intel_breadcrumbs.c 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	unsigned int result = 0;

	/* Note that for this not to dangerously chase a dangling pointer,
	 * we must hold the rcu_read_lock here.
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
	if (intel_engine_has_waiter(engine)) {
		struct task_struct *tsk;

		result = ENGINE_WAKEUP_WAITER;

		rcu_read_lock();
		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
		if (tsk && !wake_up_process(tsk))
			result |= ENGINE_WAKEUP_ACTIVE;
		rcu_read_unlock();
	}

	return result;
}

55 56 57 58 59
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

60 61 62 63 64 65 66 67
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	if (!b->irq_enabled)
		return;

68 69 70
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
71 72 73
		return;
	}

74 75 76 77
	/* If the waiter was currently running, assume it hasn't had a chance
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
	 */
78
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ACTIVE) {
79 80 81 82
		mod_timer(&b->hangcheck, wait_timeout());
		return;
	}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
	if (intel_engine_wakeup(engine))
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
}

static void irq_enable(struct intel_engine_cs *engine)
{
116 117 118 119
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
120
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
121

122 123
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
124
	engine->irq_enable(engine);
125
	spin_unlock(&engine->i915->irq_lock);
126 127 128 129
}

static void irq_disable(struct intel_engine_cs *engine)
{
130 131
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
132
	engine->irq_disable(engine);
133
	spin_unlock(&engine->i915->irq_lock);
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

153
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
154 155 156 157 158 159 160
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

	assert_spin_locked(&b->lock);
	if (b->rpm_wakelock)
161
		return;
162

163 164 165 166 167 168 169 170 171 172 173 174
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		b->rpm_wakelock = true;
		return;
	}

175 176 177 178 179 180 181 182 183 184
	/* Since we are waiting on a request, the GPU should be busy
	 * and should have its own rpm reference. For completeness,
	 * record an rpm reference for ourselves to cover the
	 * interrupt we unmask.
	 */
	intel_runtime_pm_get_noresume(i915);
	b->rpm_wakelock = true;

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
185
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
186 187 188 189
			irq_enable(engine);
		b->irq_enabled = true;
	}

190
	if (!b->irq_enabled || use_fake_irq(b)) {
191
		mod_timer(&b->fake_irq, jiffies + 1);
192
		i915_queue_hangcheck(i915);
193 194
	} else {
		/* Ensure we never sleep indefinitely */
195
		mod_timer(&b->hangcheck, wait_timeout());
196
	}
197 198 199 200 201 202 203 204 205 206 207
}

static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	assert_spin_locked(&b->lock);
	if (!b->rpm_wakelock)
		return;

208 209 210 211 212
	if (I915_SELFTEST_ONLY(b->mock)) {
		b->rpm_wakelock = false;
		return;
	}

213 214 215 216 217 218 219 220 221 222 223
	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	intel_runtime_pm_put(engine->i915);
	b->rpm_wakelock = false;
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
224
	return rb_entry(node, struct intel_wait, node);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
	assert_spin_locked(&b->lock);

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
264
	seqno = intel_engine_get_seqno(engine);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);
304
	GEM_BUG_ON(!first && !rcu_access_pointer(b->irq_seqno_bh));
305 306 307 308 309 310 311 312

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
			b->first_wait = to_wait(next);
313
			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
314 315 316 317 318 319 320 321 322 323 324
			/* As there is a delay between reading the current
			 * seqno, processing the completed tasks and selecting
			 * the next waiter, we may have missed the interrupt
			 * and so need for the next bottom-half to wakeup.
			 *
			 * Also as we enable the IRQ, we may miss the
			 * interrupt for that seqno, so we have to wake up
			 * the next bottom-half in order to do a coherent check
			 * in case the seqno passed.
			 */
			__intel_breadcrumbs_enable_irq(b);
325 326
			if (test_bit(ENGINE_IRQ_BREADCRUMB,
				     &engine->irq_posted))
327
				wake_up_process(to_wait(next)->tsk);
328 329 330 331 332 333 334 335 336 337 338 339
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
		b->first_wait = wait;
340
		rcu_assign_pointer(b->irq_seqno_bh, wait->tsk);
341 342 343 344 345
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
346 347
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
348 349
		 */
		__intel_breadcrumbs_enable_irq(b);
350
	}
351
	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh));
352 353 354 355 356 357 358 359 360 361 362 363
	GEM_BUG_ON(!b->first_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

364
	spin_lock_irq(&b->lock);
365
	first = __intel_engine_add_wait(engine, wait);
366
	spin_unlock_irq(&b->lock);
367 368 369 370 371 372 373 374 375

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

376 377 378 379 380 381 382 383 384
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

385 386
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
387 388 389
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

390
	assert_spin_locked(&b->lock);
391 392

	if (RB_EMPTY_NODE(&wait->node))
393
		goto out;
394 395

	if (b->first_wait == wait) {
396
		const int priority = wakeup_priority(b, wait->tsk);
397 398
		struct rb_node *next;

399
		GEM_BUG_ON(rcu_access_pointer(b->irq_seqno_bh) != wait->tsk);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
421
			u32 seqno = intel_engine_get_seqno(engine);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

		if (next) {
			/* In our haste, we may have completed the first waiter
			 * before we enabled the interrupt. Do so now as we
			 * have a second waiter for a future seqno. Afterwards,
			 * we have to wake up that waiter in case we missed
			 * the interrupt, or if we have to handle an
			 * exception rather than a seqno completion.
			 */
			b->first_wait = to_wait(next);
442
			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
443 444
			if (b->first_wait->seqno != wait->seqno)
				__intel_breadcrumbs_enable_irq(b);
445
			wake_up_process(b->first_wait->tsk);
446 447
		} else {
			b->first_wait = NULL;
448
			rcu_assign_pointer(b->irq_seqno_bh, NULL);
449 450 451 452 453 454 455 456 457
			__intel_breadcrumbs_disable_irq(b);
		}
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

458
out:
459 460 461
	GEM_BUG_ON(b->first_wait == wait);
	GEM_BUG_ON(rb_first(&b->waiters) !=
		   (b->first_wait ? &b->first_wait->node : NULL));
462
	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh) ^ RB_EMPTY_ROOT(&b->waiters));
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

	spin_lock_irq(&b->lock);
	__intel_engine_remove_wait(engine, wait);
479
	spin_unlock_irq(&b->lock);
480 481
}

482 483 484 485 486 487
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
488
{
489
	if (!request)
490 491 492 493 494
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
495
	if (intel_wait_complete(&request->signaling.wait))
496
		return signal_valid(request);
497 498 499 500

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
501
	if (__i915_request_irq_complete(request))
502 503 504 505 506
		return true;

	return false;
}

507
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
508
{
509
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
510 511 512 513 514 515 516 517 518 519 520 521 522
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
523
	struct drm_i915_gem_request *request;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
539 540 541 542 543
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
544
		if (signal_complete(request)) {
545 546 547 548
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

549 550
			spin_lock_irq(&b->lock);

551 552 553
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
554 555
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
556

557 558 559 560 561 562
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
563
			if (request == rcu_access_pointer(b->first_signal)) {
564 565
				struct rb_node *rb =
					rb_next(&request->signaling.node);
566 567
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
568 569
			}
			rb_erase(&request->signaling.node, &b->signals);
570 571
			RB_CLEAR_NODE(&request->signaling.node);

572
			spin_unlock_irq(&b->lock);
573

574
			i915_gem_request_put(request);
575
		} else {
576 577
			DEFINE_WAIT(exec);

578 579
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
580
				break;
581
			}
582

583 584 585
			if (request)
				add_wait_queue(&request->execute, &exec);

586
			schedule();
587

588 589 590
			if (request)
				remove_wait_queue(&request->execute, &exec);

591 592
			if (kthread_should_park())
				kthread_parkme();
593
		}
594
		i915_gem_request_put(request);
595 596 597 598 599 600
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

601
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
602 603 604 605 606
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
607
	u32 seqno;
608

609 610 611 612 613 614 615 616
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
617
	assert_spin_locked(&request->lock);
618 619 620

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
621
		return;
622

623
	request->signaling.wait.tsk = b->signaler;
624
	request->signaling.wait.seqno = seqno;
625
	i915_gem_request_get(request);
626

627 628
	spin_lock(&b->lock);

629 630 631 632 633 634 635 636
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
637
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
638 639 640 641 642 643 644 645 646 647

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
648 649
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
650 651 652 653 654 655
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
656 657
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
658
	if (first)
659
		rcu_assign_pointer(b->first_signal, request);
660

661 662 663 664 665 666
	spin_unlock(&b->lock);

	if (wakeup)
		wake_up_process(b->signaler);
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	assert_spin_locked(&request->lock);
	GEM_BUG_ON(!request->signaling.wait.seqno);

	spin_lock(&b->lock);

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

	spin_unlock(&b->lock);

	request->signaling.wait.seqno = 0;
}

696 697 698
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
699
	struct task_struct *tsk;
700 701 702 703 704

	spin_lock_init(&b->lock);
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
705 706 707
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
708

709 710 711 712 713 714 715 716 717 718 719 720 721
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

722 723 724
	return 0;
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
739
	spin_lock_irq(&b->lock);
740 741 742 743

	__intel_breadcrumbs_disable_irq(b);
	if (intel_engine_has_waiter(engine)) {
		__intel_breadcrumbs_enable_irq(b);
744
		if (test_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted))
745 746 747 748 749 750
			wake_up_process(b->first_wait->tsk);
	} else {
		/* sanitize the IMR and unmask any auxiliary interrupts */
		irq_disable(engine);
	}

751
	spin_unlock_irq(&b->lock);
752 753
}

754 755 756 757
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

758 759 760
	/* The engines should be idle and all requests accounted for! */
	WARN_ON(READ_ONCE(b->first_wait));
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
761
	WARN_ON(rcu_access_pointer(b->first_signal));
762 763
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

764 765 766
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

767
	cancel_fake_irq(engine);
768 769
}

770
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
771
{
772 773
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
774

775
	spin_lock_irq(&b->lock);
776

777 778 779 780
	if (b->first_wait) {
		wake_up_process(b->first_wait->tsk);
		busy |= intel_engine_flag(engine);
	}
781

782
	if (rcu_access_pointer(b->first_signal)) {
783 784
		wake_up_process(b->signaler);
		busy |= intel_engine_flag(engine);
785 786
	}

787 788 789
	spin_unlock_irq(&b->lock);

	return busy;
790
}
791 792 793 794

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif