intel_breadcrumbs.c 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
30
{
31
	struct intel_wait *wait;
32 33
	unsigned int result = 0;

34 35 36
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
37
	if (wait) {
38
		result = ENGINE_WAKEUP_WAITER;
39 40
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
41
	}
42 43 44 45 46 47 48 49 50 51

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
	unsigned int result;

52
	spin_lock_irqsave(&b->irq_lock, flags);
53
	result = __intel_breadcrumbs_wakeup(b);
54
	spin_unlock_irqrestore(&b->irq_lock, flags);
55 56 57 58

	return result;
}

59 60 61 62 63
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

64 65 66 67 68 69 70 71 72 73
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
					&engine->irq_posted)));

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

74 75 76 77 78
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

79
	if (!b->irq_armed)
80 81
		return;

82 83 84
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
85 86 87
		return;
	}

88 89 90 91
	/* We keep the hangcheck time alive until we disarm the irq, even
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
92 93
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
94 95 96 97 98
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
99
	 */
100
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
101
		missed_breadcrumb(engine);
102 103
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
104 105
		mod_timer(&b->hangcheck, wait_timeout());
	}
106 107
}

108 109 110
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
111 112
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
113 114 115 116 117 118 119 120

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
121

122
	spin_lock_irqsave(&b->irq_lock, flags);
123 124
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
125
	spin_unlock_irqrestore(&b->irq_lock, flags);
126
	if (!b->irq_armed)
127 128
		return;

129
	mod_timer(&b->fake_irq, jiffies + 1);
130 131 132 133 134 135 136 137 138 139 140

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
141 142 143 144
}

static void irq_enable(struct intel_engine_cs *engine)
{
145 146 147 148
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
149
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
150

151 152
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
153
	engine->irq_enable(engine);
154
	spin_unlock(&engine->i915->irq_lock);
155 156 157 158
}

static void irq_disable(struct intel_engine_cs *engine)
{
159 160
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
161
	engine->irq_disable(engine);
162
	spin_unlock(&engine->i915->irq_lock);
163 164
}

165 166 167 168
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

169
	lockdep_assert_held(&b->irq_lock);
170
	GEM_BUG_ON(b->irq_wait);
171 172 173 174 175 176 177 178 179 180 181 182

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
183
	struct intel_wait *wait, *n;
184 185 186 187 188

	if (!b->irq_armed)
		return;

	/* We only disarm the irq when we are idle (all requests completed),
189
	 * so if the bottom-half remains asleep, it missed the request
190 191 192
	 * completion.
	 */

193 194 195 196 197 198 199 200 201 202
	spin_lock_irq(&b->rb_lock);
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
		RB_CLEAR_NODE(&wait->node);
		if (wake_up_process(wait->tsk) && wait == b->irq_wait)
			missed_breadcrumb(engine);
	}
	b->waiters = RB_ROOT;

	spin_lock(&b->irq_lock);
	b->irq_wait = NULL;
203
	__intel_engine_disarm_breadcrumbs(engine);
204
	spin_unlock(&b->irq_lock);
205

206
	spin_unlock_irq(&b->rb_lock);
207 208
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

226 227 228 229 230 231 232 233 234
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

235
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
236 237 238 239 240
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

241
	lockdep_assert_held(&b->irq_lock);
242
	if (b->irq_armed)
243
		return;
244

245 246 247 248 249 250 251 252
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

253 254 255 256 257 258 259 260 261 262 263
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

264
	/* Since we are waiting on a request, the GPU should be busy
265 266 267 268
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
269 270 271 272
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
273
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
274 275 276 277
			irq_enable(engine);
		b->irq_enabled = true;
	}

278
	enable_fake_irq(b);
279 280 281 282
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
283
	return rb_entry(node, struct intel_wait, node);
284 285 286 287 288
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
289
	lockdep_assert_held(&b->rb_lock);
290 291 292 293 294 295 296 297 298 299

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

300 301 302 303 304
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

305
	spin_lock(&b->irq_lock);
306
	GEM_BUG_ON(!b->irq_armed);
307 308
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
309 310 311 312 313 314 315 316 317

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
341
	seqno = intel_engine_get_seqno(engine);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
388
			__intel_breadcrumbs_next(engine, next);
389 390 391 392 393 394 395 396 397 398
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
399
		spin_lock(&b->irq_lock);
400
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
401
		b->irq_wait = wait;
402 403 404 405 406
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
407 408
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
409 410
		 */
		__intel_breadcrumbs_enable_irq(b);
411
		spin_unlock(&b->irq_lock);
412
	}
413 414
	GEM_BUG_ON(!b->irq_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
415 416 417 418 419 420 421 422 423 424

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

425
	spin_lock_irq(&b->rb_lock);
426
	first = __intel_engine_add_wait(engine, wait);
427
	spin_unlock_irq(&b->rb_lock);
428 429 430 431 432 433 434 435 436

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

437 438 439 440 441 442 443 444 445
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

446 447
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
448 449 450
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

451
	lockdep_assert_held(&b->rb_lock);
452 453

	if (RB_EMPTY_NODE(&wait->node))
454
		goto out;
455

456
	if (b->irq_wait == wait) {
457
		const int priority = wakeup_priority(b, wait->tsk);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
480
			u32 seqno = intel_engine_get_seqno(engine);
481 482 483 484 485 486 487 488 489 490 491

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

492
		__intel_breadcrumbs_next(engine, next);
493 494 495 496 497 498 499
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

500
out:
501
	GEM_BUG_ON(b->irq_wait == wait);
502
	GEM_BUG_ON(rb_first(&b->waiters) !=
503
		   (b->irq_wait ? &b->irq_wait->node : NULL));
504 505 506 507 508 509 510 511 512 513 514 515 516 517
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

518
	spin_lock_irq(&b->rb_lock);
519
	__intel_engine_remove_wait(engine, wait);
520
	spin_unlock_irq(&b->rb_lock);
521 522
}

523 524 525 526 527 528
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
529
{
530
	if (!request)
531 532 533 534 535
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
536
	if (intel_wait_complete(&request->signaling.wait))
537
		return signal_valid(request);
538 539 540 541

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
542
	if (__i915_request_irq_complete(request))
543 544 545 546 547
		return true;

	return false;
}

548
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
549
{
550
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
551 552 553 554 555 556 557 558 559 560 561 562 563
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
564
	struct drm_i915_gem_request *request;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
580 581 582 583 584
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
585
		if (signal_complete(request)) {
586 587 588 589
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

590
			spin_lock_irq(&b->rb_lock);
591

592 593 594
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
595 596
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
597

598 599 600 601 602 603
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
604
			if (request == rcu_access_pointer(b->first_signal)) {
605 606
				struct rb_node *rb =
					rb_next(&request->signaling.node);
607 608
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
609 610
			}
			rb_erase(&request->signaling.node, &b->signals);
611 612
			RB_CLEAR_NODE(&request->signaling.node);

613
			spin_unlock_irq(&b->rb_lock);
614

615
			i915_gem_request_put(request);
616
		} else {
617 618
			DEFINE_WAIT(exec);

619 620
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
621
				break;
622
			}
623

624 625 626
			if (request)
				add_wait_queue(&request->execute, &exec);

627
			schedule();
628

629 630 631
			if (request)
				remove_wait_queue(&request->execute, &exec);

632 633
			if (kthread_should_park())
				kthread_parkme();
634
		}
635
		i915_gem_request_put(request);
636 637 638 639 640 641
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

642
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
643 644 645 646 647
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
648
	u32 seqno;
649

650 651 652 653 654 655 656 657
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
658
	GEM_BUG_ON(!irqs_disabled());
659
	lockdep_assert_held(&request->lock);
660 661 662

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
663
		return;
664

665
	request->signaling.wait.tsk = b->signaler;
666
	request->signaling.wait.request = request;
667
	request->signaling.wait.seqno = seqno;
668
	i915_gem_request_get(request);
669

670
	spin_lock(&b->rb_lock);
671

672 673 674 675 676 677 678 679
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
680
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
681 682 683 684 685 686 687 688 689 690

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
691 692
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
693 694 695 696 697 698
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
699 700
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
701
	if (first)
702
		rcu_assign_pointer(b->first_signal, request);
703

704
	spin_unlock(&b->rb_lock);
705 706 707 708 709

	if (wakeup)
		wake_up_process(b->signaler);
}

710 711 712 713 714
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

715
	GEM_BUG_ON(!irqs_disabled());
716
	lockdep_assert_held(&request->lock);
717 718
	GEM_BUG_ON(!request->signaling.wait.seqno);

719
	spin_lock(&b->rb_lock);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

735
	spin_unlock(&b->rb_lock);
736 737 738 739

	request->signaling.wait.seqno = 0;
}

740 741 742
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
743
	struct task_struct *tsk;
744

745 746 747
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

748 749 750
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
751 752 753
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
754

755 756 757 758 759 760 761 762 763 764 765 766 767
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

768 769 770
	return 0;
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
785
	spin_lock_irq(&b->irq_lock);
786

787 788 789
	if (b->irq_enabled)
		irq_enable(engine);
	else
790
		irq_disable(engine);
791 792 793 794 795 796 797 798 799 800 801 802

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
803

804
	spin_unlock_irq(&b->irq_lock);
805 806
}

807 808 809 810
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

811
	/* The engines should be idle and all requests accounted for! */
812
	WARN_ON(READ_ONCE(b->irq_wait));
813
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
814
	WARN_ON(rcu_access_pointer(b->first_signal));
815 816
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

817 818 819
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

820
	cancel_fake_irq(engine);
821 822
}

823
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
824
{
825 826
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
827

828
	spin_lock_irq(&b->rb_lock);
829

830 831
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
832 833
		busy |= intel_engine_flag(engine);
	}
834

835
	if (rcu_access_pointer(b->first_signal)) {
836 837
		wake_up_process(b->signaler);
		busy |= intel_engine_flag(engine);
838 839
	}

840
	spin_unlock_irq(&b->rb_lock);
841 842

	return busy;
843
}
844 845 846 847

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif