reg.c 62.9 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6
 *
7 8 9 10 11 12 13 14 15 16 17
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 19
 */

20

21 22
/**
 * DOC: Wireless regulatory infrastructure
23 24 25 26 27 28
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
43
 */
44 45 46

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

47
#include <linux/kernel.h>
48
#include <linux/export.h>
49
#include <linux/slab.h>
50 51
#include <linux/list.h>
#include <linux/random.h>
52
#include <linux/ctype.h>
53 54
#include <linux/nl80211.h>
#include <linux/platform_device.h>
55
#include <linux/moduleparam.h>
56
#include <net/cfg80211.h>
57
#include "core.h"
58
#include "reg.h"
59
#include "regdb.h"
60
#include "nl80211.h"
61

62
#ifdef CONFIG_CFG80211_REG_DEBUG
63 64
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
65
#else
66
#define REG_DBG_PRINT(args...)
67 68
#endif

69 70 71 72 73 74 75 76 77
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

78
/* Receipt of information from last regulatory request */
79
static struct regulatory_request *last_request = &core_request_world;
80

81 82
/* To trigger userspace events */
static struct platform_device *reg_pdev;
83

84 85 86 87
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

88 89
/*
 * Central wireless core regulatory domains, we only need two,
90
 * the current one and a world regulatory domain in case we have no
91 92
 * information to give us an alpha2
 */
93
const struct ieee80211_regdomain *cfg80211_regdomain;
94

95 96 97 98 99 100
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
101
static DEFINE_MUTEX(reg_mutex);
102 103 104 105 106

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
107

108
/* Used to queue up regulatory hints */
109 110 111
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

112 113 114 115 116 117 118 119 120 121 122 123
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

124 125 126
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

127 128 129
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

130 131
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
132
	.n_reg_rules = 5,
133 134
	.alpha2 =  "00",
	.reg_rules = {
135 136
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 138 139
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 141
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
142 143 144 145 146 147 148
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
149
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 151
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
152 153 154 155

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
156
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 158
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
159 160 161
	}
};

162 163
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
164

165
static char *ieee80211_regdom = "00";
166
static char user_alpha2[2];
167

168 169 170
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

171
static void reset_regdomains(bool full_reset)
172
{
173 174 175 176 177 178 179 180 181 182
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
183

184
	cfg80211_world_regdom = &world_regdom;
185
	cfg80211_regdomain = NULL;
186 187 188 189 190 191 192

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
193 194
}

195 196 197 198
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
199
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200
{
201
	BUG_ON(!last_request);
202

203
	reset_regdomains(false);
204 205 206 207 208

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

209
bool is_world_regdom(const char *alpha2)
210 211 212 213 214 215 216
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
217

218
static bool is_alpha2_set(const char *alpha2)
219 220 221 222 223 224 225
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
226

227
static bool is_unknown_alpha2(const char *alpha2)
228 229 230
{
	if (!alpha2)
		return false;
231 232 233 234
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
235 236 237 238
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
239

240 241 242 243
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
244 245
	/*
	 * Special case where regulatory domain is the
246
	 * result of an intersection between two regulatory domain
247 248
	 * structures
	 */
249 250 251 252 253
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

254
static bool is_an_alpha2(const char *alpha2)
255 256 257
{
	if (!alpha2)
		return false;
258
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 260 261
		return true;
	return false;
}
262

263
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 265 266 267 268 269 270 271 272
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

273
static bool regdom_changes(const char *alpha2)
274
{
275 276
	assert_cfg80211_lock();

277 278 279 280 281 282 283
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
336
static DEFINE_MUTEX(reg_regdb_search_mutex);
337 338 339 340 341 342 343

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

344
	mutex_lock(&reg_regdb_search_mutex);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
367
	mutex_unlock(&reg_regdb_search_mutex);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

385
	mutex_lock(&reg_regdb_search_mutex);
386
	list_add_tail(&request->list, &reg_regdb_search_list);
387
	mutex_unlock(&reg_regdb_search_mutex);
388 389 390

	schedule_work(&reg_regdb_work);
}
391 392 393 394 395 396 397

/* Feel free to add any other sanity checks here */
static void reg_regdb_size_check(void)
{
	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
}
398
#else
399
static inline void reg_regdb_size_check(void) {}
400 401 402
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

403 404
/*
 * This lets us keep regulatory code which is updated on a regulatory
405 406
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
407
 */
408 409 410
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
411
		pr_info("Calling CRDA for country: %c%c\n",
412 413
			alpha2[0], alpha2[1]);
	else
414
		pr_info("Calling CRDA to update world regulatory domain\n");
415

416 417 418
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

419
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 421 422
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
423
bool reg_is_valid_request(const char *alpha2)
424
{
425 426
	assert_cfg80211_lock();

427 428 429 430
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
431
}
432

433
/* Sanity check on a regulatory rule */
434
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435
{
436
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437 438
	u32 freq_diff;

439
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440 441 442 443 444 445 446
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

447 448
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
449 450 451 452 453
		return false;

	return true;
}

454
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455
{
456
	const struct ieee80211_reg_rule *reg_rule = NULL;
457
	unsigned int i;
458

459 460
	if (!rd->n_reg_rules)
		return false;
461

462 463 464
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

465 466 467 468 469 470 471
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
472 473
}

474 475 476
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
477
{
478 479 480 481 482 483 484 485 486 487
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
488
}
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

515 516 517 518
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

596 597
	/*
	 * First we get a count of the rules we'll need, then we actually
598 599 600
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
601 602
	 * All rules that do check out OK are valid.
	 */
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
630 631
			/*
			 * This time around instead of using the stack lets
632
			 * write to the target rule directly saving ourselves
633 634
			 * a memcpy()
			 */
635 636 637
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
638 639 640 641
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

660 661 662 663
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
664 665 666 667 668 669 670 671 672 673 674 675
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

676 677
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
678
			      u32 desired_bw_khz,
679 680
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
681 682
{
	int i;
683
	bool band_rule_found = false;
684
	const struct ieee80211_regdomain *regd;
685 686 687 688
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
689

690
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
691

692 693 694 695
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
696 697
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
698
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
699 700 701 702
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
703 704
		return -EINVAL;

705
	for (i = 0; i < regd->n_reg_rules; i++) {
706 707 708
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

709
		rr = &regd->reg_rules[i];
710
		fr = &rr->freq_range;
711

712 713
		/*
		 * We only need to know if one frequency rule was
714
		 * was in center_freq's band, that's enough, so lets
715 716
		 * not overwrite it once found
		 */
717 718 719
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

720 721 722
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
723

724
		if (band_rule_found && bw_fits) {
725
			*reg_rule = rr;
726
			return 0;
727 728 729
		}
	}

730 731 732
	if (!band_rule_found)
		return -ERANGE;

733
	return -EINVAL;
734 735
}

736 737 738 739
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
740
{
741
	assert_cfg80211_lock();
742 743 744 745 746
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
747
}
748
EXPORT_SYMBOL(freq_reg_info);
749

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

784
	REG_DBG_PRINT("Updating information on frequency %d MHz "
785
		      "for a %d MHz width channel with regulatory rule:\n",
786 787 788
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

789
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
790 791
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
792
		      freq_range->max_bandwidth_khz,
793 794 795 796 797 798 799 800 801 802
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
803 804
#endif

805 806 807 808 809 810 811 812 813
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
814 815 816
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
817
			   unsigned int chan_idx)
818 819
{
	int r;
820 821
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
822 823
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
824
	const struct ieee80211_freq_range *freq_range = NULL;
825 826
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
827
	struct wiphy *request_wiphy = NULL;
828

829 830
	assert_cfg80211_lock();

831 832
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

833 834 835 836 837
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
838

839 840 841 842
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
843

844 845 846
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
847
		 * received regulatory rule unless the hint is coming
848 849 850 851 852 853 854 855 856 857 858
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

859
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
860
		chan->flags = IEEE80211_CHAN_DISABLED;
861
		return;
862
	}
863

864 865
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

866
	power_rule = &reg_rule->power_rule;
867 868 869 870
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
871

872
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
873
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
874
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
875
		/*
L
Lucas De Marchi 已提交
876
		 * This guarantees the driver's requested regulatory domain
877
		 * will always be used as a base for further regulatory
878 879
		 * settings
		 */
880
		chan->flags = chan->orig_flags =
881
			map_regdom_flags(reg_rule->flags) | bw_flags;
882 883 884 885 886 887 888
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

889
	chan->beacon_found = false;
890
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
891
	chan->max_antenna_gain = min(chan->orig_mag,
892
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
893
	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	if (chan->orig_mpwr) {
		/*
		 * Devices that have their own custom regulatory domain
		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
		 * passed country IE power settings.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
			chan->max_power = chan->max_reg_power;
		else
			chan->max_power = min(chan->orig_mpwr,
					      chan->max_reg_power);
	} else
		chan->max_power = chan->max_reg_power;
909 910
}

911 912 913
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
914
{
915 916 917 918 919
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
920 921

	for (i = 0; i < sband->n_channels; i++)
922
		handle_channel(wiphy, initiator, band, i);
923 924
}

925 926
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
927
{
928
	if (!last_request) {
929
		REG_DBG_PRINT("Ignoring regulatory request %s since "
930 931
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
932
		return true;
933 934
	}

935
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
936
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
937
		REG_DBG_PRINT("Ignoring regulatory request %s "
938
			      "since the driver uses its own custom "
939
			      "regulatory domain\n",
940
			      reg_initiator_name(initiator));
941
		return true;
942 943
	}

944 945 946 947
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
948
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
949
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
950
	    !is_world_regdom(last_request->alpha2)) {
951
		REG_DBG_PRINT("Ignoring regulatory request %s "
952
			      "since the driver requires its own regulatory "
953
			      "domain to be set first\n",
954
			      reg_initiator_name(initiator));
955
		return true;
956 957
	}

958 959 960
	return false;
}

961 962 963 964 965 966
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
967 968
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
969 970 971 972 973 974 975 976 977

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

978 979 980 981 982
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
983
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
984 985
		return;

986 987 988
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

989
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
990
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
991
		channel_changed = true;
992 993
	}

994
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
995
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
996
		channel_changed = true;
997 998
	}

999 1000
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1052 1053
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1054
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1055 1056 1057 1058 1059 1060 1061
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1062 1063 1064 1065 1066 1067
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1068 1069 1070 1071 1072
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1123
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1124
	else
1125
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1126 1127

	if (is_ht40_not_allowed(channel_after))
1128
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1129
	else
1130
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1160 1161
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1162 1163
{
	enum ieee80211_band band;
1164

1165 1166
	assert_reg_lock();

1167
	if (ignore_reg_update(wiphy, initiator))
1168 1169
		return;

1170 1171
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1172
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1173
		if (wiphy->bands[band])
1174
			handle_band(wiphy, band, initiator);
1175
	}
1176

1177
	reg_process_beacons(wiphy);
1178
	reg_process_ht_flags(wiphy);
1179
	if (wiphy->reg_notifier)
1180
		wiphy->reg_notifier(wiphy, last_request);
1181 1182
}

1183 1184 1185 1186 1187 1188 1189 1190
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1191 1192 1193
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1194
	struct wiphy *wiphy;
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1209 1210
}

1211 1212 1213 1214 1215 1216
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1217 1218
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1219 1220
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1221
	const struct ieee80211_freq_range *freq_range = NULL;
1222 1223 1224
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1225
	assert_reg_lock();
1226

1227 1228 1229 1230
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1231 1232 1233 1234 1235
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1236 1237

	if (r) {
1238
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1239 1240 1241 1242
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1243 1244 1245 1246
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1247 1248
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1249
	power_rule = &reg_rule->power_rule;
1250 1251 1252 1253
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1254

1255
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1278
	unsigned int bands_set = 0;
1279

1280
	mutex_lock(&reg_mutex);
1281
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1282 1283 1284 1285
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1286
	}
1287
	mutex_unlock(&reg_mutex);
1288 1289 1290 1291 1292 1293

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1294
}
1295 1296
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1297 1298 1299 1300
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1301 1302
#define REG_INTERSECT	1

1303 1304
/* This has the logic which determines when a new request
 * should be ignored. */
1305 1306
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1307
{
1308
	struct wiphy *last_wiphy = NULL;
1309 1310 1311

	assert_cfg80211_lock();

1312 1313 1314 1315
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1316
	switch (pending_request->initiator) {
1317
	case NL80211_REGDOM_SET_BY_CORE:
1318
		return 0;
1319
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1320 1321 1322

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1323
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1324
			return -EINVAL;
1325 1326
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1327
			if (last_wiphy != wiphy) {
1328 1329
				/*
				 * Two cards with two APs claiming different
1330
				 * Country IE alpha2s. We could
1331 1332 1333
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1334
				if (regdom_changes(pending_request->alpha2))
1335 1336 1337
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1338 1339 1340 1341
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1342
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1343 1344 1345
				return 0;
			return -EALREADY;
		}
1346
		return 0;
1347 1348
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1349
			if (regdom_changes(pending_request->alpha2))
1350
				return 0;
1351
			return -EALREADY;
1352
		}
1353 1354 1355 1356 1357 1358

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1359
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1360
		    !regdom_changes(pending_request->alpha2))
1361 1362
			return -EALREADY;

1363
		return REG_INTERSECT;
1364 1365
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1366
			return REG_INTERSECT;
1367 1368 1369 1370
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1371
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1372 1373
			  last_request->intersect)
			return -EOPNOTSUPP;
1374 1375 1376 1377
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1378 1379 1380
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1381
			if (regdom_changes(last_request->alpha2))
1382 1383 1384
				return -EAGAIN;
		}

1385
		if (!regdom_changes(pending_request->alpha2))
1386 1387
			return -EALREADY;

1388 1389 1390 1391 1392 1393
		return 0;
	}

	return -EINVAL;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1405
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1406
		cancel_delayed_work(&reg_timeout);
1407

1408 1409 1410 1411
	if (need_more_processing)
		schedule_work(&reg_work);
}

1412 1413 1414 1415
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1416
 * @pending_request: the regulatory request currently being processed
1417 1418
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1419
 * what it believes should be the current regulatory domain.
1420 1421 1422 1423
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1424
 * Caller must hold &cfg80211_mutex and &reg_mutex
1425
 */
1426 1427
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1428
{
1429
	bool intersect = false;
1430 1431
	int r = 0;

1432 1433
	assert_cfg80211_lock();

1434
	r = ignore_request(wiphy, pending_request);
1435

1436
	if (r == REG_INTERSECT) {
1437 1438
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1439
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1440 1441
			if (r) {
				kfree(pending_request);
1442
				return r;
1443
			}
1444
		}
1445
		intersect = true;
1446
	} else if (r) {
1447 1448
		/*
		 * If the regulatory domain being requested by the
1449
		 * driver has already been set just copy it to the
1450 1451
		 * wiphy
		 */
1452
		if (r == -EALREADY &&
1453 1454
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1455
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1456 1457
			if (r) {
				kfree(pending_request);
1458
				return r;
1459
			}
1460 1461 1462
			r = -EALREADY;
			goto new_request;
		}
1463
		kfree(pending_request);
1464
		return r;
1465
	}
1466

1467
new_request:
1468 1469
	if (last_request != &core_request_world)
		kfree(last_request);
1470

1471 1472
	last_request = pending_request;
	last_request->intersect = intersect;
1473

1474
	pending_request = NULL;
1475

1476 1477 1478 1479 1480
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1481
	/* When r == REG_INTERSECT we do need to call CRDA */
1482 1483 1484 1485 1486 1487
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1488
		if (r == -EALREADY) {
1489
			nl80211_send_reg_change_event(last_request);
1490 1491
			reg_set_request_processed();
		}
1492
		return r;
1493
	}
1494

1495
	return call_crda(last_request->alpha2);
1496 1497
}

1498
/* This processes *all* regulatory hints */
1499 1500
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1501 1502 1503 1504 1505 1506 1507 1508 1509
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1510
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1511
	    !wiphy) {
1512
		kfree(reg_request);
1513
		return;
1514 1515
	}

1516
	r = __regulatory_hint(wiphy, reg_request);
1517
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1518
	if (r == -EALREADY && wiphy &&
1519
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1520
		wiphy_update_regulatory(wiphy, reg_initiator);
1521 1522 1523 1524 1525 1526 1527
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1528
	if (r != -EALREADY &&
1529
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1530
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1531 1532
}

1533 1534 1535 1536 1537
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1538
static void reg_process_pending_hints(void)
1539
{
1540 1541
	struct regulatory_request *reg_request;

1542 1543 1544
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1545 1546 1547
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1548
			      "for it to be processed...\n");
1549 1550 1551
		goto out;
	}

1552 1553
	spin_lock(&reg_requests_lock);

1554
	if (list_empty(&reg_requests_list)) {
1555
		spin_unlock(&reg_requests_lock);
1556
		goto out;
1557
	}
1558 1559 1560 1561 1562 1563

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1564
	spin_unlock(&reg_requests_lock);
1565

1566
	reg_process_hint(reg_request, reg_request->initiator);
1567 1568

out:
1569 1570
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1571 1572
}

1573 1574 1575
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1576
	struct cfg80211_registered_device *rdev;
1577 1578
	struct reg_beacon *pending_beacon, *tmp;

1579 1580 1581 1582
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1599 1600
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1611 1612 1613
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1614
	reg_process_pending_beacon_hints();
1615 1616 1617 1618
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1619 1620 1621 1622 1623
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1624 1625 1626 1627 1628 1629 1630
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1631 1632 1633 1634
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1646
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1647

1648
	queue_regulatory_request(request);
1649

1650
	return 0;
1651 1652
}

1653 1654
/* User hints */
int regulatory_hint_user(const char *alpha2)
1655
{
1656 1657
	struct regulatory_request *request;

1658
	BUG_ON(!alpha2);
1659

1660 1661 1662 1663 1664 1665 1666
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1667
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1693
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1694 1695 1696 1697

	queue_regulatory_request(request);

	return 0;
1698 1699 1700
}
EXPORT_SYMBOL(regulatory_hint);

1701 1702 1703 1704
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1705
void regulatory_hint_11d(struct wiphy *wiphy,
1706 1707 1708
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1709 1710 1711
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1712
	struct regulatory_request *request;
1713

1714
	mutex_lock(&reg_mutex);
1715

1716 1717
	if (unlikely(!last_request))
		goto out;
1718

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1734
	/*
1735
	 * We will run this only upon a successful connection on cfg80211.
1736 1737
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1738
	 */
1739 1740
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1741 1742
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1743

1744 1745
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1746
		goto out;
1747 1748

	request->wiphy_idx = get_wiphy_idx(wiphy);
1749 1750
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1751
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1752 1753
	request->country_ie_env = env;

1754
	mutex_unlock(&reg_mutex);
1755

1756 1757 1758
	queue_regulatory_request(request);

	return;
1759

1760
out:
1761
	mutex_unlock(&reg_mutex);
1762
}
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1774
			REG_DBG_PRINT("Restoring regulatory settings "
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1785
				REG_DBG_PRINT("Keeping preference on "
1786 1787 1788 1789 1790 1791 1792
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1793
			REG_DBG_PRINT("Restoring regulatory settings "
1794 1795 1796 1797 1798 1799 1800
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1801
		REG_DBG_PRINT("Keeping preference on "
1802 1803 1804 1805 1806 1807
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1808
		REG_DBG_PRINT("Restoring regulatory settings\n");
1809 1810
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
		}
	}
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1849
	char world_alpha2[2];
1850
	struct reg_beacon *reg_beacon, *btmp;
1851 1852
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1853
	struct cfg80211_registered_device *rdev;
1854 1855 1856 1857

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1858
	reset_regdomains(true);
1859 1860
	restore_alpha2(alpha2, reset_user);

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1901 1902
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1903

1904 1905 1906 1907 1908
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1909 1910 1911
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1912
	regulatory_hint_core(world_alpha2);
1913 1914 1915 1916 1917 1918 1919 1920 1921

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1946 1947 1948

void regulatory_hint_disconnect(void)
{
1949
	REG_DBG_PRINT("All devices are disconnected, going to "
1950 1951 1952 1953
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1954 1955
static bool freq_is_chan_12_13_14(u16 freq)
{
1956 1957 1958
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1979
	REG_DBG_PRINT("Found new beacon on "
1980 1981 1982 1983 1984
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2002
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2003 2004
{
	unsigned int i;
2005 2006 2007
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2008

2009
	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2010 2011 2012 2013 2014 2015

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2016 2017 2018 2019
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2020
		if (power_rule->max_antenna_gain)
2021
			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2022 2023 2024 2025 2026 2027
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2028
			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2029 2030 2031 2032 2033 2034 2035
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2072
static void print_regdomain(const struct ieee80211_regdomain *rd)
2073 2074
{

2075 2076
	if (is_intersected_alpha2(rd->alpha2)) {

2077 2078
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2079 2080
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2081
				last_request->wiphy_idx);
2082
			if (rdev) {
2083
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2084 2085
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2086
			} else
2087
				pr_info("Current regulatory domain intersected:\n");
2088
		} else
2089
			pr_info("Current regulatory domain intersected:\n");
2090
	} else if (is_world_regdom(rd->alpha2))
2091
		pr_info("World regulatory domain updated:\n");
2092 2093
	else {
		if (is_unknown_alpha2(rd->alpha2))
2094
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2095
		else
2096
			pr_info("Regulatory domain changed to country: %c%c\n",
2097 2098
				rd->alpha2[0], rd->alpha2[1]);
	}
2099
	print_dfs_region(rd->dfs_region);
2100 2101 2102
	print_rd_rules(rd);
}

2103
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2104
{
2105
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2106 2107 2108
	print_rd_rules(rd);
}

2109
/* Takes ownership of rd only if it doesn't fail */
2110
static int __set_regdom(const struct ieee80211_regdomain *rd)
2111
{
2112
	const struct ieee80211_regdomain *intersected_rd = NULL;
2113
	struct cfg80211_registered_device *rdev = NULL;
2114
	struct wiphy *request_wiphy;
2115 2116 2117
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2118
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2119 2120 2121 2122 2123 2124 2125 2126 2127
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2128
	if (!last_request)
2129 2130
		return -EINVAL;

2131 2132
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2133
	 * rd is non static (it means CRDA was present and was used last)
2134 2135
	 * and the pending request came in from a country IE
	 */
2136
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2137 2138 2139 2140
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2141
		if (!regdom_changes(rd->alpha2))
2142 2143 2144
			return -EINVAL;
	}

2145 2146
	/*
	 * Now lets set the regulatory domain, update all driver channels
2147 2148
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2149 2150
	 * internal EEPROM data
	 */
2151

2152
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2153 2154
		return -EINVAL;

2155
	if (!is_valid_rd(rd)) {
2156
		pr_err("Invalid regulatory domain detected:\n");
2157 2158
		print_regdomain_info(rd);
		return -EINVAL;
2159 2160
	}

2161
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2162 2163 2164 2165
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2166 2167
		return -ENODEV;
	}
2168

2169
	if (!last_request->intersect) {
2170 2171
		int r;

2172
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2173
			reset_regdomains(false);
2174 2175 2176 2177
			cfg80211_regdomain = rd;
			return 0;
		}

2178 2179 2180 2181
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2182

2183 2184 2185 2186 2187 2188
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2189

2190
		r = reg_copy_regd(&request_wiphy->regd, rd);
2191 2192 2193
		if (r)
			return r;

2194
		reset_regdomains(false);
2195 2196 2197 2198 2199 2200
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2201
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2202

2203 2204 2205
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2206

2207 2208
		/*
		 * We can trash what CRDA provided now.
2209
		 * However if a driver requested this specific regulatory
2210 2211
		 * domain we keep it for its private use
		 */
2212
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2213
			request_wiphy->regd = rd;
2214 2215 2216
		else
			kfree(rd);

2217 2218
		rd = NULL;

2219
		reset_regdomains(false);
2220 2221 2222
		cfg80211_regdomain = intersected_rd;

		return 0;
2223 2224
	}

2225 2226 2227
	if (!intersected_rd)
		return -EINVAL;

2228
	rdev = wiphy_to_dev(request_wiphy);
2229

2230 2231 2232
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2233 2234 2235 2236 2237 2238

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2239
	reset_regdomains(false);
2240
	cfg80211_regdomain = intersected_rd;
2241 2242 2243 2244 2245

	return 0;
}


2246 2247
/*
 * Use this call to set the current regulatory domain. Conflicts with
2248
 * multiple drivers can be ironed out later. Caller must've already
2249 2250
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2251
int set_regdom(const struct ieee80211_regdomain *rd)
2252 2253 2254
{
	int r;

2255 2256
	assert_cfg80211_lock();

2257 2258
	mutex_lock(&reg_mutex);

2259 2260
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2261 2262
	if (r) {
		kfree(rd);
2263
		mutex_unlock(&reg_mutex);
2264
		return r;
2265
	}
2266 2267

	/* This would make this whole thing pointless */
2268 2269
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2270 2271

	/* update all wiphys now with the new established regulatory domain */
2272
	update_all_wiphy_regulatory(last_request->initiator);
2273

2274
	print_regdomain(cfg80211_regdomain);
2275

2276 2277
	nl80211_send_reg_change_event(last_request);

2278 2279
	reg_set_request_processed();

2280 2281
	mutex_unlock(&reg_mutex);

2282 2283 2284
	return r;
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2304
/* Caller must hold cfg80211_mutex */
2305 2306
void reg_device_remove(struct wiphy *wiphy)
{
2307
	struct wiphy *request_wiphy = NULL;
2308

2309 2310
	assert_cfg80211_lock();

2311 2312
	mutex_lock(&reg_mutex);

2313 2314
	kfree(wiphy->regd);

2315 2316
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2317

2318
	if (!request_wiphy || request_wiphy != wiphy)
2319
		goto out;
2320

2321
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2322
	last_request->country_ie_env = ENVIRON_ANY;
2323 2324
out:
	mutex_unlock(&reg_mutex);
2325 2326
}

2327 2328 2329
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2330
		      "restoring regulatory settings\n");
2331 2332 2333
	restore_regulatory_settings(true);
}

2334
int __init regulatory_init(void)
2335
{
2336
	int err = 0;
2337

2338 2339 2340
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2341

2342 2343
	reg_pdev->dev.type = &reg_device_type;

2344
	spin_lock_init(&reg_requests_lock);
2345
	spin_lock_init(&reg_pending_beacons_lock);
2346

2347 2348
	reg_regdb_size_check();

2349
	cfg80211_regdomain = cfg80211_world_regdom;
2350

2351 2352 2353
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2354 2355
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2356
	if (err) {
2357 2358 2359 2360 2361 2362 2363 2364 2365
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2366
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2367 2368 2369
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2370
#endif
2371
	}
2372

2373 2374 2375 2376 2377 2378 2379
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2380 2381 2382
	return 0;
}

2383
void /* __init_or_exit */ regulatory_exit(void)
2384
{
2385
	struct regulatory_request *reg_request, *tmp;
2386
	struct reg_beacon *reg_beacon, *btmp;
2387 2388

	cancel_work_sync(&reg_work);
2389
	cancel_delayed_work_sync(&reg_timeout);
2390

2391
	mutex_lock(&cfg80211_mutex);
2392
	mutex_lock(&reg_mutex);
2393

2394
	reset_regdomains(true);
2395

2396
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2397

2398
	platform_device_unregister(reg_pdev);
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2428
	mutex_unlock(&reg_mutex);
2429
	mutex_unlock(&cfg80211_mutex);
2430
}