intel_breadcrumbs.c 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31
{
32
	struct intel_wait *wait;
33 34
	unsigned int result = 0;

35 36 37
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
38
	if (wait) {
39
		result = ENGINE_WAKEUP_WAITER;
40 41
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
42
	}
43 44 45 46 47 48 49

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
50
	unsigned long flags;
51 52
	unsigned int result;

53
	spin_lock_irqsave(&b->irq_lock, flags);
54
	result = __intel_breadcrumbs_wakeup(b);
55
	spin_unlock_irqrestore(&b->irq_lock, flags);
56 57 58 59

	return result;
}

60 61 62 63 64
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

65 66
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
67 68 69 70 71 72 73
	if (drm_debug & DRM_UT_DRIVER) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p,
				  "%s missed breadcrumb at %pS\n",
				  engine->name, __builtin_return_address(0));
	}
74 75 76 77

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

78
static void intel_breadcrumbs_hangcheck(struct timer_list *t)
79
{
80 81
	struct intel_engine_cs *engine = from_timer(engine, t,
						    breadcrumbs.hangcheck);
82 83
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

84
	if (!b->irq_armed)
85 86
		return;

87 88 89
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
90 91 92
		return;
	}

93
	/* We keep the hangcheck timer alive until we disarm the irq, even
94 95 96
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
97 98
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
99 100 101 102 103
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
104
	 */
105
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
106
		missed_breadcrumb(engine);
107 108
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
109 110
		mod_timer(&b->hangcheck, wait_timeout());
	}
111 112
}

113
static void intel_breadcrumbs_fake_irq(struct timer_list *t)
114
{
115 116
	struct intel_engine_cs *engine = from_timer(engine, t,
						    breadcrumbs.fake_irq);
117
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
118

119
	/* The timer persists in case we cannot enable interrupts,
120
	 * or if we have previously seen seqno/interrupt incoherency
121 122 123
	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
	 * Here the worker will wake up every jiffie in order to kick the
	 * oldest waiter to do the coherent seqno check.
124
	 */
125

126
	spin_lock_irq(&b->irq_lock);
127
	if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
128
		__intel_engine_disarm_breadcrumbs(engine);
129
	spin_unlock_irq(&b->irq_lock);
130
	if (!b->irq_armed)
131 132
		return;

133
	mod_timer(&b->fake_irq, jiffies + 1);
134 135 136 137 138 139 140 141 142 143 144

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
145 146 147 148
}

static void irq_enable(struct intel_engine_cs *engine)
{
149 150 151 152 153 154 155 156
	/*
	 * FIXME: Ideally we want this on the API boundary, but for the
	 * sake of testing with mock breadcrumbs (no HW so unable to
	 * enable irqs) we place it deep within the bowels, at the point
	 * of no return.
	 */
	GEM_BUG_ON(!intel_irqs_enabled(engine->i915));

157 158 159 160
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
161
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
162

163 164
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
165
	engine->irq_enable(engine);
166
	spin_unlock(&engine->i915->irq_lock);
167 168 169 170
}

static void irq_disable(struct intel_engine_cs *engine)
{
171 172
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
173
	engine->irq_disable(engine);
174
	spin_unlock(&engine->i915->irq_lock);
175 176
}

177 178 179 180
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

181
	lockdep_assert_held(&b->irq_lock);
182
	GEM_BUG_ON(b->irq_wait);
183
	GEM_BUG_ON(!b->irq_armed);
184

185 186
	GEM_BUG_ON(!b->irq_enabled);
	if (!--b->irq_enabled)
187 188 189 190 191
		irq_disable(engine);

	b->irq_armed = false;
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	spin_lock_irq(&b->irq_lock);
	if (!b->irq_enabled++)
		irq_enable(engine);
	GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
	spin_unlock_irq(&b->irq_lock);
}

void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	spin_lock_irq(&b->irq_lock);
	GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
	if (!--b->irq_enabled)
		irq_disable(engine);
	spin_unlock_irq(&b->irq_lock);
}

214 215 216
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
217
	struct intel_wait *wait, *n;
218 219

	if (!b->irq_armed)
220
		goto wakeup_signaler;
221

222 223
	/*
	 * We only disarm the irq when we are idle (all requests completed),
224
	 * so if the bottom-half remains asleep, it missed the request
225 226
	 * completion.
	 */
227 228
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
		missed_breadcrumb(engine);
229

230
	spin_lock_irq(&b->rb_lock);
231 232

	spin_lock(&b->irq_lock);
233
	b->irq_wait = NULL;
234 235
	if (b->irq_armed)
		__intel_engine_disarm_breadcrumbs(engine);
236 237
	spin_unlock(&b->irq_lock);

238 239
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
		RB_CLEAR_NODE(&wait->node);
240
		wake_up_process(wait->tsk);
241 242 243 244
	}
	b->waiters = RB_ROOT;

	spin_unlock_irq(&b->rb_lock);
245 246 247 248 249 250 251 252

	/*
	 * The signaling thread may be asleep holding a reference to a request,
	 * that had its signaling cancelled prior to being preempted. We need
	 * to kick the signaler, just in case, to release any such reference.
	 */
wakeup_signaler:
	wake_up_process(b->signaler);
253 254
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

272 273 274 275 276 277 278 279 280
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

281
static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
282 283 284 285
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;
286 287
	bool enabled;

288
	lockdep_assert_held(&b->irq_lock);
289
	if (b->irq_armed)
290
		return false;
291

292 293 294 295 296 297 298
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;

299 300 301 302 303 304 305 306
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
307
		return true;
308 309
	}

310
	/* Since we are waiting on a request, the GPU should be busy
311 312 313 314
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
315 316 317
	 */

	/* No interrupts? Kick the waiter every jiffie! */
318 319 320 321 322
	enabled = false;
	if (!b->irq_enabled++ &&
	    !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
		irq_enable(engine);
		enabled = true;
323 324
	}

325
	enable_fake_irq(b);
326
	return enabled;
327 328 329 330
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
331
	return rb_entry(node, struct intel_wait, node);
332 333 334 335 336
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
337
	lockdep_assert_held(&b->rb_lock);
338
	GEM_BUG_ON(b->irq_wait == wait);
339 340

	/* This request is completed, so remove it from the tree, mark it as
341 342 343 344 345 346
	 * complete, and *then* wake up the associated task. N.B. when the
	 * task wakes up, it will find the empty rb_node, discern that it
	 * has already been removed from the tree and skip the serialisation
	 * of the b->rb_lock and b->irq_lock. This means that the destruction
	 * of the intel_wait is not serialised with the interrupt handler
	 * by the waiter - it must instead be serialised by the caller.
347 348 349 350 351 352 353
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

354 355 356 357 358
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

359
	spin_lock(&b->irq_lock);
360
	GEM_BUG_ON(!b->irq_armed);
361
	GEM_BUG_ON(!b->irq_wait);
362 363
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
364 365 366 367 368 369 370 371 372

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

373 374 375 376 377
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
378
	bool first, armed;
379 380 381 382 383 384 385 386 387 388 389 390 391 392
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
393
	armed = false;
394 395 396
	first = true;
	parent = NULL;
	completed = NULL;
397
	seqno = intel_engine_get_seqno(engine);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (first) {
439 440
		spin_lock(&b->irq_lock);
		b->irq_wait = wait;
441 442 443 444 445
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
446 447
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
448
		 */
449
		armed = __intel_breadcrumbs_enable_irq(b);
450
		spin_unlock(&b->irq_lock);
451
	}
452 453

	if (completed) {
454 455 456 457 458
		/* Advance the bottom-half (b->irq_wait) before we wake up
		 * the waiters who may scribble over their intel_wait
		 * just as the interrupt handler is dereferencing it via
		 * b->irq_wait.
		 */
459 460 461 462 463 464 465 466 467 468 469 470 471
		if (!first) {
			struct rb_node *next = rb_next(completed);
			GEM_BUG_ON(next == &wait->node);
			__intel_breadcrumbs_next(engine, next);
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

472
	GEM_BUG_ON(!b->irq_wait);
473
	GEM_BUG_ON(!b->irq_armed);
474
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
475

476
	return armed;
477 478 479 480 481 482
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
483
	bool armed;
484

485
	spin_lock_irq(&b->rb_lock);
486
	armed = __intel_engine_add_wait(engine, wait);
487
	spin_unlock_irq(&b->rb_lock);
488 489
	if (armed)
		return armed;
490

491 492 493
	/* Make the caller recheck if its request has already started. */
	return i915_seqno_passed(intel_engine_get_seqno(engine),
				 wait->seqno - 1);
494 495 496 497 498 499 500
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

501 502 503 504 505 506 507 508 509
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

510 511
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
512 513 514
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

515
	lockdep_assert_held(&b->rb_lock);
516 517

	if (RB_EMPTY_NODE(&wait->node))
518
		goto out;
519

520
	if (b->irq_wait == wait) {
521
		const int priority = wakeup_priority(b, wait->tsk);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
544
			u32 seqno = intel_engine_get_seqno(engine);
545 546 547 548 549 550 551 552 553 554 555

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

556
		__intel_breadcrumbs_next(engine, next);
557 558 559 560 561 562
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);
563
	RB_CLEAR_NODE(&wait->node);
564

565
out:
566
	GEM_BUG_ON(b->irq_wait == wait);
567
	GEM_BUG_ON(rb_first(&b->waiters) !=
568
		   (b->irq_wait ? &b->irq_wait->node : NULL));
569 570 571 572 573 574 575 576 577 578 579
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
580 581
	if (RB_EMPTY_NODE(&wait->node)) {
		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
582
		return;
583
	}
584

585
	spin_lock_irq(&b->rb_lock);
586
	__intel_engine_remove_wait(engine, wait);
587
	spin_unlock_irq(&b->rb_lock);
588 589
}

590 591 592 593 594 595
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
596
{
597
	if (!request)
598 599 600 601 602
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
603
	if (intel_wait_complete(&request->signaling.wait))
604
		return signal_valid(request);
605 606 607 608

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
609
	if (__i915_request_irq_complete(request))
610 611 612 613 614
		return true;

	return false;
}

615
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
616
{
617
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
618 619 620 621 622 623 624 625 626 627 628 629 630
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
631
	struct drm_i915_gem_request *request;
632 633 634 635 636

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
637 638
		bool do_schedule = true;

639 640 641 642 643 644 645 646 647 648
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
649 650 651 652 653
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
654
		if (signal_complete(request)) {
655 656 657 658
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

659
			spin_lock_irq(&b->rb_lock);
660

661 662 663
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
664 665
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
666

667 668 669 670 671 672
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
673
			if (request == rcu_access_pointer(b->first_signal)) {
674 675
				struct rb_node *rb =
					rb_next(&request->signaling.node);
676 677
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
678 679
			}
			rb_erase(&request->signaling.node, &b->signals);
680 681
			RB_CLEAR_NODE(&request->signaling.node);

682
			spin_unlock_irq(&b->rb_lock);
683

684
			i915_gem_request_put(request);
685 686 687 688 689 690 691 692 693 694 695 696

			/* If the engine is saturated we may be continually
			 * processing completed requests. This angers the
			 * NMI watchdog if we never let anything else
			 * have access to the CPU. Let's pretend to be nice
			 * and relinquish the CPU if we burn through the
			 * entire RT timeslice!
			 */
			do_schedule = need_resched();
		}

		if (unlikely(do_schedule)) {
697 698 699
			if (kthread_should_park())
				kthread_parkme();

700 701
			if (unlikely(kthread_should_stop())) {
				i915_gem_request_put(request);
702
				break;
703
			}
704 705 706

			schedule();
		}
707
		i915_gem_request_put(request);
708 709 710 711 712 713
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

714 715
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
				   bool wakeup)
716 717 718
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
719
	u32 seqno;
720

721 722 723
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
724
	 * we need to make sure that all other users of b->rb_lock protect
725 726 727 728
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
729
	GEM_BUG_ON(!irqs_disabled());
730
	lockdep_assert_held(&request->lock);
731 732 733

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
734
		return;
735

736
	request->signaling.wait.tsk = b->signaler;
737
	request->signaling.wait.request = request;
738
	request->signaling.wait.seqno = seqno;
739
	i915_gem_request_get(request);
740

741
	spin_lock(&b->rb_lock);
742

743 744 745 746 747 748 749 750
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
751
	wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	if (!__i915_gem_request_completed(request, seqno)) {
		struct rb_node *parent, **p;
		bool first;

		/* Now insert ourselves into the retirement ordered list of
		 * signals on this engine. We track the oldest seqno as that
		 * will be the first signal to complete.
		 */
		parent = NULL;
		first = true;
		p = &b->signals.rb_node;
		while (*p) {
			parent = *p;
			if (i915_seqno_passed(seqno,
					      to_signaler(parent)->signaling.wait.seqno)) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
773
		}
774 775 776 777 778 779 780 781
		rb_link_node(&request->signaling.node, parent, p);
		rb_insert_color(&request->signaling.node, &b->signals);
		if (first)
			rcu_assign_pointer(b->first_signal, request);
	} else {
		__intel_engine_remove_wait(engine, &request->signaling.wait);
		i915_gem_request_put(request);
		wakeup = false;
782
	}
783

784
	spin_unlock(&b->rb_lock);
785 786 787 788 789

	if (wakeup)
		wake_up_process(b->signaler);
}

790 791 792 793 794
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

795
	GEM_BUG_ON(!irqs_disabled());
796
	lockdep_assert_held(&request->lock);
797 798
	GEM_BUG_ON(!request->signaling.wait.seqno);

799
	spin_lock(&b->rb_lock);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

815
	spin_unlock(&b->rb_lock);
816 817 818 819

	request->signaling.wait.seqno = 0;
}

820 821 822
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
823
	struct task_struct *tsk;
824

825 826 827
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

828 829
	timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
	timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
830

831 832 833 834 835 836 837 838 839 840 841 842 843
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

844 845 846
	return 0;
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
861
	spin_lock_irq(&b->irq_lock);
862

863 864 865
	if (b->irq_enabled)
		irq_enable(engine);
	else
866
		irq_disable(engine);
867 868 869 870 871 872 873 874 875 876 877 878

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
879

880
	spin_unlock_irq(&b->irq_lock);
881 882
}

883 884 885 886
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

887
	/* The engines should be idle and all requests accounted for! */
888
	WARN_ON(READ_ONCE(b->irq_wait));
889
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
890
	WARN_ON(rcu_access_pointer(b->first_signal));
891 892
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

893 894 895
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

896
	cancel_fake_irq(engine);
897 898
}

899
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
900
{
901 902
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
903

904
	spin_lock_irq(&b->rb_lock);
905

906 907
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
908
		busy = true;
909
	}
910

911
	if (rcu_access_pointer(b->first_signal)) {
912
		wake_up_process(b->signaler);
913
		busy = true;
914 915
	}

916
	spin_unlock_irq(&b->rb_lock);
917 918

	return busy;
919
}
920 921 922 923

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif