causing
		 * us to suppress a valid wakeup. We prefer to reduce the
		 * number of false positive missed_breadcrumb() warnings
		 * at the expense of a few false negatives, as it it easy
		 * to trigger a false positive under heavy load. Enough
		 * signal should remain from genuine missed_breadcrumb()
		 * for us to detect in CI.
		 */
		bool was_asleep = task_asleep(wait->tsk);

57
		result = ENGINE_WAKEUP_WAITER;
58
		if (wake_up_process(wait->tsk) && was_asleep)
59
			result |= ENGINE_WAKEUP_ASLEEP;
60
	}
61 62 63 64 65 66 67

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
68
	unsigned long flags;
69 70
	unsigned int result;

71
	spin_lock_irqsave(&b->irq_lock, flags);
72
	result = __intel_breadcrumbs_wakeup(b);
73
	spin_unlock_irqrestore(&b->irq_lock, flags);
74 75 76 77

	return result;
}

78 79 80 81 82
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

83 84
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
85 86 87 88 89 90 91
	if (drm_debug & DRM_UT_DRIVER) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p,
				  "%s missed breadcrumb at %pS\n",
				  engine->name, __builtin_return_address(0));
	}
92 93 94 95

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

96
static void intel_breadcrumbs_hangcheck(struct timer_list *t)
97
{
98 99
	struct intel_engine_cs *engine =
		from_timer(engine, t, breadcrumbs.hangcheck);
100 101
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

102
	if (!b->irq_armed)
103 104
		return;

105 106 107
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
108 109 110
		return;
	}

111
	/* We keep the hangcheck timer alive until we disarm the irq, even
112 113 114
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
115 116
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
117 118 119 120 121
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
122
	 */
123
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
124
		missed_breadcrumb(engine);
125
		mod_timer(&b->fake_irq, jiffies + 1);
126
	} else {
127 128
		mod_timer(&b->hangcheck, wait_timeout());
	}
129 130
}

131
static void intel_breadcrumbs_fake_irq(struct timer_list *t)
132
{
133 134
	struct intel_engine_cs *engine = from_timer(engine, t,
						    breadcrumbs.fake_irq);
135
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
136

137
	/* The timer persists in case we cannot enable interrupts,
138
	 * or if we have previously seen seqno/interrupt incoherency
139 140 141
	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
	 * Here the worker will wake up every jiffie in order to kick the
	 * oldest waiter to do the coherent seqno check.
142
	 */
143

144
	spin_lock_irq(&b->irq_lock);
145
	if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
146
		__intel_engine_disarm_breadcrumbs(engine);
147
	spin_unlock_irq(&b->irq_lock);
148
	if (!b->irq_armed)
149 150
		return;

151
	mod_timer(&b->fake_irq, jiffies + 1);
152 153 154 155
}

static void irq_enable(struct intel_engine_cs *engine)
{
156 157 158 159 160 161 162 163
	/*
	 * FIXME: Ideally we want this on the API boundary, but for the
	 * sake of testing with mock breadcrumbs (no HW so unable to
	 * enable irqs) we place it deep within the bowels, at the point
	 * of no return.
	 */
	GEM_BUG_ON(!intel_irqs_enabled(engine->i915));

164 165 166 167
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
168
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
169

170 171
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
172
	engine->irq_enable(engine);
173
	spin_unlock(&engine->i915->irq_lock);
174 175 176 177
}

static void irq_disable(struct intel_engine_cs *engine)
{
178 179
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
180
	engine->irq_disable(engine);
181
	spin_unlock(&engine->i915->irq_lock);
182 183
}

184 185 186 187
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

188
	lockdep_assert_held(&b->irq_lock);
189
	GEM_BUG_ON(b->irq_wait);
190
	GEM_BUG_ON(!b->irq_armed);
191

192 193
	GEM_BUG_ON(!b->irq_enabled);
	if (!--b->irq_enabled)
194 195 196 197 198
		irq_disable(engine);

	b->irq_armed = false;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	spin_lock_irq(&b->irq_lock);
	if (!b->irq_enabled++)
		irq_enable(engine);
	GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
	spin_unlock_irq(&b->irq_lock);
}

void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	spin_lock_irq(&b->irq_lock);
	GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
	if (!--b->irq_enabled)
		irq_disable(engine);
	spin_unlock_irq(&b->irq_lock);
}

221 222 223
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
224
	struct intel_wait *wait, *n;
225 226

	if (!b->irq_armed)
227
		goto wakeup_signaler;
228

229 230
	/*
	 * We only disarm the irq when we are idle (all requests completed),
231
	 * so if the bottom-half remains asleep, it missed the request
232 233
	 * completion.
	 */
234 235
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
		missed_breadcrumb(engine);
236

237
	spin_lock_irq(&b->rb_lock);
238 239

	spin_lock(&b->irq_lock);
240
	b->irq_wait = NULL;
241 242
	if (b->irq_armed)
		__intel_engine_disarm_breadcrumbs(engine);
243 244
	spin_unlock(&b->irq_lock);

245 246
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
		RB_CLEAR_NODE(&wait->node);
247
		wake_up_process(wait->tsk);
248 249 250 251
	}
	b->waiters = RB_ROOT;

	spin_unlock_irq(&b->rb_lock);
252 253 254 255 256 257 258 259

	/*
	 * The signaling thread may be asleep holding a reference to a request,
	 * that had its signaling cancelled prior to being preempted. We need
	 * to kick the signaler, just in case, to release any such reference.
	 */
wakeup_signaler:
	wake_up_process(b->signaler);
260 261
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

279 280 281 282 283 284 285 286 287
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

288
static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
289 290 291 292
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;
293 294
	bool enabled;

295
	lockdep_assert_held(&b->irq_lock);
296
	if (b->irq_armed)
297
		return false;
298

299 300 301 302 303 304 305
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;

306 307 308 309 310 311 312 313
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
314
		return true;
315 316
	}

317
	/* Since we are waiting on a request, the GPU should be busy
318 319 320 321
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
322 323 324
	 */

	/* No interrupts? Kick the waiter every jiffie! */
325 326 327 328 329
	enabled = false;
	if (!b->irq_enabled++ &&
	    !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
		irq_enable(engine);
		enabled = true;
330 331
	}

332
	enable_fake_irq(b);
333
	return enabled;
334 335 336 337
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
338
	return rb_entry(node, struct intel_wait, node);
339 340 341 342 343
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
344
	lockdep_assert_held(&b->rb_lock);
345
	GEM_BUG_ON(b->irq_wait == wait);
346 347

	/* This request is completed, so remove it from the tree, mark it as
348 349 350 351 352 353
	 * complete, and *then* wake up the associated task. N.B. when the
	 * task wakes up, it will find the empty rb_node, discern that it
	 * has already been removed from the tree and skip the serialisation
	 * of the b->rb_lock and b->irq_lock. This means that the destruction
	 * of the intel_wait is not serialised with the interrupt handler
	 * by the waiter - it must instead be serialised by the caller.
354 355 356 357 358 359 360
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

361 362 363 364 365
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

366
	spin_lock(&b->irq_lock);
367
	GEM_BUG_ON(!b->irq_armed);
368
	GEM_BUG_ON(!b->irq_wait);
369 370
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
371 372 373 374 375 376 377 378 379

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

380 381 382 383 384
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
385
	bool first, armed;
386 387 388 389 390 391 392 393 394 395 396 397 398 399
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
400
	armed = false;
401 402 403
	first = true;
	parent = NULL;
	completed = NULL;
404
	seqno = intel_engine_get_seqno(engine);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (first) {
446 447
		spin_lock(&b->irq_lock);
		b->irq_wait = wait;
448 449 450 451 452
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
453 454
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
455
		 */
456
		armed = __intel_breadcrumbs_enable_irq(b);
457
		spin_unlock(&b->irq_lock);
458
	}
459 460

	if (completed) {
461 462 463 464 465
		/* Advance the bottom-half (b->irq_wait) before we wake up
		 * the waiters who may scribble over their intel_wait
		 * just as the interrupt handler is dereferencing it via
		 * b->irq_wait.
		 */
466 467 468 469 470 471 472 473 474 475 476 477 478
		if (!first) {
			struct rb_node *next = rb_next(completed);
			GEM_BUG_ON(next == &wait->node);
			__intel_breadcrumbs_next(engine, next);
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

479
	GEM_BUG_ON(!b->irq_wait);
480
	GEM_BUG_ON(!b->irq_armed);
481
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
482

483
	return armed;
484 485 486 487 488 489
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
490
	bool armed;
491

492
	spin_lock_irq(&b->rb_lock);
493
	armed = __intel_engine_add_wait(engine, wait);
494
	spin_unlock_irq(&b->rb_lock);
495 496
	if (armed)
		return armed;
497

498 499 500
	/* Make the caller recheck if its request has already started. */
	return i915_seqno_passed(intel_engine_get_seqno(engine),
				 wait->seqno - 1);
501 502 503 504 505 506 507
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

508 509 510 511 512 513 514 515 516
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

517 518
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
519 520 521
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

522
	lockdep_assert_held(&b->rb_lock);
523 524

	if (RB_EMPTY_NODE(&wait->node))
525
		goto out;
526

527
	if (b->irq_wait == wait) {
528
		const int priority = wakeup_priority(b, wait->tsk);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
551
			u32 seqno = intel_engine_get_seqno(engine);
552 553 554 555 556 557 558 559 560 561 562

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

563
		__intel_breadcrumbs_next(engine, next);
564 565 566 567 568 569
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);
570
	RB_CLEAR_NODE(&wait->node);
571

572
out:
573
	GEM_BUG_ON(b->irq_wait == wait);
574
	GEM_BUG_ON(rb_first(&b->waiters) !=
575
		   (b->irq_wait ? &b->irq_wait->node : NULL));
576 577 578 579 580 581 582 583 584 585 586
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
587 588
	if (RB_EMPTY_NODE(&wait->node)) {
		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
589
		return;
590
	}
591

592
	spin_lock_irq(&b->rb_lock);
593
	__intel_engine_remove_wait(engine, wait);
594
	spin_unlock_irq(&b->rb_lock);
595 596
}

597 598 599 600 601 602
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
603
{
604
	if (!request)
605 606 607 608 609
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
610
	if (intel_wait_complete(&request->signaling.wait))
611
		return signal_valid(request);
612 613 614 615

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
616
	if (__i915_request_irq_complete(request))
617 618 619 620 621
		return true;

	return false;
}

622
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
623
{
624
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
625 626 627 628 629 630 631 632 633 634 635 636 637
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
638
	struct drm_i915_gem_request *request;
639 640 641 642 643

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
644 645
		bool do_schedule = true;

646 647 648 649 650 651 652 653 654 655
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
656 657 658 659 660
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
661
		if (signal_complete(request)) {
662 663 664 665
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

666
			spin_lock_irq(&b->rb_lock);
667

668 669 670
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
671 672
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
673

674 675 676 677 678 679
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
680
			if (request == rcu_access_pointer(b->first_signal)) {
681 682
				struct rb_node *rb =
					rb_next(&request->signaling.node);
683 684
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
685 686
			}
			rb_erase(&request->signaling.node, &b->signals);
687 688
			RB_CLEAR_NODE(&request->signaling.node);

689
			spin_unlock_irq(&b->rb_lock);
690

691
			i915_gem_request_put(request);
692 693 694 695 696 697 698 699 700 701 702 703

			/* If the engine is saturated we may be continually
			 * processing completed requests. This angers the
			 * NMI watchdog if we never let anything else
			 * have access to the CPU. Let's pretend to be nice
			 * and relinquish the CPU if we burn through the
			 * entire RT timeslice!
			 */
			do_schedule = need_resched();
		}

		if (unlikely(do_schedule)) {
704 705 706
			if (kthread_should_park())
				kthread_parkme();

707 708
			if (unlikely(kthread_should_stop())) {
				i915_gem_request_put(request);
709
				break;
710
			}
711 712 713

			schedule();
		}
714
		i915_gem_request_put(request);
715 716 717 718 719 720
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

721 722
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
				   bool wakeup)
723 724 725
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
726
	u32 seqno;
727

728 729 730
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
731
	 * we need to make sure that all other users of b->rb_lock protect
732 733 734 735
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
736
	GEM_BUG_ON(!irqs_disabled());
737
	lockdep_assert_held(&request->lock);
738 739 740

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
741
		return;
742

743
	request->signaling.wait.tsk = b->signaler;
744
	request->signaling.wait.request = request;
745
	request->signaling.wait.seqno = seqno;
746
	i915_gem_request_get(request);
747

748
	spin_lock(&b->rb_lock);
749

750 751 752 753 754 755 756 757
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
758
	wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
759

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	if (!__i915_gem_request_completed(request, seqno)) {
		struct rb_node *parent, **p;
		bool first;

		/* Now insert ourselves into the retirement ordered list of
		 * signals on this engine. We track the oldest seqno as that
		 * will be the first signal to complete.
		 */
		parent = NULL;
		first = true;
		p = &b->signals.rb_node;
		while (*p) {
			parent = *p;
			if (i915_seqno_passed(seqno,
					      to_signaler(parent)->signaling.wait.seqno)) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
780
		}
781 782 783 784 785 786 787 788
		rb_link_node(&request->signaling.node, parent, p);
		rb_insert_color(&request->signaling.node, &b->signals);
		if (first)
			rcu_assign_pointer(b->first_signal, request);
	} else {
		__intel_engine_remove_wait(engine, &request->signaling.wait);
		i915_gem_request_put(request);
		wakeup = false;
789
	}
790

791
	spin_unlock(&b->rb_lock);
792 793 794 795 796

	if (wakeup)
		wake_up_process(b->signaler);
}

797 798 799 800 801
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

802
	GEM_BUG_ON(!irqs_disabled());
803
	lockdep_assert_held(&request->lock);
804 805
	GEM_BUG_ON(!request->signaling.wait.seqno);

806
	spin_lock(&b->rb_lock);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

822
	spin_unlock(&b->rb_lock);
823 824 825 826

	request->signaling.wait.seqno = 0;
}

827 828 829
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
830
	struct task_struct *tsk;
831

832 833 834
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

835 836
	timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
	timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
837

838 839 840 841 842 843 844 845 846 847 848 849 850
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

851 852 853
	return 0;
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
868
	spin_lock_irq(&b->irq_lock);
869

870 871 872
	if (b->irq_enabled)
		irq_enable(engine);
	else
873
		irq_disable(engine);
874 875 876 877 878 879 880 881 882 883 884 885

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
886

887
	spin_unlock_irq(&b->irq_lock);
888 889
}

890 891 892 893
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

894
	/* The engines should be idle and all requests accounted for! */
895
	WARN_ON(READ_ONCE(b->irq_wait));
896
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
897
	WARN_ON(rcu_access_pointer(b->first_signal));
898 899
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

900 901 902
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

903
	cancel_fake_irq(engine);
904 905
}

906
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
907
{
908 909
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
910

911
	spin_lock_irq(&b->rb_lock);
912

913 914
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
915
		busy = true;
916
	}
917

918
	if (rcu_access_pointer(b->first_signal)) {
919
		wake_up_process(b->signaler);
920
		busy = true;
921 922
	}

923
	spin_unlock_irq(&b->rb_lock);
924 925

	return busy;
926
}
927 928 929 930

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif