fib_trie.c 66.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52

53
#include <linux/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <linux/notifier.h>
77
#include <net/net_namespace.h>
78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
84
#include <net/fib_notifier.h>
D
David Ahern 已提交
85
#include <trace/events/fib.h>
86 87
#include "fib_lookup.h"

88 89 90
static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
				   enum fib_event_type event_type, u32 dst,
				   int dst_len, struct fib_info *fi,
91
				   u8 tos, u8 type, u32 tb_id)
92 93 94 95 96 97 98 99 100
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
	};
101
	return call_fib4_notifier(nb, net, event_type, &info.info);
102 103
}

104 105 106
static int call_fib_entry_notifiers(struct net *net,
				    enum fib_event_type event_type, u32 dst,
				    int dst_len, struct fib_info *fi,
107
				    u8 tos, u8 type, u32 tb_id)
108 109 110 111 112 113 114 115 116
{
	struct fib_entry_notifier_info info = {
		.dst = dst,
		.dst_len = dst_len,
		.fi = fi,
		.tos = tos,
		.type = type,
		.tb_id = tb_id,
	};
117
	return call_fib4_notifiers(net, event_type, &info.info);
118 119
}

R
Robert Olsson 已提交
120
#define MAX_STAT_DEPTH 32
121

122 123
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
124 125 126

typedef unsigned int t_key;

127 128 129
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
130

131
struct key_vector {
132 133
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
134
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
135
	unsigned char slen;
A
Alexander Duyck 已提交
136
	union {
137
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
138
		struct hlist_head leaf;
139
		/* This array is valid if (pos | bits) > 0 (TNODE) */
140
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
141
	};
142 143
};

144
struct tnode {
145
	struct rcu_head rcu;
146 147
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
148
	struct key_vector __rcu *parent;
149
	struct key_vector kv[1];
150
#define tn_bits kv[0].bits
151 152 153
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
154 155
#define LEAF_SIZE	TNODE_SIZE(1)

156 157 158 159 160 161 162
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
163
	unsigned int resize_node_skipped;
164 165 166 167 168 169 170 171 172
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
173
	unsigned int prefixes;
R
Robert Olsson 已提交
174
	unsigned int nodesizes[MAX_STAT_DEPTH];
175
};
176 177

struct trie {
178
	struct key_vector kv[1];
179
#ifdef CONFIG_IP_FIB_TRIE_STATS
180
	struct trie_use_stats __percpu *stats;
181 182 183
#endif
};

184
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
185 186 187 188 189 190 191 192
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
193

194
static struct kmem_cache *fn_alias_kmem __read_mostly;
195
static struct kmem_cache *trie_leaf_kmem __read_mostly;
196

197 198 199 200 201
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

202
/* caller must hold RTNL */
203
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
204
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
205

206
/* caller must hold RCU read lock or RTNL */
207
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
208
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
209

210
/* wrapper for rcu_assign_pointer */
211
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
212
{
A
Alexander Duyck 已提交
213
	if (n)
214
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
215 216
}

217
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
218 219 220

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
221
 */
222
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
223
{
224
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
225
}
R
Robert Olsson 已提交
226

227 228
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

229 230 231 232
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

233 234 235
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

236 237 238
	return index >> kv->pos;
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
285
 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
286 287 288 289 290 291 292 293
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
294
 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
295 296
 * at this point.
 */
297

298 299
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
300
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
301
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
302 303

static void __alias_free_mem(struct rcu_head *head)
304
{
R
Robert Olsson 已提交
305 306
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
307 308
}

R
Robert Olsson 已提交
309
static inline void alias_free_mem_rcu(struct fib_alias *fa)
310
{
R
Robert Olsson 已提交
311 312
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
313

314
#define TNODE_KMALLOC_MAX \
315
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
316
#define TNODE_VMALLOC_MAX \
317
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
318

319
static void __node_free_rcu(struct rcu_head *head)
320
{
321
	struct tnode *n = container_of(head, struct tnode, rcu);
322

323
	if (!n->tn_bits)
324 325
		kmem_cache_free(trie_leaf_kmem, n);
	else
326
		kvfree(n);
327 328
}

329
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
330

331
static struct tnode *tnode_alloc(int bits)
332
{
333 334 335 336 337 338 339 340 341
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
342
	if (size <= PAGE_SIZE)
343
		return kzalloc(size, GFP_KERNEL);
344
	else
345
		return vzalloc(size);
346
}
R
Robert Olsson 已提交
347

348
static inline void empty_child_inc(struct key_vector *n)
349
{
350
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
351 352
}

353
static inline void empty_child_dec(struct key_vector *n)
354
{
355
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
356 357
}

358
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
359
{
360 361
	struct key_vector *l;
	struct tnode *kv;
362

363
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
364 365 366 367
	if (!kv)
		return NULL;

	/* initialize key vector */
368
	l = kv->kv;
369 370 371 372 373 374 375 376 377
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
378 379 380
	return l;
}

381
static struct key_vector *tnode_new(t_key key, int pos, int bits)
382
{
383
	unsigned int shift = pos + bits;
384 385
	struct key_vector *tn;
	struct tnode *tnode;
386 387 388

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
389

390
	tnode = tnode_alloc(bits);
391 392 393
	if (!tnode)
		return NULL;

394 395 396
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

397
	if (bits == KEYLENGTH)
398
		tnode->full_children = 1;
399
	else
400
		tnode->empty_children = 1ul << bits;
401

402
	tn = tnode->kv;
403 404 405 406 407
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

408 409 410
	return tn;
}

411
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
412 413
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
414
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
415
{
416
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
417 418
}

419 420 421
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
422 423
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
424
{
425
	struct key_vector *chi = get_child(tn, i);
426
	int isfull, wasfull;
427

428
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
429

430
	/* update emptyChildren, overflow into fullChildren */
431
	if (!n && chi)
432
		empty_child_inc(tn);
433
	if (n && !chi)
434
		empty_child_dec(tn);
435

436
	/* update fullChildren */
437
	wasfull = tnode_full(tn, chi);
438
	isfull = tnode_full(tn, n);
439

440
	if (wasfull && !isfull)
441
		tn_info(tn)->full_children--;
442
	else if (!wasfull && isfull)
443
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
444

445 446 447
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

448
	rcu_assign_pointer(tn->tnode[i], n);
449 450
}

451
static void update_children(struct key_vector *tn)
452 453 454 455
{
	unsigned long i;

	/* update all of the child parent pointers */
456
	for (i = child_length(tn); i;) {
457
		struct key_vector *inode = get_child(tn, --i);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

473 474
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
475
{
476 477
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
478
	else
479
		put_child(tp, get_index(key, tp), n);
480 481
}

482
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
483
{
484
	tn_info(tn)->rcu.next = NULL;
485 486
}

487 488
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
489
{
490 491
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
492
}
E
Eric Dumazet 已提交
493

494
static void tnode_free(struct key_vector *tn)
495
{
496
	struct callback_head *head = &tn_info(tn)->rcu;
497 498 499

	while (head) {
		head = head->next;
500
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
501 502
		node_free(tn);

503
		tn = container_of(head, struct tnode, rcu)->kv;
504 505 506 507 508
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
509 510 511
	}
}

512 513 514
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
515
{
516
	struct key_vector *tp = node_parent(oldtnode);
517 518 519 520
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
521
	put_child_root(tp, tn->key, tn);
522 523 524 525 526 527 528 529

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
530
	for (i = child_length(tn); i;) {
531
		struct key_vector *inode = get_child(tn, --i);
532 533 534

		/* resize child node */
		if (tnode_full(tn, inode))
535
			tn = resize(t, inode);
536
	}
537

538
	return tp;
539 540
}

541 542
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
543
{
544
	struct key_vector *tn;
545
	unsigned long i;
546
	t_key m;
547

S
Stephen Hemminger 已提交
548
	pr_debug("In inflate\n");
549

550
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
551
	if (!tn)
552
		goto notnode;
553

554 555 556
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

557 558 559 560
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
561
	 */
562
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
563
		struct key_vector *inode = get_child(oldtnode, --i);
564
		struct key_vector *node0, *node1;
565
		unsigned long j, k;
566

567
		/* An empty child */
568
		if (!inode)
569 570 571
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
572
		if (!tnode_full(oldtnode, inode)) {
573
			put_child(tn, get_index(inode->key, tn), inode);
574 575 576
			continue;
		}

577 578 579
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

580 581
		/* An internal node with two children */
		if (inode->bits == 1) {
582 583
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
584
			continue;
585 586
		}

O
Olof Johansson 已提交
587
		/* We will replace this node 'inode' with two new
588
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
589 590 591 592 593
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
594
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
595 596
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
597 598 599
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
600
		 */
601 602 603
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
604
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
605

606
		tnode_free_append(tn, node1);
607 608 609 610 611
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
612
		for (k = child_length(inode), j = k / 2; j;) {
613 614 615 616
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
617
		}
618

619 620 621
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
622

623 624 625 626
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
627

628
	/* setup the parent pointers into and out of this node */
629
	return replace(t, oldtnode, tn);
630
nomem:
631 632
	/* all pointers should be clean so we are done */
	tnode_free(tn);
633 634
notnode:
	return NULL;
635 636
}

637 638
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
639
{
640
	struct key_vector *tn;
641
	unsigned long i;
642

S
Stephen Hemminger 已提交
643
	pr_debug("In halve\n");
644

645
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
646
	if (!tn)
647
		goto notnode;
648

649 650 651
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

652 653 654 655
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
656
	 */
657
	for (i = child_length(oldtnode); i;) {
658 659
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
660
		struct key_vector *inode;
661

662 663 664 665 666
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
667

668
		/* Two nonempty children */
669
		inode = tnode_new(node0->key, oldtnode->pos, 1);
670 671
		if (!inode)
			goto nomem;
672
		tnode_free_append(tn, inode);
673

674 675 676 677 678 679 680
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
681
	}
682

683
	/* setup the parent pointers into and out of this node */
684 685 686 687 688 689
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
690 691
}

692 693
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
694
{
695
	struct key_vector *n, *tp;
696 697 698
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
699
	for (n = NULL, i = child_length(oldtnode); !n && i;)
700
		n = get_child(oldtnode, --i);
701 702 703

	/* compress one level */
	tp = node_parent(oldtnode);
704
	put_child_root(tp, oldtnode->key, n);
705 706 707 708
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
709 710

	return tp;
711 712
}

713
static unsigned char update_suffix(struct key_vector *tn)
714 715 716
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;
717 718 719 720 721 722 723
	unsigned char slen_max;

	/* only vector 0 can have a suffix length greater than or equal to
	 * tn->pos + tn->bits, the second highest node will have a suffix
	 * length at most of tn->pos + tn->bits - 1
	 */
	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
724 725 726 727 728 729

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
730
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
731
		struct key_vector *n = get_child(tn, i);
732 733 734 735 736 737 738 739 740

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

741 742
		/* stop searching if we have hit the maximum possible value */
		if (slen >= slen_max)
743 744 745 746 747 748 749 750
			break;
	}

	tn->slen = slen;

	return slen;
}

751 752 753 754 755 756 757 758
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
759
 * child_length() and instead of multiplying by 2 (since the
760 761 762 763
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
764
 * The left-hand side may look a bit weird: child_length(tn)
765 766 767 768 769 770 771 772 773
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
774
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
775 776
 *     tn->full_children;
 *
777
 * new_child_length = child_length(tn) * 2;
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
794
 * 100 * (child_length(tn) - tn->empty_children +
795 796 797
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
798
 * 100 * (child_length(tn) - tn->empty_children +
799
 *    tn->full_children) >=
800
 *      inflate_threshold * child_length(tn) * 2
801 802
 *
 * shorten again:
803
 * 50 * (tn->full_children + child_length(tn) -
804
 *    tn->empty_children) >= inflate_threshold *
805
 *    child_length(tn)
806 807
 *
 */
808
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
809
{
810
	unsigned long used = child_length(tn);
811 812 813
	unsigned long threshold = used;

	/* Keep root node larger */
814
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
815 816
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
817

818 819 820
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
821 822
}

823
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
824
{
825
	unsigned long used = child_length(tn);
826 827 828
	unsigned long threshold = used;

	/* Keep root node larger */
829
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
830
	used -= tn_info(tn)->empty_children;
831

832 833 834 835 836
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

837
static inline bool should_collapse(struct key_vector *tn)
838
{
839
	unsigned long used = child_length(tn);
840

841
	used -= tn_info(tn)->empty_children;
842 843

	/* account for bits == KEYLENGTH case */
844
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
845 846 847 848
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
849 850
}

851
#define MAX_WORK 10
852
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
853
{
854 855 856
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
857
	struct key_vector *tp = node_parent(tn);
858
	unsigned long cindex = get_index(tn->key, tp);
859
	int max_work = MAX_WORK;
860 861 862 863

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

864 865 866 867
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
868
	BUG_ON(tn != get_child(tp, cindex));
869

870 871
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
872
	 */
873
	while (should_inflate(tp, tn) && max_work) {
874 875
		tp = inflate(t, tn);
		if (!tp) {
876
#ifdef CONFIG_IP_FIB_TRIE_STATS
877
			this_cpu_inc(stats->resize_node_skipped);
878 879 880
#endif
			break;
		}
881

882
		max_work--;
883
		tn = get_child(tp, cindex);
884 885
	}

886 887 888
	/* update parent in case inflate failed */
	tp = node_parent(tn);

889 890
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
891
		return tp;
892

893
	/* Halve as long as the number of empty children in this
894 895
	 * node is above threshold.
	 */
896
	while (should_halve(tp, tn) && max_work) {
897 898
		tp = halve(t, tn);
		if (!tp) {
899
#ifdef CONFIG_IP_FIB_TRIE_STATS
900
			this_cpu_inc(stats->resize_node_skipped);
901 902 903 904
#endif
			break;
		}

905
		max_work--;
906
		tn = get_child(tp, cindex);
907
	}
908 909

	/* Only one child remains */
910 911 912
	if (should_collapse(tn))
		return collapse(t, tn);

913
	/* update parent in case halve failed */
914
	return node_parent(tn);
915 916
}

917
static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
918
{
919 920 921 922 923
	unsigned char node_slen = tn->slen;

	while ((node_slen > tn->pos) && (node_slen > slen)) {
		slen = update_suffix(tn);
		if (node_slen == slen)
924
			break;
925 926 927

		tn = node_parent(tn);
		node_slen = tn->slen;
928 929 930
	}
}

931
static void node_push_suffix(struct key_vector *tn, unsigned char slen)
932
{
933 934
	while (tn->slen < slen) {
		tn->slen = slen;
935 936 937 938
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
939
/* rcu_read_lock needs to be hold by caller from readside */
940 941
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
942
{
943 944 945 946 947 948 949 950 951
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
952

953
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
954 955 956 957 958 959

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
960
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
961
		 *     we have a mismatch in skip bits and failed
962 963
		 *   else
		 *     we know the value is cindex
964 965 966 967
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
968
		 */
969 970 971 972
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
973

974 975
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
976

977
	*tp = pn;
978

A
Alexander Duyck 已提交
979
	return n;
980 981
}

982 983 984
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
985
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
986
					u8 tos, u32 prio, u32 tb_id)
987 988 989 990 991 992
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

993
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
994 995 996 997
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
998 999 1000 1001
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
1002 1003 1004 1005 1006 1007 1008 1009 1010
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1011
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1012
{
1013 1014
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
1015 1016
}

1017
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1018
			   struct fib_alias *new, t_key key)
1019
{
1020
	struct key_vector *n, *l;
1021

1022
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1023
	if (!l)
1024
		goto noleaf;
1025 1026

	/* retrieve child from parent node */
1027
	n = get_child(tp, get_index(key, tp));
1028

1029 1030 1031 1032 1033 1034 1035
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1036
		struct key_vector *tn;
1037

1038
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1039 1040
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1041

1042 1043 1044
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1045

1046
		/* start adding routes into the node */
1047
		put_child_root(tp, key, tn);
1048
		node_set_parent(n, tn);
1049

1050
		/* parent now has a NULL spot where the leaf can go */
1051
		tp = tn;
1052
	}
O
Olof Johansson 已提交
1053

1054
	/* Case 3: n is NULL, and will just insert a new leaf */
1055
	node_push_suffix(tp, new->fa_slen);
1056
	NODE_INIT_PARENT(l, tp);
1057
	put_child_root(tp, key, l);
1058 1059 1060
	trie_rebalance(t, tp);

	return 0;
1061 1062 1063 1064
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1065 1066
}

1067 1068
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1069 1070 1071 1072 1073 1074 1075
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076
	} else {
1077 1078 1079 1080 1081
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1082 1083 1084
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1085 1086 1087 1088 1089 1090 1091
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092
	}
R
Robert Olsson 已提交
1093

1094 1095 1096
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
1097
		node_push_suffix(tp, new->fa_slen);
1098 1099 1100
	}

	return 0;
1101 1102
}

1103
static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104
{
1105 1106
	if (plen > KEYLENGTH) {
		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107
		return false;
1108
	}
1109

1110 1111 1112
	if ((plen < KEYLENGTH) && (key << plen)) {
		NL_SET_ERR_MSG(extack,
			       "Invalid prefix for given prefix length");
1113
		return false;
1114
	}
1115 1116 1117 1118

	return true;
}

1119
/* Caller must hold RTNL. */
1120
int fib_table_insert(struct net *net, struct fib_table *tb,
1121
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1122
{
1123
	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124
	struct trie *t = (struct trie *)tb->tb_data;
1125
	struct fib_alias *fa, *new_fa;
1126
	struct key_vector *l, *tp;
1127
	u16 nlflags = NLM_F_EXCL;
1128
	struct fib_info *fi;
A
Alexander Duyck 已提交
1129 1130
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1131
	u8 tos = cfg->fc_tos;
1132
	u32 key;
1133 1134
	int err;

1135
	key = ntohl(cfg->fc_dst);
1136

1137
	if (!fib_valid_key_len(key, plen, extack))
1138 1139
		return -EINVAL;

1140 1141
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);

1142
	fi = fib_create_info(cfg, extack);
1143 1144
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1145
		goto err;
1146
	}
1147

1148
	l = fib_find_node(t, &tp, key);
1149 1150
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1151 1152 1153 1154 1155 1156

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1157 1158
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1159 1160
	 */

1161 1162 1163
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1164 1165

		err = -EEXIST;
1166
		if (cfg->fc_nlflags & NLM_F_EXCL)
1167 1168
			goto out;

1169 1170
		nlflags &= ~NLM_F_EXCL;

1171 1172 1173 1174 1175 1176 1177
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1178
		hlist_for_each_entry_from(fa, fa_list) {
1179 1180 1181
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1192
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193 1194 1195
			struct fib_info *fi_drop;
			u8 state;

1196
			nlflags |= NLM_F_REPLACE;
1197 1198 1199 1200
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1201
				goto out;
1202
			}
R
Robert Olsson 已提交
1203
			err = -ENOBUFS;
1204
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205
			if (!new_fa)
R
Robert Olsson 已提交
1206
				goto out;
1207 1208

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1209 1210
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1211
			new_fa->fa_type = cfg->fc_type;
1212
			state = fa->fa_state;
1213
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1214
			new_fa->fa_slen = fa->fa_slen;
1215
			new_fa->tb_id = tb->tb_id;
1216
			new_fa->fa_default = -1;
1217

1218
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1219 1220
						 key, plen, fi,
						 new_fa->fa_tos, cfg->fc_type,
1221
						 tb->tb_id);
1222 1223 1224
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				  tb->tb_id, &cfg->fc_nlinfo, nlflags);

1225
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1226

R
Robert Olsson 已提交
1227
			alias_free_mem_rcu(fa);
1228 1229 1230

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1231
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1232

O
Olof Johansson 已提交
1233
			goto succeeded;
1234 1235 1236 1237 1238
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1239 1240
		if (fa_match)
			goto out;
1241

1242 1243
		if (cfg->fc_nlflags & NLM_F_APPEND) {
			event = FIB_EVENT_ENTRY_APPEND;
1244
			nlflags |= NLM_F_APPEND;
1245
		} else {
1246
			fa = fa_first;
1247
		}
1248 1249
	}
	err = -ENOENT;
1250
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1251 1252
		goto out;

1253
	nlflags |= NLM_F_CREATE;
1254
	err = -ENOBUFS;
1255
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1256
	if (!new_fa)
1257 1258 1259 1260
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1261
	new_fa->fa_type = cfg->fc_type;
1262
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1263
	new_fa->fa_slen = slen;
1264
	new_fa->tb_id = tb->tb_id;
1265
	new_fa->fa_default = -1;
1266

1267
	/* Insert new entry to the list. */
1268 1269
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1270
		goto out_free_new_fa;
1271

1272 1273 1274
	if (!plen)
		tb->tb_num_default++;

1275
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1276 1277
	call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
				 tb->tb_id);
1278
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1279
		  &cfg->fc_nlinfo, nlflags);
1280 1281
succeeded:
	return 0;
1282 1283 1284

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1285 1286
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1287
err:
1288 1289 1290
	return err;
}

1291
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1292 1293 1294 1295 1296 1297
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1298
/* should be called with rcu_read_lock */
1299
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1300
		     struct fib_result *res, int fib_flags)
1301
{
1302
	struct trie *t = (struct trie *) tb->tb_data;
1303 1304 1305
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1306
	const t_key key = ntohl(flp->daddr);
1307
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1308
	struct fib_alias *fa;
1309
	unsigned long index;
1310
	t_key cindex;
O
Olof Johansson 已提交
1311

D
David Ahern 已提交
1312 1313
	trace_fib_table_lookup(tb->tb_id, flp);

1314 1315 1316 1317
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1318
	if (!n)
1319
		return -EAGAIN;
1320 1321

#ifdef CONFIG_IP_FIB_TRIE_STATS
1322
	this_cpu_inc(stats->gets);
1323 1324
#endif

1325 1326
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1327
		index = get_cindex(key, n);
1328 1329 1330 1331 1332 1333

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1334
		 *   if (index >= (1ul << bits))
1335
		 *     we have a mismatch in skip bits and failed
1336 1337
		 *   else
		 *     we know the value is cindex
1338 1339 1340 1341
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1342
		 */
1343
		if (index >= (1ul << n->bits))
1344
			break;
1345

1346 1347
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1348
			goto found;
1349

1350 1351
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1352
		 */
1353
		if (n->slen > n->pos) {
1354 1355
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1356
		}
1357

1358
		n = get_child_rcu(n, index);
1359 1360 1361
		if (unlikely(!n))
			goto backtrace;
	}
1362

1363 1364 1365
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1366
		struct key_vector __rcu **cptr = n->tnode;
1367

1368 1369 1370
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1371
		 */
1372
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1373
			goto backtrace;
O
Olof Johansson 已提交
1374

1375 1376 1377
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1378

1379 1380 1381
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1382 1383
		 */

1384
		while ((n = rcu_dereference(*cptr)) == NULL) {
1385 1386
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1387 1388
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1389
#endif
1390 1391 1392 1393 1394 1395 1396 1397
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1398 1399 1400 1401 1402
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1403
					return -EAGAIN;
1404 1405 1406 1407
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1408
				pn = node_parent_rcu(pn);
1409 1410 1411 1412 1413 1414 1415
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1416
			cptr = &pn->tnode[cindex];
1417
		}
1418
	}
1419

1420
found:
1421 1422 1423
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1424
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1425 1426 1427
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1428

1429 1430 1431 1432
		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
			if (index >= (1ul << fa->fa_slen))
				continue;
		}
A
Alexander Duyck 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1442
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1443
			this_cpu_inc(stats->semantic_match_passed);
1444
#endif
A
Alexander Duyck 已提交
1445 1446 1447 1448 1449 1450
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1451
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1452 1453 1454

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1455 1456 1457 1458 1459
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1460
			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1461 1462 1463 1464
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1465 1466

			if (!(fib_flags & FIB_LOOKUP_NOREF))
1467
				refcount_inc(&fi->fib_clntref);
A
Alexander Duyck 已提交
1468

1469
			res->prefix = htonl(n->key);
A
Alexander Duyck 已提交
1470 1471 1472 1473 1474 1475 1476
			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1477
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1478
			this_cpu_inc(stats->semantic_match_passed);
1479
#endif
D
David Ahern 已提交
1480 1481
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1482
			return err;
1483
		}
1484
	}
1485
#ifdef CONFIG_IP_FIB_TRIE_STATS
1486
	this_cpu_inc(stats->semantic_match_miss);
1487 1488
#endif
	goto backtrace;
1489
}
1490
EXPORT_SYMBOL_GPL(fib_table_lookup);
1491

1492 1493
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1506 1507
		if (tp->slen == l->slen)
			node_pull_suffix(tp, tp->pos);
1508
		put_child_root(tp, l->key, NULL);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
1520
	node_pull_suffix(tp, fa->fa_slen);
1521 1522 1523
}

/* Caller must hold RTNL. */
1524
int fib_table_delete(struct net *net, struct fib_table *tb,
1525
		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1526 1527 1528
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1529
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1530 1531
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1532 1533
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1534

1535
	key = ntohl(cfg->fc_dst);
1536

1537
	if (!fib_valid_key_len(key, plen, extack))
1538 1539
		return -EINVAL;

1540
	l = fib_find_node(t, &tp, key);
1541
	if (!l)
1542 1543
		return -ESRCH;

1544
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1545 1546 1547
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1548
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1549 1550

	fa_to_delete = NULL;
1551
	hlist_for_each_entry_from(fa, fa_list) {
1552 1553
		struct fib_info *fi = fa->fa_info;

1554 1555 1556
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1557 1558
			break;

1559 1560
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1561
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1562 1563
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1564 1565
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
1566 1567
		    fib_nh_match(cfg, fi, extack) == 0 &&
		    fib_metrics_match(cfg, fi)) {
1568 1569 1570 1571 1572
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1573 1574
	if (!fa_to_delete)
		return -ESRCH;
1575

1576
	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1577
				 fa_to_delete->fa_info, tos,
1578
				 fa_to_delete->fa_type, tb->tb_id);
1579
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1580
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1581

1582 1583 1584
	if (!plen)
		tb->tb_num_default--;

1585
	fib_remove_alias(t, tp, l, fa_to_delete);
1586

1587
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1588
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1589

1590 1591
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1592
	return 0;
1593 1594
}

1595
/* Scan for the next leaf starting at the provided key value */
1596
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1597
{
1598
	struct key_vector *pn, *n = *tn;
1599
	unsigned long cindex;
1600

1601
	/* this loop is meant to try and find the key in the trie */
1602
	do {
1603 1604
		/* record parent and next child index */
		pn = n;
1605
		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1606 1607 1608

		if (cindex >> pn->bits)
			break;
1609

1610
		/* descend into the next child */
1611
		n = get_child_rcu(pn, cindex++);
1612 1613 1614 1615 1616 1617 1618
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1619

1620
	/* this loop will search for the next leaf with a greater key */
1621
	while (!IS_TRIE(pn)) {
1622 1623 1624
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1625

1626 1627 1628 1629
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1630

1631
		/* grab the next available node */
1632
		n = get_child_rcu(pn, cindex++);
1633 1634
		if (!n)
			continue;
1635

1636 1637 1638
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1639

1640 1641 1642 1643
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1644

1645 1646 1647 1648
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1649
	*tn = pn;
1650
	return n;
1651 1652
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1750 1751
					     NULL, l->key)) {
				kmem_cache_free(fn_alias_kmem, new_fa);
1752
				goto out;
1753
			}
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;

1790 1791 1792 1793
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;
		}

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
	}
}

1838
/* Caller must hold RTNL. */
1839
int fib_table_flush(struct net *net, struct fib_table *tb)
1840
{
1841
	struct trie *t = (struct trie *)tb->tb_data;
1842 1843
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1844 1845
	struct hlist_node *tmp;
	struct fib_alias *fa;
1846
	int found = 0;
1847

1848 1849 1850 1851
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1852

1853 1854
		if (!(cindex--)) {
			t_key pkey = pn->key;
1855

1856 1857 1858
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1859

1860 1861 1862 1863
			/* update the suffix to address pulled leaves */
			if (pn->slen > pn->pos)
				update_suffix(pn);

1864 1865 1866
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1867

1868 1869
			continue;
		}
1870

1871 1872 1873 1874
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1875

1876 1877 1878 1879
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1880

1881 1882
			continue;
		}
1883

1884 1885
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1886

1887 1888
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
			    tb->tb_id != fa->tb_id) {
1889 1890 1891
				slen = fa->fa_slen;
				continue;
			}
1892

1893 1894 1895 1896
			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
						 n->key,
						 KEYLENGTH - fa->fa_slen,
						 fi, fa->fa_tos, fa->fa_type,
1897
						 tb->tb_id);
1898 1899 1900 1901
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1902 1903
		}

1904 1905
		/* update leaf slen */
		n->slen = slen;
1906

1907 1908 1909 1910
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1911
	}
1912

S
Stephen Hemminger 已提交
1913
	pr_debug("trie_flush found=%d\n", found);
1914 1915 1916
	return found;
}

1917
static void fib_leaf_notify(struct net *net, struct key_vector *l,
1918
			    struct fib_table *tb, struct notifier_block *nb)
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
{
	struct fib_alias *fa;

	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (!fi)
			continue;

		/* local and main table can share the same trie,
		 * so don't notify twice for the same entry.
		 */
		if (tb->tb_id != fa->tb_id)
			continue;

1934
		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1935
					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
1936
					fa->fa_type, fa->tb_id);
1937 1938 1939 1940
	}
}

static void fib_table_notify(struct net *net, struct fib_table *tb,
1941
			     struct notifier_block *nb)
1942 1943 1944 1945 1946 1947
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *l, *tp = t->kv;
	t_key key = 0;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1948
		fib_leaf_notify(net, l, tb, nb);
1949 1950 1951 1952 1953 1954 1955 1956

		key = l->key + 1;
		/* stop in case of wrap around */
		if (key < l->key)
			break;
	}
}

1957
void fib_notify(struct net *net, struct notifier_block *nb)
1958 1959 1960 1961 1962 1963 1964 1965
{
	unsigned int h;

	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1966
			fib_table_notify(net, tb, nb);
1967 1968 1969
	}
}

1970
static void __trie_free_rcu(struct rcu_head *head)
1971
{
1972
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1973 1974 1975
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1976 1977
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1978
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1979 1980 1981
	kfree(tb);
}

1982 1983 1984 1985 1986
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1987
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1988
			     struct sk_buff *skb, struct netlink_callback *cb)
1989
{
A
Alexander Duyck 已提交
1990
	__be32 xkey = htonl(l->key);
1991
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1992
	int i, s_i;
1993

A
Alexander Duyck 已提交
1994
	s_i = cb->args[4];
1995 1996
	i = 0;

R
Robert Olsson 已提交
1997
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1998
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1999 2000
		int err;

2001 2002 2003 2004 2005
		if (i < s_i) {
			i++;
			continue;
		}

2006 2007 2008 2009 2010
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

2011 2012 2013 2014 2015 2016
		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
				    tb->tb_id, fa->fa_type,
				    xkey, KEYLENGTH - fa->fa_slen,
				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
		if (err < 0) {
2017
			cb->args[4] = i;
2018
			return err;
2019
		}
2020
		i++;
2021
	}
2022

2023
	cb->args[4] = i;
2024 2025 2026
	return skb->len;
}

2027
/* rcu_read_lock needs to be hold by caller from readside */
2028 2029
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
2030
{
2031
	struct trie *t = (struct trie *)tb->tb_data;
2032
	struct key_vector *l, *tp = t->kv;
2033 2034 2035
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
2036 2037
	int count = cb->args[2];
	t_key key = cb->args[3];
2038

2039
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2040 2041 2042 2043
		int err;

		err = fn_trie_dump_leaf(l, tb, skb, cb);
		if (err < 0) {
2044 2045
			cb->args[3] = key;
			cb->args[2] = count;
2046
			return err;
2047
		}
2048

2049
		++count;
2050 2051
		key = l->key + 1;

2052 2053
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2054 2055 2056 2057

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
2058
	}
2059 2060 2061 2062

	cb->args[3] = key;
	cb->args[2] = count;

2063 2064 2065
	return skb->len;
}

2066
void __init fib_trie_init(void)
2067
{
2068 2069
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2070 2071 2072
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2073
					   LEAF_SIZE,
2074
					   0, SLAB_PANIC, NULL);
2075
}
2076

2077
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2078 2079 2080
{
	struct fib_table *tb;
	struct trie *t;
2081 2082 2083 2084
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
2085

2086
	tb = kzalloc(sz, GFP_KERNEL);
2087
	if (!tb)
2088 2089 2090
		return NULL;

	tb->tb_id = id;
2091
	tb->tb_num_default = 0;
2092 2093 2094 2095
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2096 2097

	t = (struct trie *) tb->tb_data;
2098 2099
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2100 2101 2102 2103 2104 2105 2106
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2107 2108 2109 2110

	return tb;
}

2111 2112 2113
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2114
	struct seq_net_private p;
2115
	struct fib_table *tb;
2116
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2117 2118
	unsigned int index;
	unsigned int depth;
2119
};
2120

2121
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2122
{
2123
	unsigned long cindex = iter->index;
2124 2125
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2126

2127 2128
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2129

2130 2131 2132 2133 2134 2135 2136
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2137
			if (IS_LEAF(n)) {
2138 2139
				iter->tnode = pn;
				iter->index = cindex;
2140 2141
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2142
				iter->tnode = n;
2143 2144 2145
				iter->index = 0;
				++iter->depth;
			}
2146

2147 2148
			return n;
		}
2149

2150 2151 2152 2153
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2154
		--iter->depth;
2155
	}
2156

2157 2158 2159 2160
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2161
	return NULL;
2162 2163
}

2164 2165
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2166
{
2167
	struct key_vector *n, *pn;
2168

S
Stephen Hemminger 已提交
2169
	if (!t)
2170 2171
		return NULL;

2172
	pn = t->kv;
2173
	n = rcu_dereference(pn->tnode[0]);
2174
	if (!n)
2175
		return NULL;
2176

2177
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2178
		iter->tnode = n;
2179 2180 2181
		iter->index = 0;
		iter->depth = 1;
	} else {
2182
		iter->tnode = pn;
2183 2184
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2185
	}
2186 2187

	return n;
2188
}
O
Olof Johansson 已提交
2189

2190 2191
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2192
	struct key_vector *n;
2193
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2194

2195
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2196

2197
	rcu_read_lock();
2198
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2199
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2200
			struct fib_alias *fa;
2201

2202 2203 2204 2205
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2206

A
Alexander Duyck 已提交
2207
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2208
				++s->prefixes;
2209 2210
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2211 2212
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2213
			s->nullpointers += tn_info(n)->empty_children;
2214 2215
		}
	}
R
Robert Olsson 已提交
2216
	rcu_read_unlock();
2217 2218
}

2219 2220 2221 2222
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2223
{
E
Eric Dumazet 已提交
2224
	unsigned int i, max, pointers, bytes, avdepth;
2225

2226 2227 2228 2229
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2230

2231 2232
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2233
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2234

2235
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2236
	bytes = LEAF_SIZE * stat->leaves;
2237 2238

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2239
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2240

2241
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2242
	bytes += TNODE_SIZE(0) * stat->tnodes;
2243

R
Robert Olsson 已提交
2244 2245
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2246
		max--;
2247

2248
	pointers = 0;
2249
	for (i = 1; i < max; i++)
2250
		if (stat->nodesizes[i] != 0) {
2251
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2252 2253 2254
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2255
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2256

2257
	bytes += sizeof(struct key_vector *) * pointers;
2258 2259
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2260
}
R
Robert Olsson 已提交
2261

2262
#ifdef CONFIG_IP_FIB_TRIE_STATS
2263
static void trie_show_usage(struct seq_file *seq,
2264
			    const struct trie_use_stats __percpu *stats)
2265
{
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2281
	seq_printf(seq, "\nCounters:\n---------\n");
2282 2283
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2284
	seq_printf(seq, "semantic match passed = %u\n",
2285 2286 2287 2288
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2289
}
2290 2291
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2292
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2293
{
2294 2295 2296 2297 2298 2299
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2300
}
2301

2302

2303 2304
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2305
	struct net *net = (struct net *)seq->private;
2306
	unsigned int h;
2307

2308
	seq_printf(seq,
2309
		   "Basic info: size of leaf:"
2310
		   " %zd bytes, size of tnode: %zd bytes.\n",
2311
		   LEAF_SIZE, TNODE_SIZE(0));
2312

2313 2314 2315 2316
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2317
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2318 2319
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2320

2321 2322 2323 2324 2325 2326 2327 2328
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2329
			trie_show_usage(seq, t->stats);
2330 2331 2332
#endif
		}
	}
2333

2334
	return 0;
2335 2336
}

2337
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2338
{
2339
	return single_open_net(inode, file, fib_triestat_seq_show);
2340 2341
}

2342
static const struct file_operations fib_triestat_fops = {
2343 2344 2345 2346
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2347
	.release = single_release_net,
2348 2349
};

2350
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2351
{
2352 2353
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2354
	loff_t idx = 0;
2355
	unsigned int h;
2356

2357 2358 2359
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2360

2361
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2362
			struct key_vector *n;
2363 2364 2365 2366 2367 2368 2369 2370 2371

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2372
	}
2373

2374 2375 2376
	return NULL;
}

2377
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2378
	__acquires(RCU)
2379
{
2380
	rcu_read_lock();
2381
	return fib_trie_get_idx(seq, *pos);
2382 2383
}

2384
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2385
{
2386
	struct fib_trie_iter *iter = seq->private;
2387
	struct net *net = seq_file_net(seq);
2388 2389 2390
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2391
	struct key_vector *n;
2392

2393
	++*pos;
2394 2395 2396 2397
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2398

2399 2400
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2401
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2402 2403 2404 2405 2406
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2407

2408 2409 2410
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2411
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2412 2413 2414 2415 2416
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2417
	return NULL;
2418 2419 2420 2421

found:
	iter->tb = tb;
	return n;
2422
}
2423

2424
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2425
	__releases(RCU)
2426
{
2427 2428
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2429

2430 2431
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2432 2433
	while (n-- > 0)
		seq_puts(seq, "   ");
2434
}
2435

2436
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2437
{
S
Stephen Hemminger 已提交
2438
	switch (s) {
2439 2440 2441 2442 2443 2444
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2445
		snprintf(buf, len, "scope=%d", s);
2446 2447 2448
		return buf;
	}
}
2449

2450
static const char *const rtn_type_names[__RTN_MAX] = {
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2464

E
Eric Dumazet 已提交
2465
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2466 2467 2468
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2469
	snprintf(buf, len, "type %u", t);
2470
	return buf;
2471 2472
}

2473 2474
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2475
{
2476
	const struct fib_trie_iter *iter = seq->private;
2477
	struct key_vector *n = v;
2478

2479
	if (IS_TRIE(node_parent_rcu(n)))
2480
		fib_table_print(seq, iter->tb);
2481

2482
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2483
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2484

2485 2486 2487
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2488 2489
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2490
	} else {
A
Alexander Duyck 已提交
2491
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2492
		struct fib_alias *fa;
2493 2494

		seq_indent(seq, iter->depth);
2495
		seq_printf(seq, "  |-- %pI4\n", &val);
2496

A
Alexander Duyck 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2510
		}
2511
	}
2512

2513 2514 2515
	return 0;
}

2516
static const struct seq_operations fib_trie_seq_ops = {
2517 2518 2519 2520
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2521 2522
};

2523
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2524
{
2525 2526
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2527 2528
}

2529
static const struct file_operations fib_trie_fops = {
2530 2531 2532 2533
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2534
	.release = seq_release_net,
2535 2536
};

2537 2538
struct fib_route_iter {
	struct seq_net_private p;
2539
	struct fib_table *main_tb;
2540
	struct key_vector *tnode;
2541 2542 2543 2544
	loff_t	pos;
	t_key	key;
};

2545 2546
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2547
{
2548
	struct key_vector *l, **tp = &iter->tnode;
2549
	t_key key;
2550

2551
	/* use cached location of previously found key */
2552 2553 2554
	if (iter->pos > 0 && pos >= iter->pos) {
		key = iter->key;
	} else {
2555
		iter->pos = 1;
2556
		key = 0;
2557 2558
	}

2559 2560 2561
	pos -= iter->pos;

	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2562
		key = l->key + 1;
2563
		iter->pos++;
2564 2565 2566 2567 2568
		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2569 2570 2571
	}

	if (l)
2572
		iter->key = l->key;	/* remember it */
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2584
	struct trie *t;
2585 2586

	rcu_read_lock();
2587

2588
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2589 2590 2591
	if (!tb)
		return NULL;

2592
	iter->main_tb = tb;
2593 2594
	t = (struct trie *)tb->tb_data;
	iter->tnode = t->kv;
2595 2596 2597 2598 2599

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	iter->pos = 0;
2600
	iter->key = KEY_MAX;
2601 2602

	return SEQ_START_TOKEN;
2603 2604 2605 2606 2607
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2608
	struct key_vector *l = NULL;
2609
	t_key key = iter->key + 1;
2610 2611

	++*pos;
2612 2613 2614 2615 2616 2617

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
2618
		iter->key = l->key;
2619
		iter->pos++;
2620 2621
	} else {
		iter->pos = 0;
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2633
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2634
{
E
Eric Dumazet 已提交
2635
	unsigned int flags = 0;
2636

E
Eric Dumazet 已提交
2637 2638
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2639 2640
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2641
	if (mask == htonl(0xFFFFFFFF))
2642 2643 2644
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2645 2646
}

2647 2648 2649
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2650
 *	and needs to be same as fib_hash output to avoid breaking
2651 2652 2653
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2654
{
2655 2656
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2657
	struct fib_alias *fa;
2658
	struct key_vector *l = v;
2659
	__be32 prefix;
2660

2661 2662 2663 2664 2665 2666
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2667

2668 2669
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2670 2671 2672 2673
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2674

A
Alexander Duyck 已提交
2675 2676 2677
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2678

2679 2680 2681
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2703

A
Alexander Duyck 已提交
2704
		seq_pad(seq, '\n');
2705 2706 2707 2708 2709
	}

	return 0;
}

2710
static const struct seq_operations fib_route_seq_ops = {
2711 2712 2713
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2714
	.show   = fib_route_seq_show,
2715 2716
};

2717
static int fib_route_seq_open(struct inode *inode, struct file *file)
2718
{
2719
	return seq_open_net(inode, file, &fib_route_seq_ops,
2720
			    sizeof(struct fib_route_iter));
2721 2722
}

2723
static const struct file_operations fib_route_fops = {
2724 2725 2726 2727
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2728
	.release = seq_release_net,
2729 2730
};

2731
int __net_init fib_proc_init(struct net *net)
2732
{
2733
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2734 2735
		goto out1;

2736 2737
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2738 2739
		goto out2;

2740
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2741 2742
		goto out3;

2743
	return 0;
2744 2745

out3:
2746
	remove_proc_entry("fib_triestat", net->proc_net);
2747
out2:
2748
	remove_proc_entry("fib_trie", net->proc_net);
2749 2750
out1:
	return -ENOMEM;
2751 2752
}

2753
void __net_exit fib_proc_exit(struct net *net)
2754
{
2755 2756 2757
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2758 2759 2760
}

#endif /* CONFIG_PROC_FS */