intel_breadcrumbs.c 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31
{
32
	struct intel_wait *wait;
33 34
	unsigned int result = 0;

35 36 37
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
38
	if (wait) {
39
		result = ENGINE_WAKEUP_WAITER;
40 41
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
42
	}
43 44 45 46 47 48 49

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
50
	unsigned long flags;
51 52
	unsigned int result;

53
	spin_lock_irqsave(&b->irq_lock, flags);
54
	result = __intel_breadcrumbs_wakeup(b);
55
	spin_unlock_irqrestore(&b->irq_lock, flags);
56 57 58 59

	return result;
}

60 61 62 63 64
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

65 66 67 68 69 70 71 72 73 74
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
					&engine->irq_posted)));

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

75 76 77 78 79
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

80
	if (!b->irq_armed)
81 82
		return;

83 84 85
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
86 87 88
		return;
	}

89
	/* We keep the hangcheck timer alive until we disarm the irq, even
90 91 92
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
93 94
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
95 96 97 98 99
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
100
	 */
101
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
102
		missed_breadcrumb(engine);
103 104
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
105 106
		mod_timer(&b->hangcheck, wait_timeout());
	}
107 108
}

109 110 111
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
112
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
113

114
	/* The timer persists in case we cannot enable interrupts,
115
	 * or if we have previously seen seqno/interrupt incoherency
116 117 118
	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
	 * Here the worker will wake up every jiffie in order to kick the
	 * oldest waiter to do the coherent seqno check.
119
	 */
120

121
	spin_lock_irq(&b->irq_lock);
122 123
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
124
	spin_unlock_irq(&b->irq_lock);
125
	if (!b->irq_armed)
126 127
		return;

128
	mod_timer(&b->fake_irq, jiffies + 1);
129 130 131 132 133 134 135 136 137 138 139

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
140 141 142 143
}

static void irq_enable(struct intel_engine_cs *engine)
{
144 145 146 147
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
148
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
149

150 151
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
152
	engine->irq_enable(engine);
153
	spin_unlock(&engine->i915->irq_lock);
154 155 156 157
}

static void irq_disable(struct intel_engine_cs *engine)
{
158 159
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
160
	engine->irq_disable(engine);
161
	spin_unlock(&engine->i915->irq_lock);
162 163
}

164 165 166 167
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

168
	lockdep_assert_held(&b->irq_lock);
169
	GEM_BUG_ON(b->irq_wait);
170 171 172 173 174 175 176 177 178 179 180 181

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
182
	struct intel_wait *wait, *n, *first;
183 184 185 186 187

	if (!b->irq_armed)
		return;

	/* We only disarm the irq when we are idle (all requests completed),
188
	 * so if the bottom-half remains asleep, it missed the request
189 190 191
	 * completion.
	 */

192
	spin_lock_irq(&b->rb_lock);
193 194 195 196 197 198

	spin_lock(&b->irq_lock);
	first = fetch_and_zero(&b->irq_wait);
	__intel_engine_disarm_breadcrumbs(engine);
	spin_unlock(&b->irq_lock);

199 200
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
		RB_CLEAR_NODE(&wait->node);
201
		if (wake_up_process(wait->tsk) && wait == first)
202 203 204 205 206
			missed_breadcrumb(engine);
	}
	b->waiters = RB_ROOT;

	spin_unlock_irq(&b->rb_lock);
207 208
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

226 227 228 229 230 231 232 233 234
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

235
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
236 237 238 239 240
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

241
	lockdep_assert_held(&b->irq_lock);
242
	if (b->irq_armed)
243
		return;
244

245 246 247 248 249 250 251 252
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

253 254 255 256 257 258 259 260 261 262 263
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

264
	/* Since we are waiting on a request, the GPU should be busy
265 266 267 268
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
269 270 271 272
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
273
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
274 275 276 277
			irq_enable(engine);
		b->irq_enabled = true;
	}

278
	enable_fake_irq(b);
279 280 281 282
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
283
	return rb_entry(node, struct intel_wait, node);
284 285 286 287 288
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
289
	lockdep_assert_held(&b->rb_lock);
290
	GEM_BUG_ON(b->irq_wait == wait);
291 292

	/* This request is completed, so remove it from the tree, mark it as
293 294 295 296 297 298
	 * complete, and *then* wake up the associated task. N.B. when the
	 * task wakes up, it will find the empty rb_node, discern that it
	 * has already been removed from the tree and skip the serialisation
	 * of the b->rb_lock and b->irq_lock. This means that the destruction
	 * of the intel_wait is not serialised with the interrupt handler
	 * by the waiter - it must instead be serialised by the caller.
299 300 301 302 303 304 305
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

306 307 308 309 310
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

311
	spin_lock(&b->irq_lock);
312
	GEM_BUG_ON(!b->irq_armed);
313
	GEM_BUG_ON(!b->irq_wait);
314 315
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
316 317 318 319 320 321 322 323 324

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
348
	seqno = intel_engine_get_seqno(engine);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (first) {
390 391
		spin_lock(&b->irq_lock);
		b->irq_wait = wait;
392 393 394 395 396
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
397 398
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
399 400
		 */
		__intel_breadcrumbs_enable_irq(b);
401
		spin_unlock(&b->irq_lock);
402
	}
403 404

	if (completed) {
405 406 407 408 409
		/* Advance the bottom-half (b->irq_wait) before we wake up
		 * the waiters who may scribble over their intel_wait
		 * just as the interrupt handler is dereferencing it via
		 * b->irq_wait.
		 */
410 411 412 413 414 415 416 417 418 419 420 421 422
		if (!first) {
			struct rb_node *next = rb_next(completed);
			GEM_BUG_ON(next == &wait->node);
			__intel_breadcrumbs_next(engine, next);
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

423
	GEM_BUG_ON(!b->irq_wait);
424
	GEM_BUG_ON(!b->irq_armed);
425
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
426 427 428 429 430 431 432 433 434 435

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

436
	spin_lock_irq(&b->rb_lock);
437
	first = __intel_engine_add_wait(engine, wait);
438
	spin_unlock_irq(&b->rb_lock);
439 440 441 442 443 444 445 446 447

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

448 449 450 451 452 453 454 455 456
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

457 458
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
459 460 461
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

462
	lockdep_assert_held(&b->rb_lock);
463 464

	if (RB_EMPTY_NODE(&wait->node))
465
		goto out;
466

467
	if (b->irq_wait == wait) {
468
		const int priority = wakeup_priority(b, wait->tsk);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
491
			u32 seqno = intel_engine_get_seqno(engine);
492 493 494 495 496 497 498 499 500 501 502

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

503
		__intel_breadcrumbs_next(engine, next);
504 505 506 507 508 509 510
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

511
out:
512
	GEM_BUG_ON(b->irq_wait == wait);
513
	GEM_BUG_ON(rb_first(&b->waiters) !=
514
		   (b->irq_wait ? &b->irq_wait->node : NULL));
515 516 517 518 519 520 521 522 523 524 525
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
526 527
	if (RB_EMPTY_NODE(&wait->node)) {
		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
528
		return;
529
	}
530

531
	spin_lock_irq(&b->rb_lock);
532
	__intel_engine_remove_wait(engine, wait);
533
	spin_unlock_irq(&b->rb_lock);
534 535
}

536 537 538 539 540 541
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
542
{
543
	if (!request)
544 545 546 547 548
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
549
	if (intel_wait_complete(&request->signaling.wait))
550
		return signal_valid(request);
551 552 553 554

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
555
	if (__i915_request_irq_complete(request))
556 557 558 559 560
		return true;

	return false;
}

561
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
562
{
563
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
564 565 566 567 568 569 570 571 572 573 574 575 576
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
577
	struct drm_i915_gem_request *request;
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
593 594 595 596 597
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
598
		if (signal_complete(request)) {
599 600 601 602
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

603
			spin_lock_irq(&b->rb_lock);
604

605 606 607
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
608 609
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
610

611 612 613 614 615 616
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
617
			if (request == rcu_access_pointer(b->first_signal)) {
618 619
				struct rb_node *rb =
					rb_next(&request->signaling.node);
620 621
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
622 623
			}
			rb_erase(&request->signaling.node, &b->signals);
624 625
			RB_CLEAR_NODE(&request->signaling.node);

626
			spin_unlock_irq(&b->rb_lock);
627

628
			i915_gem_request_put(request);
629
		} else {
630 631
			DEFINE_WAIT(exec);

632 633
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
634
				break;
635
			}
636

637 638 639
			if (request)
				add_wait_queue(&request->execute, &exec);

640
			schedule();
641

642 643 644
			if (request)
				remove_wait_queue(&request->execute, &exec);

645 646
			if (kthread_should_park())
				kthread_parkme();
647
		}
648
		i915_gem_request_put(request);
649 650 651 652 653 654
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

655
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
656 657 658 659 660
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
661
	u32 seqno;
662

663 664 665
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
666
	 * we need to make sure that all other users of b->rb_lock protect
667 668 669 670
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
671
	GEM_BUG_ON(!irqs_disabled());
672
	lockdep_assert_held(&request->lock);
673 674 675

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
676
		return;
677

678
	request->signaling.wait.tsk = b->signaler;
679
	request->signaling.wait.request = request;
680
	request->signaling.wait.seqno = seqno;
681
	i915_gem_request_get(request);
682

683
	spin_lock(&b->rb_lock);
684

685 686 687 688 689 690 691 692
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
693
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
694 695 696 697 698 699 700 701 702 703

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
704 705
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
706 707 708 709 710 711
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
712 713
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
714
	if (first)
715
		rcu_assign_pointer(b->first_signal, request);
716

717
	spin_unlock(&b->rb_lock);
718 719 720 721 722

	if (wakeup)
		wake_up_process(b->signaler);
}

723 724 725 726 727
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

728
	GEM_BUG_ON(!irqs_disabled());
729
	lockdep_assert_held(&request->lock);
730 731
	GEM_BUG_ON(!request->signaling.wait.seqno);

732
	spin_lock(&b->rb_lock);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

748
	spin_unlock(&b->rb_lock);
749 750 751 752

	request->signaling.wait.seqno = 0;
}

753 754 755
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
756
	struct task_struct *tsk;
757

758 759 760
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

761 762 763
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
764 765 766
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
767

768 769 770 771 772 773 774 775 776 777 778 779 780
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

781 782 783
	return 0;
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
798
	spin_lock_irq(&b->irq_lock);
799

800 801 802
	if (b->irq_enabled)
		irq_enable(engine);
	else
803
		irq_disable(engine);
804 805 806 807 808 809 810 811 812 813 814 815

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
816

817
	spin_unlock_irq(&b->irq_lock);
818 819
}

820 821 822 823
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

824
	/* The engines should be idle and all requests accounted for! */
825
	WARN_ON(READ_ONCE(b->irq_wait));
826
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
827
	WARN_ON(rcu_access_pointer(b->first_signal));
828 829
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

830 831 832
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

833
	cancel_fake_irq(engine);
834 835
}

836
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
837
{
838 839
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
840

841
	spin_lock_irq(&b->rb_lock);
842

843 844
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
845
		busy = true;
846
	}
847

848
	if (rcu_access_pointer(b->first_signal)) {
849
		wake_up_process(b->signaler);
850
		busy = true;
851 852
	}

853
	spin_unlock_irq(&b->rb_lock);
854 855

	return busy;
856
}
857 858 859 860

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif