intel_breadcrumbs.c 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31
{
32
	struct intel_wait *wait;
33 34
	unsigned int result = 0;

35 36 37
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
38
	if (wait) {
39
		result = ENGINE_WAKEUP_WAITER;
40 41
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
42
	}
43 44 45 46 47 48 49 50 51

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned int result;

52
	spin_lock_irq(&b->irq_lock);
53
	result = __intel_breadcrumbs_wakeup(b);
54
	spin_unlock_irq(&b->irq_lock);
55 56 57 58

	return result;
}

59 60 61 62 63
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

64 65 66 67 68 69 70 71 72 73
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
					&engine->irq_posted)));

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

74 75 76 77 78
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

79
	if (!b->irq_armed)
80 81
		return;

82 83 84
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
85 86 87
		return;
	}

88 89 90 91
	/* We keep the hangcheck time alive until we disarm the irq, even
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
92 93
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
94 95 96 97 98
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
99
	 */
100
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
101
		missed_breadcrumb(engine);
102 103
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
104 105
		mod_timer(&b->hangcheck, wait_timeout());
	}
106 107
}

108 109 110
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
111
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
112 113 114 115 116 117 118 119

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
120

121
	spin_lock_irq(&b->irq_lock);
122 123
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
124
	spin_unlock_irq(&b->irq_lock);
125
	if (!b->irq_armed)
126 127
		return;

128
	mod_timer(&b->fake_irq, jiffies + 1);
129 130 131 132 133 134 135 136 137 138 139

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
140 141 142 143
}

static void irq_enable(struct intel_engine_cs *engine)
{
144 145 146 147
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
148
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
149

150 151
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
152
	engine->irq_enable(engine);
153
	spin_unlock(&engine->i915->irq_lock);
154 155 156 157
}

static void irq_disable(struct intel_engine_cs *engine)
{
158 159
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
160
	engine->irq_disable(engine);
161
	spin_unlock(&engine->i915->irq_lock);
162 163
}

164 165 166 167
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

168
	lockdep_assert_held(&b->irq_lock);
169
	GEM_BUG_ON(b->irq_wait);
170 171 172 173 174 175 176 177 178 179 180 181

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
182
	struct intel_wait *wait, *n, *first;
183 184 185 186 187

	if (!b->irq_armed)
		return;

	/* We only disarm the irq when we are idle (all requests completed),
188
	 * so if the bottom-half remains asleep, it missed the request
189 190 191
	 * completion.
	 */

192
	spin_lock_irq(&b->rb_lock);
193 194 195 196 197 198

	spin_lock(&b->irq_lock);
	first = fetch_and_zero(&b->irq_wait);
	__intel_engine_disarm_breadcrumbs(engine);
	spin_unlock(&b->irq_lock);

199 200
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
		RB_CLEAR_NODE(&wait->node);
201
		if (wake_up_process(wait->tsk) && wait == first)
202 203 204 205 206
			missed_breadcrumb(engine);
	}
	b->waiters = RB_ROOT;

	spin_unlock_irq(&b->rb_lock);
207 208
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

226 227 228 229 230 231 232 233 234
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

235
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
236 237 238 239 240
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

241
	lockdep_assert_held(&b->irq_lock);
242
	if (b->irq_armed)
243
		return;
244

245 246 247 248 249 250 251 252
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

253 254 255 256 257 258 259 260 261 262 263
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

264
	/* Since we are waiting on a request, the GPU should be busy
265 266 267 268
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
269 270 271 272
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
273
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
274 275 276 277
			irq_enable(engine);
		b->irq_enabled = true;
	}

278
	enable_fake_irq(b);
279 280 281 282
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
283
	return rb_entry(node, struct intel_wait, node);
284 285 286 287 288
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
289
	lockdep_assert_held(&b->rb_lock);
290
	GEM_BUG_ON(b->irq_wait == wait);
291 292 293 294 295 296 297 298 299 300

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

301 302 303 304 305
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

306
	spin_lock(&b->irq_lock);
307
	GEM_BUG_ON(!b->irq_armed);
308
	GEM_BUG_ON(!b->irq_wait);
309 310
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
311 312 313 314 315 316 317 318 319

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
343
	seqno = intel_engine_get_seqno(engine);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (first) {
385 386
		spin_lock(&b->irq_lock);
		b->irq_wait = wait;
387 388 389 390 391
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
392 393
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
394 395
		 */
		__intel_breadcrumbs_enable_irq(b);
396
		spin_unlock(&b->irq_lock);
397
	}
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

	if (completed) {
		if (!first) {
			struct rb_node *next = rb_next(completed);
			GEM_BUG_ON(next == &wait->node);
			__intel_breadcrumbs_next(engine, next);
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

413
	GEM_BUG_ON(!b->irq_wait);
414
	GEM_BUG_ON(!b->irq_armed);
415
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
416 417 418 419 420 421 422 423 424 425

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

426
	spin_lock_irq(&b->rb_lock);
427
	first = __intel_engine_add_wait(engine, wait);
428
	spin_unlock_irq(&b->rb_lock);
429 430 431 432 433 434 435 436 437

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

438 439 440 441 442 443 444 445 446
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

447 448
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
449 450 451
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

452
	lockdep_assert_held(&b->rb_lock);
453 454

	if (RB_EMPTY_NODE(&wait->node))
455
		goto out;
456

457
	if (b->irq_wait == wait) {
458
		const int priority = wakeup_priority(b, wait->tsk);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
481
			u32 seqno = intel_engine_get_seqno(engine);
482 483 484 485 486 487 488 489 490 491 492

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

493
		__intel_breadcrumbs_next(engine, next);
494 495 496 497 498 499 500
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

501
out:
502
	GEM_BUG_ON(b->irq_wait == wait);
503
	GEM_BUG_ON(rb_first(&b->waiters) !=
504
		   (b->irq_wait ? &b->irq_wait->node : NULL));
505 506 507 508 509 510 511 512 513 514 515
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
516 517
	if (RB_EMPTY_NODE(&wait->node)) {
		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
518
		return;
519
	}
520

521
	spin_lock_irq(&b->rb_lock);
522
	__intel_engine_remove_wait(engine, wait);
523
	spin_unlock_irq(&b->rb_lock);
524 525
}

526 527 528 529 530 531
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
532
{
533
	if (!request)
534 535 536 537 538
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
539
	if (intel_wait_complete(&request->signaling.wait))
540
		return signal_valid(request);
541 542 543 544

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
545
	if (__i915_request_irq_complete(request))
546 547 548 549 550
		return true;

	return false;
}

551
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
552
{
553
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
554 555 556 557 558 559 560 561 562 563 564 565 566
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
567
	struct drm_i915_gem_request *request;
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
583 584 585 586 587
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
588
		if (signal_complete(request)) {
589 590 591 592
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

593
			spin_lock_irq(&b->rb_lock);
594

595 596 597
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
598 599
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
600

601 602 603 604 605 606
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
607
			if (request == rcu_access_pointer(b->first_signal)) {
608 609
				struct rb_node *rb =
					rb_next(&request->signaling.node);
610 611
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
612 613
			}
			rb_erase(&request->signaling.node, &b->signals);
614 615
			RB_CLEAR_NODE(&request->signaling.node);

616
			spin_unlock_irq(&b->rb_lock);
617

618
			i915_gem_request_put(request);
619
		} else {
620 621
			DEFINE_WAIT(exec);

622 623
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
624
				break;
625
			}
626

627 628 629
			if (request)
				add_wait_queue(&request->execute, &exec);

630
			schedule();
631

632 633 634
			if (request)
				remove_wait_queue(&request->execute, &exec);

635 636
			if (kthread_should_park())
				kthread_parkme();
637
		}
638
		i915_gem_request_put(request);
639 640 641 642 643 644
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

645
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
646 647 648 649 650
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
651
	u32 seqno;
652

653 654 655 656 657 658 659 660
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
661
	GEM_BUG_ON(!irqs_disabled());
662
	lockdep_assert_held(&request->lock);
663 664 665

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
666
		return;
667

668
	request->signaling.wait.tsk = b->signaler;
669
	request->signaling.wait.request = request;
670
	request->signaling.wait.seqno = seqno;
671
	i915_gem_request_get(request);
672

673
	spin_lock(&b->rb_lock);
674

675 676 677 678 679 680 681 682
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
683
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
684 685 686 687 688 689 690 691 692 693

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
694 695
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
696 697 698 699 700 701
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
702 703
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
704
	if (first)
705
		rcu_assign_pointer(b->first_signal, request);
706

707
	spin_unlock(&b->rb_lock);
708 709 710 711 712

	if (wakeup)
		wake_up_process(b->signaler);
}

713 714 715 716 717
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

718
	GEM_BUG_ON(!irqs_disabled());
719
	lockdep_assert_held(&request->lock);
720 721
	GEM_BUG_ON(!request->signaling.wait.seqno);

722
	spin_lock(&b->rb_lock);
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

738
	spin_unlock(&b->rb_lock);
739 740 741 742

	request->signaling.wait.seqno = 0;
}

743 744 745
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
746
	struct task_struct *tsk;
747

748 749 750
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

751 752 753
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
754 755 756
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
757

758 759 760 761 762 763 764 765 766 767 768 769 770
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

771 772 773
	return 0;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
788
	spin_lock_irq(&b->irq_lock);
789

790 791 792
	if (b->irq_enabled)
		irq_enable(engine);
	else
793
		irq_disable(engine);
794 795 796 797 798 799 800 801 802 803 804 805

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
806

807
	spin_unlock_irq(&b->irq_lock);
808 809
}

810 811 812 813
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

814
	/* The engines should be idle and all requests accounted for! */
815
	WARN_ON(READ_ONCE(b->irq_wait));
816
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
817
	WARN_ON(rcu_access_pointer(b->first_signal));
818 819
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

820 821 822
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

823
	cancel_fake_irq(engine);
824 825
}

826
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
827
{
828 829
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
830

831
	spin_lock_irq(&b->rb_lock);
832

833 834
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
835
		busy = true;
836
	}
837

838
	if (rcu_access_pointer(b->first_signal)) {
839
		wake_up_process(b->signaler);
840
		busy = true;
841 842
	}

843
	spin_unlock_irq(&b->rb_lock);
844 845

	return busy;
846
}
847 848 849 850

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif