intel_breadcrumbs.c 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "i915_drv.h"

static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
	rcu_read_lock();
	if (intel_engine_wakeup(engine))
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	rcu_read_unlock();
}

static void irq_enable(struct intel_engine_cs *engine)
{
48 49 50 51
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
52
	engine->breadcrumbs.irq_posted = true;
53

54 55 56 57 58 59 60
	/* Make sure the current hangcheck doesn't falsely accuse a just
	 * started irq handler from missing an interrupt (because the
	 * interrupt count still matches the stale value from when
	 * the irq handler was disabled, many hangchecks ago).
	 */
	engine->breadcrumbs.irq_wakeups++;

61 62 63
	spin_lock_irq(&engine->i915->irq_lock);
	engine->irq_enable(engine);
	spin_unlock_irq(&engine->i915->irq_lock);
64 65 66 67
}

static void irq_disable(struct intel_engine_cs *engine)
{
68 69 70 71
	spin_lock_irq(&engine->i915->irq_lock);
	engine->irq_disable(engine);
	spin_unlock_irq(&engine->i915->irq_lock);

72
	engine->breadcrumbs.irq_posted = false;
73 74
}

75
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
76 77 78 79 80 81 82
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

	assert_spin_locked(&b->lock);
	if (b->rpm_wakelock)
83
		return;
84 85 86 87 88 89 90 91 92 93 94

	/* Since we are waiting on a request, the GPU should be busy
	 * and should have its own rpm reference. For completeness,
	 * record an rpm reference for ourselves to cover the
	 * interrupt we unmask.
	 */
	intel_runtime_pm_get_noresume(i915);
	b->rpm_wakelock = true;

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
95
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
96 97 98 99 100 101 102
			irq_enable(engine);
		b->irq_enabled = true;
	}

	if (!b->irq_enabled ||
	    test_bit(engine->id, &i915->gpu_error.missed_irq_rings))
		mod_timer(&b->fake_irq, jiffies + 1);
103 104 105 106 107 108 109 110 111

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation!
	 */
	i915_queue_hangcheck(i915);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	assert_spin_locked(&b->lock);
	if (!b->rpm_wakelock)
		return;

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	intel_runtime_pm_put(engine->i915);
	b->rpm_wakelock = false;
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
	return container_of(node, struct intel_wait, node);
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
	assert_spin_locked(&b->lock);

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
174
	seqno = intel_engine_get_seqno(engine);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);
214
	GEM_BUG_ON(!first && !b->irq_seqno_bh);
215 216 217 218 219 220 221 222

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
			b->first_wait = to_wait(next);
223
			smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
224 225 226 227 228 229 230 231 232 233 234
			/* As there is a delay between reading the current
			 * seqno, processing the completed tasks and selecting
			 * the next waiter, we may have missed the interrupt
			 * and so need for the next bottom-half to wakeup.
			 *
			 * Also as we enable the IRQ, we may miss the
			 * interrupt for that seqno, so we have to wake up
			 * the next bottom-half in order to do a coherent check
			 * in case the seqno passed.
			 */
			__intel_breadcrumbs_enable_irq(b);
235
			if (READ_ONCE(b->irq_posted))
236
				wake_up_process(to_wait(next)->tsk);
237 238 239 240 241 242 243 244 245 246 247 248
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
		b->first_wait = wait;
249
		smp_store_mb(b->irq_seqno_bh, wait->tsk);
250 251 252 253 254
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
255 256
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
257 258
		 */
		__intel_breadcrumbs_enable_irq(b);
259
	}
260
	GEM_BUG_ON(!b->irq_seqno_bh);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	GEM_BUG_ON(!b->first_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

	spin_lock(&b->lock);
	first = __intel_engine_add_wait(engine, wait);
	spin_unlock(&b->lock);

	return first;
}

void intel_engine_enable_fake_irq(struct intel_engine_cs *engine)
{
	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

290 291 292 293 294 295 296 297 298
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

	spin_lock(&b->lock);

	if (RB_EMPTY_NODE(&wait->node))
		goto out_unlock;

	if (b->first_wait == wait) {
317
		const int priority = wakeup_priority(b, wait->tsk);
318 319
		struct rb_node *next;

320
		GEM_BUG_ON(b->irq_seqno_bh != wait->tsk);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
342
			u32 seqno = intel_engine_get_seqno(engine);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

		if (next) {
			/* In our haste, we may have completed the first waiter
			 * before we enabled the interrupt. Do so now as we
			 * have a second waiter for a future seqno. Afterwards,
			 * we have to wake up that waiter in case we missed
			 * the interrupt, or if we have to handle an
			 * exception rather than a seqno completion.
			 */
			b->first_wait = to_wait(next);
363
			smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
364 365
			if (b->first_wait->seqno != wait->seqno)
				__intel_breadcrumbs_enable_irq(b);
366
			wake_up_process(b->irq_seqno_bh);
367 368
		} else {
			b->first_wait = NULL;
369
			WRITE_ONCE(b->irq_seqno_bh, NULL);
370 371 372 373 374 375 376 377 378 379 380 381 382
			__intel_breadcrumbs_disable_irq(b);
		}
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

out_unlock:
	GEM_BUG_ON(b->first_wait == wait);
	GEM_BUG_ON(rb_first(&b->waiters) !=
		   (b->first_wait ? &b->first_wait->node : NULL));
383
	GEM_BUG_ON(!b->irq_seqno_bh ^ RB_EMPTY_ROOT(&b->waiters));
384 385 386
	spin_unlock(&b->lock);
}

387
static bool signal_complete(struct drm_i915_gem_request *request)
388
{
389
	if (!request)
390 391 392 393 394
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
395
	if (intel_wait_complete(&request->signaling.wait))
396 397 398 399 400
		return true;

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
401
	if (__i915_request_irq_complete(request))
402 403 404 405 406
		return true;

	return false;
}

407
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
408
{
409
	return container_of(rb, struct drm_i915_gem_request, signaling.node);
410 411 412 413 414 415 416 417 418 419 420 421 422
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
423
	struct drm_i915_gem_request *request;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
439 440
		request = READ_ONCE(b->first_signal);
		if (signal_complete(request)) {
441 442 443
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
444 445
			intel_engine_remove_wait(engine,
						 &request->signaling.wait);
446
			fence_signal(&request->fence);
447 448 449 450 451 452 453 454

			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
			spin_lock(&b->lock);
455 456 457 458 459 460
			if (request == b->first_signal) {
				struct rb_node *rb =
					rb_next(&request->signaling.node);
				b->first_signal = rb ? to_signaler(rb) : NULL;
			}
			rb_erase(&request->signaling.node, &b->signals);
461 462
			spin_unlock(&b->lock);

463
			i915_gem_request_put(request);
464 465 466 467 468 469 470 471 472 473 474 475
		} else {
			if (kthread_should_stop())
				break;

			schedule();
		}
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

476
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
477 478 479 480 481 482
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;

483 484
	if (unlikely(READ_ONCE(request->signaling.wait.tsk)))
		return;
485

486 487 488 489 490
	spin_lock(&b->lock);
	if (unlikely(request->signaling.wait.tsk)) {
		wakeup = false;
		goto unlock;
	}
491

492
	request->signaling.wait.tsk = b->signaler;
493
	request->signaling.wait.seqno = request->fence.seqno;
494
	i915_gem_request_get(request);
495 496 497 498 499 500 501 502 503

	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
504
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
505 506 507 508 509 510 511 512 513 514

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
515 516
		if (i915_seqno_passed(request->fence.seqno,
				      to_signaler(parent)->fence.seqno)) {
517 518 519 520 521 522
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
523 524
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
525
	if (first)
526 527 528
		smp_store_mb(b->first_signal, request);

unlock:
529 530 531 532 533 534
	spin_unlock(&b->lock);

	if (wakeup)
		wake_up_process(b->signaler);
}

535 536 537
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
538
	struct task_struct *tsk;
539 540 541 542 543 544

	spin_lock_init(&b->lock);
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);

545 546 547 548 549 550 551 552 553 554 555 556 557
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

558 559 560 561 562 563 564
	return 0;
}

void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

565 566 567
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	del_timer_sync(&b->fake_irq);
}

unsigned int intel_kick_waiters(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	unsigned int mask = 0;

	/* To avoid the task_struct disappearing beneath us as we wake up
	 * the process, we must first inspect the task_struct->state under the
	 * RCU lock, i.e. as we call wake_up_process() we must be holding the
	 * rcu_read_lock().
	 */
	rcu_read_lock();
	for_each_engine(engine, i915)
		if (unlikely(intel_engine_wakeup(engine)))
			mask |= intel_engine_flag(engine);
	rcu_read_unlock();

	return mask;
}
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

unsigned int intel_kick_signalers(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	unsigned int mask = 0;

	for_each_engine(engine, i915) {
		if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) {
			wake_up_process(engine->breadcrumbs.signaler);
			mask |= intel_engine_flag(engine);
		}
	}

	return mask;
}