intel_breadcrumbs.c 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
30
{
31
	struct intel_wait *wait;
32 33
	unsigned int result = 0;

34
	wait = b->first_wait;
35
	if (wait) {
36
		result = ENGINE_WAKEUP_WAITER;
37 38
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
39
	}
40 41 42 43 44 45 46 47 48 49 50 51 52

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
	unsigned int result;

	spin_lock_irqsave(&b->lock, flags);
	result = __intel_breadcrumbs_wakeup(b);
	spin_unlock_irqrestore(&b->lock, flags);
53 54 55 56

	return result;
}

57 58 59 60 61
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

62 63 64 65 66
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

67
	if (!b->irq_armed)
68 69
		return;

70 71 72
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
73 74 75
		return;
	}

76 77 78 79
	/* We keep the hangcheck time alive until we disarm the irq, even
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
80 81
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
82 83 84 85 86
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
87
	 */
88 89 90 91 92
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
		DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
		set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
93 94
		mod_timer(&b->hangcheck, wait_timeout());
	}
95 96
}

97 98 99
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
100 101
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
102 103 104 105 106 107 108 109

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
110 111 112 113 114 115

	spin_lock_irqsave(&b->lock, flags);
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
	spin_unlock_irqrestore(&b->lock, flags);
	if (!b->irq_armed)
116 117
		return;

118
	mod_timer(&b->fake_irq, jiffies + 1);
119 120 121 122 123 124 125 126 127 128 129

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
130 131 132 133
}

static void irq_enable(struct intel_engine_cs *engine)
{
134 135 136 137
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
138
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
139

140 141
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
142
	engine->irq_enable(engine);
143
	spin_unlock(&engine->i915->irq_lock);
144 145 146 147
}

static void irq_disable(struct intel_engine_cs *engine)
{
148 149
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
150
	engine->irq_disable(engine);
151
	spin_unlock(&engine->i915->irq_lock);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	assert_spin_locked(&b->lock);

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;

	if (!b->irq_armed)
		return;

	spin_lock_irqsave(&b->lock, flags);

	/* We only disarm the irq when we are idle (all requests completed),
	 * so if there remains a sleeping waiter, it missed the request
	 * completion.
	 */
	if (__intel_breadcrumbs_wakeup(b) & ENGINE_WAKEUP_ASLEEP)
		set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);

	__intel_engine_disarm_breadcrumbs(engine);

	spin_unlock_irqrestore(&b->lock, flags);
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

207 208 209 210 211 212 213 214 215
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

216
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
217 218 219 220 221 222
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

	assert_spin_locked(&b->lock);
223
	if (b->irq_armed)
224
		return;
225

226 227 228 229 230 231 232 233
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

234 235 236 237 238 239 240 241 242 243 244
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

245
	/* Since we are waiting on a request, the GPU should be busy
246 247 248 249
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
250 251 252 253
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
254
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
255 256 257 258
			irq_enable(engine);
		b->irq_enabled = true;
	}

259
	enable_fake_irq(b);
260 261 262 263
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
264
	return rb_entry(node, struct intel_wait, node);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
	assert_spin_locked(&b->lock);

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
304
	seqno = intel_engine_get_seqno(engine);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
			b->first_wait = to_wait(next);
			/* As there is a delay between reading the current
			 * seqno, processing the completed tasks and selecting
			 * the next waiter, we may have missed the interrupt
			 * and so need for the next bottom-half to wakeup.
			 *
			 * Also as we enable the IRQ, we may miss the
			 * interrupt for that seqno, so we have to wake up
			 * the next bottom-half in order to do a coherent check
			 * in case the seqno passed.
			 */
			__intel_breadcrumbs_enable_irq(b);
363 364
			if (test_bit(ENGINE_IRQ_BREADCRUMB,
				     &engine->irq_posted))
365
				wake_up_process(to_wait(next)->tsk);
366 367 368 369 370 371 372 373 374 375 376 377
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
		b->first_wait = wait;
378 379 380 381 382
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
383 384
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
385 386
		 */
		__intel_breadcrumbs_enable_irq(b);
387 388 389 390 391 392 393 394 395 396 397 398 399
	}
	GEM_BUG_ON(!b->first_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

400
	spin_lock_irq(&b->lock);
401
	first = __intel_engine_add_wait(engine, wait);
402
	spin_unlock_irq(&b->lock);
403 404 405 406 407 408 409 410 411

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

412 413 414 415 416 417 418 419 420
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

421 422
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
423 424 425
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

426
	assert_spin_locked(&b->lock);
427 428

	if (RB_EMPTY_NODE(&wait->node))
429
		goto out;
430 431

	if (b->first_wait == wait) {
432
		const int priority = wakeup_priority(b, wait->tsk);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
455
			u32 seqno = intel_engine_get_seqno(engine);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

		if (next) {
			/* In our haste, we may have completed the first waiter
			 * before we enabled the interrupt. Do so now as we
			 * have a second waiter for a future seqno. Afterwards,
			 * we have to wake up that waiter in case we missed
			 * the interrupt, or if we have to handle an
			 * exception rather than a seqno completion.
			 */
			b->first_wait = to_wait(next);
			if (b->first_wait->seqno != wait->seqno)
				__intel_breadcrumbs_enable_irq(b);
478
			wake_up_process(b->first_wait->tsk);
479 480 481 482 483 484 485 486 487 488
		} else {
			b->first_wait = NULL;
		}
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

489
out:
490 491 492
	GEM_BUG_ON(b->first_wait == wait);
	GEM_BUG_ON(rb_first(&b->waiters) !=
		   (b->first_wait ? &b->first_wait->node : NULL));
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

	spin_lock_irq(&b->lock);
	__intel_engine_remove_wait(engine, wait);
509
	spin_unlock_irq(&b->lock);
510 511
}

512 513 514 515 516 517
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
518
{
519
	if (!request)
520 521 522 523 524
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
525
	if (intel_wait_complete(&request->signaling.wait))
526
		return signal_valid(request);
527 528 529 530

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
531
	if (__i915_request_irq_complete(request))
532 533 534 535 536
		return true;

	return false;
}

537
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
538
{
539
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
540 541 542 543 544 545 546 547 548 549 550 551 552
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
553
	struct drm_i915_gem_request *request;
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
569 570 571 572 573
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
574
		if (signal_complete(request)) {
575 576 577 578
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

579 580
			spin_lock_irq(&b->lock);

581 582 583
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
584 585
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
586

587 588 589 590 591 592
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
593
			if (request == rcu_access_pointer(b->first_signal)) {
594 595
				struct rb_node *rb =
					rb_next(&request->signaling.node);
596 597
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
598 599
			}
			rb_erase(&request->signaling.node, &b->signals);
600 601
			RB_CLEAR_NODE(&request->signaling.node);

602
			spin_unlock_irq(&b->lock);
603

604
			i915_gem_request_put(request);
605
		} else {
606 607
			DEFINE_WAIT(exec);

608 609
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
610
				break;
611
			}
612

613 614 615
			if (request)
				add_wait_queue(&request->execute, &exec);

616
			schedule();
617

618 619 620
			if (request)
				remove_wait_queue(&request->execute, &exec);

621 622
			if (kthread_should_park())
				kthread_parkme();
623
		}
624
		i915_gem_request_put(request);
625 626 627 628 629 630
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

631
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
632 633 634 635 636
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
637
	u32 seqno;
638

639 640 641 642 643 644 645 646
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
647
	assert_spin_locked(&request->lock);
648 649 650

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
651
		return;
652

653
	request->signaling.wait.tsk = b->signaler;
654
	request->signaling.wait.request = request;
655
	request->signaling.wait.seqno = seqno;
656
	i915_gem_request_get(request);
657

658 659
	spin_lock(&b->lock);

660 661 662 663 664 665 666 667
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
668
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
669 670 671 672 673 674 675 676 677 678

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
679 680
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
681 682 683 684 685 686
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
687 688
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
689
	if (first)
690
		rcu_assign_pointer(b->first_signal, request);
691

692 693 694 695 696 697
	spin_unlock(&b->lock);

	if (wakeup)
		wake_up_process(b->signaler);
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	assert_spin_locked(&request->lock);
	GEM_BUG_ON(!request->signaling.wait.seqno);

	spin_lock(&b->lock);

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

	spin_unlock(&b->lock);

	request->signaling.wait.seqno = 0;
}

727 728 729
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
730
	struct task_struct *tsk;
731 732 733 734 735

	spin_lock_init(&b->lock);
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
736 737 738
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
739

740 741 742 743 744 745 746 747 748 749 750 751 752
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

753 754 755
	return 0;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
770
	spin_lock_irq(&b->lock);
771

772 773 774
	if (b->irq_enabled)
		irq_enable(engine);
	else
775
		irq_disable(engine);
776 777 778 779 780 781 782 783 784 785 786 787

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
788

789
	spin_unlock_irq(&b->lock);
790 791
}

792 793 794 795
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

796 797 798
	/* The engines should be idle and all requests accounted for! */
	WARN_ON(READ_ONCE(b->first_wait));
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
799
	WARN_ON(rcu_access_pointer(b->first_signal));
800 801
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

802 803 804
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

805
	cancel_fake_irq(engine);
806 807
}

808
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
809
{
810 811
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
812

813
	spin_lock_irq(&b->lock);
814

815 816 817 818
	if (b->first_wait) {
		wake_up_process(b->first_wait->tsk);
		busy |= intel_engine_flag(engine);
	}
819

820
	if (rcu_access_pointer(b->first_signal)) {
821 822
		wake_up_process(b->signaler);
		busy |= intel_engine_flag(engine);
823 824
	}

825 826 827
	spin_unlock_irq(&b->lock);

	return busy;
828
}
829 830 831 832

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif