fib_trie.c 68.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <linux/notifier.h>
77
#include <net/net_namespace.h>
78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
D
David Ahern 已提交
84
#include <trace/events/fib.h>
85 86
#include "fib_lookup.h"

87 88 89 90 91 92 93 94 95 96 97 98 99
static unsigned int fib_seq_sum(void)
{
	unsigned int fib_seq = 0;
	struct net *net;

	rtnl_lock();
	for_each_net(net)
		fib_seq += net->ipv4.fib_seq;
	rtnl_unlock();

	return fib_seq;
}

100
static ATOMIC_NOTIFIER_HEAD(fib_chain);
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static int call_fib_notifier(struct notifier_block *nb, struct net *net,
			     enum fib_event_type event_type,
			     struct fib_notifier_info *info)
{
	info->net = net;
	return nb->notifier_call(nb, event_type, info);
}

static void fib_rules_notify(struct net *net, struct notifier_block *nb,
			     enum fib_event_type event_type)
{
#ifdef CONFIG_IP_MULTIPLE_TABLES
	struct fib_notifier_info info;

	if (net->ipv4.fib_has_custom_rules)
		call_fib_notifier(nb, net, event_type, &info);
#endif
}

static void fib_notify(struct net *net, struct notifier_block *nb,
		       enum fib_event_type event_type);

static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
				   enum fib_event_type event_type, u32 dst,
				   int dst_len, struct fib_info *fi,
				   u8 tos, u8 type, u32 tb_id, u32 nlflags)
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
		.nlflags = nlflags,
	};
	return call_fib_notifier(nb, net, event_type, &info.info);
}

static bool fib_dump_is_consistent(struct notifier_block *nb,
				   void (*cb)(struct notifier_block *nb),
				   unsigned int fib_seq)
{
	atomic_notifier_chain_register(&fib_chain, nb);
	if (fib_seq == fib_seq_sum())
		return true;
	atomic_notifier_chain_unregister(&fib_chain, nb);
	if (cb)
		cb(nb);
	return false;
}

#define FIB_DUMP_MAX_RETRIES 5
int register_fib_notifier(struct notifier_block *nb,
			  void (*cb)(struct notifier_block *nb))
157
{
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	int retries = 0;

	do {
		unsigned int fib_seq = fib_seq_sum();
		struct net *net;

		/* Mutex semantics guarantee that every change done to
		 * FIB tries before we read the change sequence counter
		 * is now visible to us.
		 */
		rcu_read_lock();
		for_each_net_rcu(net) {
			fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
			fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
		}
		rcu_read_unlock();

		if (fib_dump_is_consistent(nb, cb, fib_seq))
			return 0;
	} while (++retries < FIB_DUMP_MAX_RETRIES);

	return -EBUSY;
180 181 182 183 184
}
EXPORT_SYMBOL(register_fib_notifier);

int unregister_fib_notifier(struct notifier_block *nb)
{
185
	return atomic_notifier_chain_unregister(&fib_chain, nb);
186 187 188 189 190 191
}
EXPORT_SYMBOL(unregister_fib_notifier);

int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
		       struct fib_notifier_info *info)
{
192
	net->ipv4.fib_seq++;
193
	info->net = net;
194
	return atomic_notifier_call_chain(&fib_chain, event_type, info);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
}

static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
				    int dst_len, struct fib_info *fi,
				    u8 tos, u8 type, u32 tb_id, u32 nlflags)
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
		.nlflags = nlflags,
	};
	return call_fib_notifiers(net, event_type, &info.info);
}

R
Robert Olsson 已提交
214
#define MAX_STAT_DEPTH 32
215

216 217
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
218 219 220

typedef unsigned int t_key;

221 222 223
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
224

225
struct key_vector {
226 227
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
228
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
229
	unsigned char slen;
A
Alexander Duyck 已提交
230
	union {
231
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
232
		struct hlist_head leaf;
233
		/* This array is valid if (pos | bits) > 0 (TNODE) */
234
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
235
	};
236 237
};

238
struct tnode {
239
	struct rcu_head rcu;
240 241
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
242
	struct key_vector __rcu *parent;
243
	struct key_vector kv[1];
244
#define tn_bits kv[0].bits
245 246 247
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
248 249
#define LEAF_SIZE	TNODE_SIZE(1)

250 251 252 253 254 255 256
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
257
	unsigned int resize_node_skipped;
258 259 260 261 262 263 264 265 266
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
267
	unsigned int prefixes;
R
Robert Olsson 已提交
268
	unsigned int nodesizes[MAX_STAT_DEPTH];
269
};
270 271

struct trie {
272
	struct key_vector kv[1];
273
#ifdef CONFIG_IP_FIB_TRIE_STATS
274
	struct trie_use_stats __percpu *stats;
275 276 277
#endif
};

278
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
279 280 281 282 283 284 285 286
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
287

288
static struct kmem_cache *fn_alias_kmem __read_mostly;
289
static struct kmem_cache *trie_leaf_kmem __read_mostly;
290

291 292 293 294 295
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

296
/* caller must hold RTNL */
297
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
298
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
299

300
/* caller must hold RCU read lock or RTNL */
301
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
302
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
303

304
/* wrapper for rcu_assign_pointer */
305
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
306
{
A
Alexander Duyck 已提交
307
	if (n)
308
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
309 310
}

311
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
312 313 314

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
315
 */
316
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
317
{
318
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
319
}
R
Robert Olsson 已提交
320

321 322
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

323 324 325 326
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

327 328 329
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

330 331 332
	return index >> kv->pos;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
379
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
380 381 382 383 384 385 386 387
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
388
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
389 390
 * at this point.
 */
391

392 393
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
394
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
395
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
396 397

static void __alias_free_mem(struct rcu_head *head)
398
{
R
Robert Olsson 已提交
399 400
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
401 402
}

R
Robert Olsson 已提交
403
static inline void alias_free_mem_rcu(struct fib_alias *fa)
404
{
R
Robert Olsson 已提交
405 406
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
407

408
#define TNODE_KMALLOC_MAX \
409
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
410
#define TNODE_VMALLOC_MAX \
411
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
412

413
static void __node_free_rcu(struct rcu_head *head)
414
{
415
	struct tnode *n = container_of(head, struct tnode, rcu);
416

417
	if (!n->tn_bits)
418 419
		kmem_cache_free(trie_leaf_kmem, n);
	else
420
		kvfree(n);
421 422
}

423
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
424

425
static struct tnode *tnode_alloc(int bits)
426
{
427 428 429 430 431 432 433 434 435
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
436
	if (size <= PAGE_SIZE)
437
		return kzalloc(size, GFP_KERNEL);
438
	else
439
		return vzalloc(size);
440
}
R
Robert Olsson 已提交
441

442
static inline void empty_child_inc(struct key_vector *n)
443
{
444
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
445 446
}

447
static inline void empty_child_dec(struct key_vector *n)
448
{
449
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
450 451
}

452
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
453
{
454 455
	struct key_vector *l;
	struct tnode *kv;
456

457
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
458 459 460 461
	if (!kv)
		return NULL;

	/* initialize key vector */
462
	l = kv->kv;
463 464 465 466 467 468 469 470 471
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
472 473 474
	return l;
}

475
static struct key_vector *tnode_new(t_key key, int pos, int bits)
476
{
477
	unsigned int shift = pos + bits;
478 479
	struct key_vector *tn;
	struct tnode *tnode;
480 481 482

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
483

484
	tnode = tnode_alloc(bits);
485 486 487
	if (!tnode)
		return NULL;

488 489 490
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

491
	if (bits == KEYLENGTH)
492
		tnode->full_children = 1;
493
	else
494
		tnode->empty_children = 1ul << bits;
495

496
	tn = tnode->kv;
497 498 499 500 501
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

502 503 504
	return tn;
}

505
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
506 507
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
508
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
509
{
510
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
511 512
}

513 514 515
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
516 517
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
518
{
519
	struct key_vector *chi = get_child(tn, i);
520
	int isfull, wasfull;
521

522
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
523

524
	/* update emptyChildren, overflow into fullChildren */
525
	if (!n && chi)
526
		empty_child_inc(tn);
527
	if (n && !chi)
528
		empty_child_dec(tn);
529

530
	/* update fullChildren */
531
	wasfull = tnode_full(tn, chi);
532
	isfull = tnode_full(tn, n);
533

534
	if (wasfull && !isfull)
535
		tn_info(tn)->full_children--;
536
	else if (!wasfull && isfull)
537
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
538

539 540 541
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

542
	rcu_assign_pointer(tn->tnode[i], n);
543 544
}

545
static void update_children(struct key_vector *tn)
546 547 548 549
{
	unsigned long i;

	/* update all of the child parent pointers */
550
	for (i = child_length(tn); i;) {
551
		struct key_vector *inode = get_child(tn, --i);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

567 568
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
569
{
570 571
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
572
	else
573
		put_child(tp, get_index(key, tp), n);
574 575
}

576
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
577
{
578
	tn_info(tn)->rcu.next = NULL;
579 580
}

581 582
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
583
{
584 585
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
586
}
E
Eric Dumazet 已提交
587

588
static void tnode_free(struct key_vector *tn)
589
{
590
	struct callback_head *head = &tn_info(tn)->rcu;
591 592 593

	while (head) {
		head = head->next;
594
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
595 596
		node_free(tn);

597
		tn = container_of(head, struct tnode, rcu)->kv;
598 599 600 601 602
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
603 604 605
	}
}

606 607 608
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
609
{
610
	struct key_vector *tp = node_parent(oldtnode);
611 612 613 614
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
615
	put_child_root(tp, tn->key, tn);
616 617 618 619 620 621 622 623

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
624
	for (i = child_length(tn); i;) {
625
		struct key_vector *inode = get_child(tn, --i);
626 627 628

		/* resize child node */
		if (tnode_full(tn, inode))
629
			tn = resize(t, inode);
630
	}
631

632
	return tp;
633 634
}

635 636
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
637
{
638
	struct key_vector *tn;
639
	unsigned long i;
640
	t_key m;
641

S
Stephen Hemminger 已提交
642
	pr_debug("In inflate\n");
643

644
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
645
	if (!tn)
646
		goto notnode;
647

648 649 650
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

651 652 653 654
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
655
	 */
656
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
657
		struct key_vector *inode = get_child(oldtnode, --i);
658
		struct key_vector *node0, *node1;
659
		unsigned long j, k;
660

661
		/* An empty child */
662
		if (!inode)
663 664 665
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
666
		if (!tnode_full(oldtnode, inode)) {
667
			put_child(tn, get_index(inode->key, tn), inode);
668 669 670
			continue;
		}

671 672 673
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

674 675
		/* An internal node with two children */
		if (inode->bits == 1) {
676 677
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
678
			continue;
679 680
		}

O
Olof Johansson 已提交
681
		/* We will replace this node 'inode' with two new
682
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
683 684 685 686 687
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
688
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
689 690
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
691 692 693
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
694
		 */
695 696 697
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
698
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
699

700
		tnode_free_append(tn, node1);
701 702 703 704 705
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
706
		for (k = child_length(inode), j = k / 2; j;) {
707 708 709 710
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
711
		}
712

713 714 715
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
716

717 718 719 720
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
721

722
	/* setup the parent pointers into and out of this node */
723
	return replace(t, oldtnode, tn);
724
nomem:
725 726
	/* all pointers should be clean so we are done */
	tnode_free(tn);
727 728
notnode:
	return NULL;
729 730
}

731 732
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
733
{
734
	struct key_vector *tn;
735
	unsigned long i;
736

S
Stephen Hemminger 已提交
737
	pr_debug("In halve\n");
738

739
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
740
	if (!tn)
741
		goto notnode;
742

743 744 745
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

746 747 748 749
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
750
	 */
751
	for (i = child_length(oldtnode); i;) {
752 753
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
754
		struct key_vector *inode;
755

756 757 758 759 760
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
761

762
		/* Two nonempty children */
763
		inode = tnode_new(node0->key, oldtnode->pos, 1);
764 765
		if (!inode)
			goto nomem;
766
		tnode_free_append(tn, inode);
767

768 769 770 771 772 773 774
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
775
	}
776

777
	/* setup the parent pointers into and out of this node */
778 779 780 781 782 783
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
784 785
}

786 787
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
788
{
789
	struct key_vector *n, *tp;
790 791 792
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
793
	for (n = NULL, i = child_length(oldtnode); !n && i;)
794
		n = get_child(oldtnode, --i);
795 796 797

	/* compress one level */
	tp = node_parent(oldtnode);
798
	put_child_root(tp, oldtnode->key, n);
799 800 801 802
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
803 804

	return tp;
805 806
}

807
static unsigned char update_suffix(struct key_vector *tn)
808 809 810 811 812 813 814 815 816
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
817
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
818
		struct key_vector *n = get_child(tn, i);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

842 843 844 845 846 847 848 849
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
850
 * child_length() and instead of multiplying by 2 (since the
851 852 853 854
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
855
 * The left-hand side may look a bit weird: child_length(tn)
856 857 858 859 860 861 862 863 864
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
865
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
866 867
 *     tn->full_children;
 *
868
 * new_child_length = child_length(tn) * 2;
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
885
 * 100 * (child_length(tn) - tn->empty_children +
886 887 888
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
889
 * 100 * (child_length(tn) - tn->empty_children +
890
 *    tn->full_children) >=
891
 *      inflate_threshold * child_length(tn) * 2
892 893
 *
 * shorten again:
894
 * 50 * (tn->full_children + child_length(tn) -
895
 *    tn->empty_children) >= inflate_threshold *
896
 *    child_length(tn)
897 898
 *
 */
899
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
900
{
901
	unsigned long used = child_length(tn);
902 903 904
	unsigned long threshold = used;

	/* Keep root node larger */
905
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
906 907
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
908

909 910 911
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
912 913
}

914
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
915
{
916
	unsigned long used = child_length(tn);
917 918 919
	unsigned long threshold = used;

	/* Keep root node larger */
920
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
921
	used -= tn_info(tn)->empty_children;
922

923 924 925 926 927
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

928
static inline bool should_collapse(struct key_vector *tn)
929
{
930
	unsigned long used = child_length(tn);
931

932
	used -= tn_info(tn)->empty_children;
933 934

	/* account for bits == KEYLENGTH case */
935
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
936 937 938 939
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
940 941
}

942
#define MAX_WORK 10
943
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
944
{
945 946 947
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
948
	struct key_vector *tp = node_parent(tn);
949
	unsigned long cindex = get_index(tn->key, tp);
950
	int max_work = MAX_WORK;
951 952 953 954

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

955 956 957 958
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
959
	BUG_ON(tn != get_child(tp, cindex));
960

961 962
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
963
	 */
964
	while (should_inflate(tp, tn) && max_work) {
965 966
		tp = inflate(t, tn);
		if (!tp) {
967
#ifdef CONFIG_IP_FIB_TRIE_STATS
968
			this_cpu_inc(stats->resize_node_skipped);
969 970 971
#endif
			break;
		}
972

973
		max_work--;
974
		tn = get_child(tp, cindex);
975 976
	}

977 978 979
	/* update parent in case inflate failed */
	tp = node_parent(tn);

980 981
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
982
		return tp;
983

984
	/* Halve as long as the number of empty children in this
985 986
	 * node is above threshold.
	 */
987
	while (should_halve(tp, tn) && max_work) {
988 989
		tp = halve(t, tn);
		if (!tp) {
990
#ifdef CONFIG_IP_FIB_TRIE_STATS
991
			this_cpu_inc(stats->resize_node_skipped);
992 993 994 995
#endif
			break;
		}

996
		max_work--;
997
		tn = get_child(tp, cindex);
998
	}
999 1000

	/* Only one child remains */
1001 1002 1003
	if (should_collapse(tn))
		return collapse(t, tn);

1004
	/* update parent in case halve failed */
1005
	tp = node_parent(tn);
1006 1007 1008

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
1009
		return tp;
1010 1011 1012 1013 1014

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

1015
		if (slen > tp->slen)
1016
			tp->slen = slen;
1017
	}
1018

1019
	return tp;
1020 1021
}

1022
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
1023
{
1024
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
1025 1026 1027 1028 1029 1030
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

1031
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
1032
{
1033 1034 1035
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
1036
	while (tn->slen < l->slen) {
1037 1038 1039 1040 1041
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
1042
/* rcu_read_lock needs to be hold by caller from readside */
1043 1044
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
1045
{
1046 1047 1048 1049 1050 1051 1052 1053 1054
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
1055

1056
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
1057 1058 1059 1060 1061 1062

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1063
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
1064
		 *     we have a mismatch in skip bits and failed
1065 1066
		 *   else
		 *     we know the value is cindex
1067 1068 1069 1070
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
1071
		 */
1072 1073 1074 1075
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
1076

1077 1078
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
1079

1080
	*tp = pn;
1081

A
Alexander Duyck 已提交
1082
	return n;
1083 1084
}

1085 1086 1087
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
1088
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1089
					u8 tos, u32 prio, u32 tb_id)
1090 1091 1092 1093 1094 1095
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

1096
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
1097 1098 1099 1100
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
1101 1102 1103 1104
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1105 1106 1107 1108 1109 1110 1111 1112 1113
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1114
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1115
{
1116 1117
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1118 1119
}

1120
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1121
			   struct fib_alias *new, t_key key)
1122
{
1123
	struct key_vector *n, *l;
1124

1125
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1126
	if (!l)
1127
		goto noleaf;
1128 1129

	/* retrieve child from parent node */
1130
	n = get_child(tp, get_index(key, tp));
1131

1132 1133 1134 1135 1136 1137 1138
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1139
		struct key_vector *tn;
1140

1141
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1142 1143
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1144

1145 1146 1147
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1148

1149
		/* start adding routes into the node */
1150
		put_child_root(tp, key, tn);
1151
		node_set_parent(n, tn);
1152

1153
		/* parent now has a NULL spot where the leaf can go */
1154
		tp = tn;
1155
	}
O
Olof Johansson 已提交
1156

1157
	/* Case 3: n is NULL, and will just insert a new leaf */
1158
	NODE_INIT_PARENT(l, tp);
1159
	put_child_root(tp, key, l);
1160 1161 1162
	trie_rebalance(t, tp);

	return 0;
1163 1164 1165 1166
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1167 1168
}

1169 1170
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1171 1172 1173 1174 1175 1176 1177
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1178
	} else {
1179 1180 1181 1182 1183
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1184 1185 1186
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1187 1188 1189 1190 1191 1192 1193
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1194
	}
R
Robert Olsson 已提交
1195

1196 1197 1198 1199 1200 1201 1202
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1203 1204
}

1205
/* Caller must hold RTNL. */
1206 1207
int fib_table_insert(struct net *net, struct fib_table *tb,
		     struct fib_config *cfg)
1208
{
1209
	struct trie *t = (struct trie *)tb->tb_data;
1210
	struct fib_alias *fa, *new_fa;
1211
	struct key_vector *l, *tp;
1212
	u16 nlflags = NLM_F_EXCL;
1213
	struct fib_info *fi;
A
Alexander Duyck 已提交
1214 1215
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1216
	u8 tos = cfg->fc_tos;
1217
	u32 key;
1218 1219
	int err;

1220
	if (plen > KEYLENGTH)
1221 1222
		return -EINVAL;

1223
	key = ntohl(cfg->fc_dst);
1224

1225
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1226

1227
	if ((plen < KEYLENGTH) && (key << plen))
1228 1229
		return -EINVAL;

1230 1231 1232
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1233
		goto err;
1234
	}
1235

1236
	l = fib_find_node(t, &tp, key);
1237 1238
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1239 1240 1241 1242 1243 1244

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1245 1246
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1247 1248
	 */

1249 1250 1251
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1252 1253

		err = -EEXIST;
1254
		if (cfg->fc_nlflags & NLM_F_EXCL)
1255 1256
			goto out;

1257 1258
		nlflags &= ~NLM_F_EXCL;

1259 1260 1261 1262 1263 1264 1265
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1266
		hlist_for_each_entry_from(fa, fa_list) {
1267 1268 1269
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1280
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1281 1282 1283
			struct fib_info *fi_drop;
			u8 state;

1284
			nlflags |= NLM_F_REPLACE;
1285 1286 1287 1288
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1289
				goto out;
1290
			}
R
Robert Olsson 已提交
1291
			err = -ENOBUFS;
1292
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1293
			if (!new_fa)
R
Robert Olsson 已提交
1294
				goto out;
1295 1296

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1297 1298
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1299
			new_fa->fa_type = cfg->fc_type;
1300
			state = fa->fa_state;
1301
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1302
			new_fa->fa_slen = fa->fa_slen;
1303
			new_fa->tb_id = tb->tb_id;
1304
			new_fa->fa_default = -1;
1305

1306
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1307

R
Robert Olsson 已提交
1308
			alias_free_mem_rcu(fa);
1309 1310 1311

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1312
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1313 1314 1315 1316 1317

			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
						 key, plen, fi,
						 new_fa->fa_tos, cfg->fc_type,
						 tb->tb_id, cfg->fc_nlflags);
1318
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1319
				tb->tb_id, &cfg->fc_nlinfo, nlflags);
1320

O
Olof Johansson 已提交
1321
			goto succeeded;
1322 1323 1324 1325 1326
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1327 1328
		if (fa_match)
			goto out;
1329

1330
		if (cfg->fc_nlflags & NLM_F_APPEND)
1331
			nlflags |= NLM_F_APPEND;
1332
		else
1333
			fa = fa_first;
1334 1335
	}
	err = -ENOENT;
1336
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1337 1338
		goto out;

1339
	nlflags |= NLM_F_CREATE;
1340
	err = -ENOBUFS;
1341
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1342
	if (!new_fa)
1343 1344 1345 1346
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1347
	new_fa->fa_type = cfg->fc_type;
1348
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1349
	new_fa->fa_slen = slen;
1350
	new_fa->tb_id = tb->tb_id;
1351
	new_fa->fa_default = -1;
1352

1353
	/* Insert new entry to the list. */
1354 1355
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1356
		goto out_free_new_fa;
1357

1358 1359 1360
	if (!plen)
		tb->tb_num_default++;

1361
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1362 1363
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
				 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1364
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1365
		  &cfg->fc_nlinfo, nlflags);
1366 1367
succeeded:
	return 0;
1368 1369 1370

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1371 1372
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1373
err:
1374 1375 1376
	return err;
}

1377
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1378 1379 1380 1381 1382 1383
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1384
/* should be called with rcu_read_lock */
1385
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1386
		     struct fib_result *res, int fib_flags)
1387
{
1388
	struct trie *t = (struct trie *) tb->tb_data;
1389 1390 1391
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1392
	const t_key key = ntohl(flp->daddr);
1393
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1394
	struct fib_alias *fa;
1395
	unsigned long index;
1396
	t_key cindex;
O
Olof Johansson 已提交
1397

D
David Ahern 已提交
1398 1399
	trace_fib_table_lookup(tb->tb_id, flp);

1400 1401 1402 1403
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1404
	if (!n)
1405
		return -EAGAIN;
1406 1407

#ifdef CONFIG_IP_FIB_TRIE_STATS
1408
	this_cpu_inc(stats->gets);
1409 1410
#endif

1411 1412
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1413
		index = get_cindex(key, n);
1414 1415 1416 1417 1418 1419

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1420
		 *   if (index >= (1ul << bits))
1421
		 *     we have a mismatch in skip bits and failed
1422 1423
		 *   else
		 *     we know the value is cindex
1424 1425 1426 1427
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1428
		 */
1429
		if (index >= (1ul << n->bits))
1430
			break;
1431

1432 1433
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1434
			goto found;
1435

1436 1437
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1438
		 */
1439
		if (n->slen > n->pos) {
1440 1441
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1442
		}
1443

1444
		n = get_child_rcu(n, index);
1445 1446 1447
		if (unlikely(!n))
			goto backtrace;
	}
1448

1449 1450 1451
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1452
		struct key_vector __rcu **cptr = n->tnode;
1453

1454 1455 1456
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1457
		 */
1458
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1459
			goto backtrace;
O
Olof Johansson 已提交
1460

1461 1462 1463
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1464

1465 1466 1467
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1468 1469
		 */

1470
		while ((n = rcu_dereference(*cptr)) == NULL) {
1471 1472
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1473 1474
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1475
#endif
1476 1477 1478 1479 1480 1481 1482 1483
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1484 1485 1486 1487 1488
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1489
					return -EAGAIN;
1490 1491 1492 1493
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1494
				pn = node_parent_rcu(pn);
1495 1496 1497 1498 1499 1500 1501
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1502
			cptr = &pn->tnode[cindex];
1503
		}
1504
	}
1505

1506
found:
1507 1508 1509
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1510
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1511 1512 1513
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1514

1515 1516 1517 1518
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1528
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1529
			this_cpu_inc(stats->semantic_match_passed);
1530
#endif
A
Alexander Duyck 已提交
1531 1532 1533 1534 1535 1536
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1537
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1538 1539 1540

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1541 1542 1543 1544 1545
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1546
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1547 1548 1549 1550
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1562
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1563
			this_cpu_inc(stats->semantic_match_passed);
1564
#endif
D
David Ahern 已提交
1565 1566
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1567
			return err;
1568
		}
1569
	}
1570
#ifdef CONFIG_IP_FIB_TRIE_STATS
1571
	this_cpu_inc(stats->semantic_match_miss);
1572 1573
#endif
	goto backtrace;
1574
}
1575
EXPORT_SYMBOL_GPL(fib_table_lookup);
1576

1577 1578
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1591
		put_child_root(tp, l->key, NULL);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1607 1608
int fib_table_delete(struct net *net, struct fib_table *tb,
		     struct fib_config *cfg)
1609 1610 1611
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1612
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1613 1614
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1615 1616
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1617

A
Alexander Duyck 已提交
1618
	if (plen > KEYLENGTH)
1619 1620
		return -EINVAL;

1621
	key = ntohl(cfg->fc_dst);
1622

1623
	if ((plen < KEYLENGTH) && (key << plen))
1624 1625
		return -EINVAL;

1626
	l = fib_find_node(t, &tp, key);
1627
	if (!l)
1628 1629
		return -ESRCH;

1630
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1631 1632 1633
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1634
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1635 1636

	fa_to_delete = NULL;
1637
	hlist_for_each_entry_from(fa, fa_list) {
1638 1639
		struct fib_info *fi = fa->fa_info;

1640 1641 1642
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1643 1644
			break;

1645 1646
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1647
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1648 1649
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1650 1651 1652
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1653 1654 1655 1656 1657
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1658 1659
	if (!fa_to_delete)
		return -ESRCH;
1660

1661 1662 1663
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
				 fa_to_delete->fa_info, tos, cfg->fc_type,
				 tb->tb_id, 0);
1664
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1665
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1666

1667 1668 1669
	if (!plen)
		tb->tb_num_default--;

1670
	fib_remove_alias(t, tp, l, fa_to_delete);
1671

1672
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1673
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1674

1675 1676
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1677
	return 0;
1678 1679
}

1680
/* Scan for the next leaf starting at the provided key value */
1681
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1682
{
1683
	struct key_vector *pn, *n = *tn;
1684
	unsigned long cindex;
1685

1686
	/* this loop is meant to try and find the key in the trie */
1687
	do {
1688 1689
		/* record parent and next child index */
		pn = n;
1690
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1691 1692 1693

		if (cindex >> pn->bits)
			break;
1694

1695
		/* descend into the next child */
1696
		n = get_child_rcu(pn, cindex++);
1697 1698 1699 1700 1701 1702 1703
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1704

1705
	/* this loop will search for the next leaf with a greater key */
1706
	while (!IS_TRIE(pn)) {
1707 1708 1709
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1710

1711 1712 1713 1714
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1715

1716
		/* grab the next available node */
1717
		n = get_child_rcu(pn, cindex++);
1718 1719
		if (!n)
			continue;
1720

1721 1722 1723
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1724

1725 1726 1727 1728
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1729

1730 1731 1732 1733
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1734
	*tn = pn;
1735
	return n;
1736 1737
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1835 1836
					     NULL, l->key)) {
				kmem_cache_free(fn_alias_kmem, new_fa);
1837
				goto out;
1838
			}
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1919
/* Caller must hold RTNL. */
1920
int fib_table_flush(struct net *net, struct fib_table *tb)
1921
{
1922
	struct trie *t = (struct trie *)tb->tb_data;
1923 1924
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1925 1926
	struct hlist_node *tmp;
	struct fib_alias *fa;
1927
	int found = 0;
1928

1929 1930 1931 1932
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1933

1934 1935
		if (!(cindex--)) {
			t_key pkey = pn->key;
1936

1937 1938 1939
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1940

1941 1942 1943
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1944

1945 1946
			continue;
		}
1947

1948 1949 1950 1951
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1952

1953 1954 1955 1956
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1957

1958 1959
			continue;
		}
1960

1961 1962
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1963

1964 1965 1966 1967
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1968

1969 1970 1971 1972 1973
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
						 KEYLENGTH - fa->fa_slen,
						 fi, fa->fa_tos, fa->fa_type,
						 tb->tb_id, 0);
1974 1975 1976 1977
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1978 1979
		}

1980 1981
		/* update leaf slen */
		n->slen = slen;
1982

1983 1984 1985 1986
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1987
	}
1988

S
Stephen Hemminger 已提交
1989
	pr_debug("trie_flush found=%d\n", found);
1990 1991 1992
	return found;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static void fib_leaf_notify(struct net *net, struct key_vector *l,
			    struct fib_table *tb, struct notifier_block *nb,
			    enum fib_event_type event_type)
{
	struct fib_alias *fa;

	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (!fi)
			continue;

		/* local and main table can share the same trie,
		 * so don't notify twice for the same entry.
		 */
		if (tb->tb_id != fa->tb_id)
			continue;

		call_fib_entry_notifier(nb, net, event_type, l->key,
					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
					fa->fa_type, fa->tb_id, 0);
	}
}

static void fib_table_notify(struct net *net, struct fib_table *tb,
			     struct notifier_block *nb,
			     enum fib_event_type event_type)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *l, *tp = t->kv;
	t_key key = 0;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		fib_leaf_notify(net, l, tb, nb, event_type);

		key = l->key + 1;
		/* stop in case of wrap around */
		if (key < l->key)
			break;
	}
}

static void fib_notify(struct net *net, struct notifier_block *nb,
		       enum fib_event_type event_type)
{
	unsigned int h;

	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, head, tb_hlist)
			fib_table_notify(net, tb, nb, event_type);
	}
}

2049
static void __trie_free_rcu(struct rcu_head *head)
2050
{
2051
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2052 2053 2054
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

2055 2056
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
2057
#endif /* CONFIG_IP_FIB_TRIE_STATS */
2058 2059 2060
	kfree(tb);
}

2061 2062 2063 2064 2065
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

2066
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
2067
			     struct sk_buff *skb, struct netlink_callback *cb)
2068
{
A
Alexander Duyck 已提交
2069
	__be32 xkey = htonl(l->key);
2070
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2071
	int i, s_i;
2072

A
Alexander Duyck 已提交
2073
	s_i = cb->args[4];
2074 2075
	i = 0;

R
Robert Olsson 已提交
2076
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
2077
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2078 2079 2080 2081 2082
		if (i < s_i) {
			i++;
			continue;
		}

2083 2084 2085 2086 2087
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

2088
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2089 2090 2091 2092
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
2093
				  xkey,
2094
				  KEYLENGTH - fa->fa_slen,
2095
				  fa->fa_tos,
2096
				  fa->fa_info, NLM_F_MULTI) < 0) {
2097
			cb->args[4] = i;
2098 2099
			return -1;
		}
2100
		i++;
2101
	}
2102

2103
	cb->args[4] = i;
2104 2105 2106
	return skb->len;
}

2107
/* rcu_read_lock needs to be hold by caller from readside */
2108 2109
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
2110
{
2111
	struct trie *t = (struct trie *)tb->tb_data;
2112
	struct key_vector *l, *tp = t->kv;
2113 2114 2115
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
2116 2117
	int count = cb->args[2];
	t_key key = cb->args[3];
2118

2119
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2120
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2121 2122
			cb->args[3] = key;
			cb->args[2] = count;
2123
			return -1;
2124
		}
2125

2126
		++count;
2127 2128
		key = l->key + 1;

2129 2130
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2131 2132 2133 2134

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
2135
	}
2136 2137 2138 2139

	cb->args[3] = key;
	cb->args[2] = count;

2140 2141 2142
	return skb->len;
}

2143
void __init fib_trie_init(void)
2144
{
2145 2146
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2147 2148 2149
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2150
					   LEAF_SIZE,
2151
					   0, SLAB_PANIC, NULL);
2152
}
2153

2154
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2155 2156 2157
{
	struct fib_table *tb;
	struct trie *t;
2158 2159 2160 2161
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2162

2163
	tb = kzalloc(sz, GFP_KERNEL);
2164
	if (!tb)
2165 2166 2167
		return NULL;

	tb->tb_id = id;
2168
	tb->tb_num_default = 0;
2169 2170 2171 2172
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2173 2174

	t = (struct trie *) tb->tb_data;
2175 2176
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2177 2178 2179 2180 2181 2182 2183
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2184 2185 2186 2187

	return tb;
}

2188 2189 2190
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2191
	struct seq_net_private p;
2192
	struct fib_table *tb;
2193
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2194 2195
	unsigned int index;
	unsigned int depth;
2196
};
2197

2198
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2199
{
2200
	unsigned long cindex = iter->index;
2201 2202
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2203

2204 2205
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2206

2207 2208 2209 2210 2211 2212 2213
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2214
			if (IS_LEAF(n)) {
2215 2216
				iter->tnode = pn;
				iter->index = cindex;
2217 2218
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2219
				iter->tnode = n;
2220 2221 2222
				iter->index = 0;
				++iter->depth;
			}
2223

2224 2225
			return n;
		}
2226

2227 2228 2229 2230
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2231
		--iter->depth;
2232
	}
2233

2234 2235 2236 2237
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2238
	return NULL;
2239 2240
}

2241 2242
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2243
{
2244
	struct key_vector *n, *pn;
2245

S
Stephen Hemminger 已提交
2246
	if (!t)
2247 2248
		return NULL;

2249
	pn = t->kv;
2250
	n = rcu_dereference(pn->tnode[0]);
2251
	if (!n)
2252
		return NULL;
2253

2254
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2255
		iter->tnode = n;
2256 2257 2258
		iter->index = 0;
		iter->depth = 1;
	} else {
2259
		iter->tnode = pn;
2260 2261
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2262
	}
2263 2264

	return n;
2265
}
O
Olof Johansson 已提交
2266

2267 2268
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2269
	struct key_vector *n;
2270
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2271

2272
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2273

2274
	rcu_read_lock();
2275
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2276
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2277
			struct fib_alias *fa;
2278

2279 2280 2281 2282
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2283

A
Alexander Duyck 已提交
2284
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2285
				++s->prefixes;
2286 2287
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2288 2289
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2290
			s->nullpointers += tn_info(n)->empty_children;
2291 2292
		}
	}
R
Robert Olsson 已提交
2293
	rcu_read_unlock();
2294 2295
}

2296 2297 2298 2299
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2300
{
E
Eric Dumazet 已提交
2301
	unsigned int i, max, pointers, bytes, avdepth;
2302

2303 2304 2305 2306
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2307

2308 2309
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2310
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2311

2312
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2313
	bytes = LEAF_SIZE * stat->leaves;
2314 2315

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2316
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2317

2318
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2319
	bytes += TNODE_SIZE(0) * stat->tnodes;
2320

R
Robert Olsson 已提交
2321 2322
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2323
		max--;
2324

2325
	pointers = 0;
2326
	for (i = 1; i < max; i++)
2327
		if (stat->nodesizes[i] != 0) {
2328
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2329 2330 2331
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2332
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2333

2334
	bytes += sizeof(struct key_vector *) * pointers;
2335 2336
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2337
}
R
Robert Olsson 已提交
2338

2339
#ifdef CONFIG_IP_FIB_TRIE_STATS
2340
static void trie_show_usage(struct seq_file *seq,
2341
			    const struct trie_use_stats __percpu *stats)
2342
{
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2358
	seq_printf(seq, "\nCounters:\n---------\n");
2359 2360
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2361
	seq_printf(seq, "semantic match passed = %u\n",
2362 2363 2364 2365
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2366
}
2367 2368
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2369
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2370
{
2371 2372 2373 2374 2375 2376
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2377
}
2378

2379

2380 2381
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2382
	struct net *net = (struct net *)seq->private;
2383
	unsigned int h;
2384

2385
	seq_printf(seq,
2386 2387
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2388
		   LEAF_SIZE, TNODE_SIZE(0));
2389

2390 2391 2392 2393
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2394
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2395 2396
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2397

2398 2399 2400 2401 2402 2403 2404 2405
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2406
			trie_show_usage(seq, t->stats);
2407 2408 2409
#endif
		}
	}
2410

2411
	return 0;
2412 2413
}

2414
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2415
{
2416
	return single_open_net(inode, file, fib_triestat_seq_show);
2417 2418
}

2419
static const struct file_operations fib_triestat_fops = {
2420 2421 2422 2423
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2424
	.release = single_release_net,
2425 2426
};

2427
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2428
{
2429 2430
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2431
	loff_t idx = 0;
2432
	unsigned int h;
2433

2434 2435 2436
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2437

2438
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2439
			struct key_vector *n;
2440 2441 2442 2443 2444 2445 2446 2447 2448

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2449
	}
2450

2451 2452 2453
	return NULL;
}

2454
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2455
	__acquires(RCU)
2456
{
2457
	rcu_read_lock();
2458
	return fib_trie_get_idx(seq, *pos);
2459 2460
}

2461
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462
{
2463
	struct fib_trie_iter *iter = seq->private;
2464
	struct net *net = seq_file_net(seq);
2465 2466 2467
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2468
	struct key_vector *n;
2469

2470
	++*pos;
2471 2472 2473 2474
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2475

2476 2477
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2478
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2479 2480 2481 2482 2483
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2484

2485 2486 2487
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2488
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2489 2490 2491 2492 2493
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2494
	return NULL;
2495 2496 2497 2498

found:
	iter->tb = tb;
	return n;
2499
}
2500

2501
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2502
	__releases(RCU)
2503
{
2504 2505
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2506

2507 2508
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2509 2510
	while (n-- > 0)
		seq_puts(seq, "   ");
2511
}
2512

2513
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2514
{
S
Stephen Hemminger 已提交
2515
	switch (s) {
2516 2517 2518 2519 2520 2521
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2522
		snprintf(buf, len, "scope=%d", s);
2523 2524 2525
		return buf;
	}
}
2526

2527
static const char *const rtn_type_names[__RTN_MAX] = {
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2541

E
Eric Dumazet 已提交
2542
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2543 2544 2545
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2546
	snprintf(buf, len, "type %u", t);
2547
	return buf;
2548 2549
}

2550 2551
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2552
{
2553
	const struct fib_trie_iter *iter = seq->private;
2554
	struct key_vector *n = v;
2555

2556
	if (IS_TRIE(node_parent_rcu(n)))
2557
		fib_table_print(seq, iter->tb);
2558

2559
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2560
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2561

2562 2563 2564
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2565 2566
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2567
	} else {
A
Alexander Duyck 已提交
2568
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2569
		struct fib_alias *fa;
2570 2571

		seq_indent(seq, iter->depth);
2572
		seq_printf(seq, "  |-- %pI4\n", &val);
2573

A
Alexander Duyck 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2587
		}
2588
	}
2589

2590 2591 2592
	return 0;
}

2593
static const struct seq_operations fib_trie_seq_ops = {
2594 2595 2596 2597
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2598 2599
};

2600
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2601
{
2602 2603
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2604 2605
}

2606
static const struct file_operations fib_trie_fops = {
2607 2608 2609 2610
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2611
	.release = seq_release_net,
2612 2613
};

2614 2615
struct fib_route_iter {
	struct seq_net_private p;
2616
	struct fib_table *main_tb;
2617
	struct key_vector *tnode;
2618 2619 2620 2621
	loff_t	pos;
	t_key	key;
};

2622 2623
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2624
{
2625
	struct key_vector *l, **tp = &iter->tnode;
2626
	t_key key;
2627

2628
	/* use cached location of previously found key */
2629 2630 2631
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2632
		iter->pos = 1;
2633
		key = 0;
2634 2635
	}

2636 2637 2638
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2639
		key = l->key + 1;
2640
		iter->pos++;
2641 2642 2643 2644 2645
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2646 2647 2648
	}

	if (l)
2649
		iter->key = l->key;	/* remember it */
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2661
	struct trie *t;
2662 2663

	rcu_read_lock();
2664

2665
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2666 2667 2668
	if (!tb)
		return NULL;

2669
	iter->main_tb = tb;
2670 2671
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2672 2673 2674 2675 2676

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2677
	iter->key = KEY_MAX;
2678 2679

	return SEQ_START_TOKEN;
2680 2681 2682 2683 2684
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2685
	struct key_vector *l = NULL;
2686
	t_key key = iter->key + 1;
2687 2688

	++*pos;
2689 2690 2691 2692 2693 2694

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2695
		iter->key = l->key;
2696
		iter->pos++;
2697 2698
	} else {
		iter->pos = 0;
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2710
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2711
{
E
Eric Dumazet 已提交
2712
	unsigned int flags = 0;
2713

E
Eric Dumazet 已提交
2714 2715
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2716 2717
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2718
	if (mask == htonl(0xFFFFFFFF))
2719 2720 2721
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2722 2723
}

2724 2725 2726
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2727
 *	and needs to be same as fib_hash output to avoid breaking
2728 2729 2730
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2731
{
2732 2733
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2734
	struct fib_alias *fa;
2735
	struct key_vector *l = v;
2736
	__be32 prefix;
2737

2738 2739 2740 2741 2742 2743
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2744

2745 2746
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2747 2748 2749 2750
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2751

A
Alexander Duyck 已提交
2752 2753 2754
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2755

2756 2757 2758
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2780

A
Alexander Duyck 已提交
2781
		seq_pad(seq, '\n');
2782 2783 2784 2785 2786
	}

	return 0;
}

2787
static const struct seq_operations fib_route_seq_ops = {
2788 2789 2790
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2791
	.show   = fib_route_seq_show,
2792 2793
};

2794
static int fib_route_seq_open(struct inode *inode, struct file *file)
2795
{
2796
	return seq_open_net(inode, file, &fib_route_seq_ops,
2797
			    sizeof(struct fib_route_iter));
2798 2799
}

2800
static const struct file_operations fib_route_fops = {
2801 2802 2803 2804
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2805
	.release = seq_release_net,
2806 2807
};

2808
int __net_init fib_proc_init(struct net *net)
2809
{
2810
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2811 2812
		goto out1;

2813 2814
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2815 2816
		goto out2;

2817
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2818 2819
		goto out3;

2820
	return 0;
2821 2822

out3:
2823
	remove_proc_entry("fib_triestat", net->proc_net);
2824
out2:
2825
	remove_proc_entry("fib_trie", net->proc_net);
2826 2827
out1:
	return -ENOMEM;
2828 2829
}

2830
void __net_exit fib_proc_exit(struct net *net)
2831
{
2832 2833 2834
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2835 2836 2837
}

#endif /* CONFIG_PROC_FS */