efx.c 81.0 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25
#include <linux/aer.h>
26 27
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
28
#include "nic.h"
29
#include "selftest.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79 80 81 82 83 84 85 86 87
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH]      = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH]      = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88 89
};

90 91 92 93 94 95
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

96 97 98 99 100 101 102 103 104
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
105 106
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
107
 *
108
 * This is only used in MSI-X interrupt mode
109
 */
110 111
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
112 113
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
114 115 116 117 118 119 120

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
121 122
 * monitor.
 * On Falcon-based NICs, this will:
123 124
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
125 126
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
127
 */
S
stephen hemminger 已提交
128
static unsigned int efx_monitor_interval = 1 * HZ;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161
 * The default (0) means to assign an interrupt to each core.
162 163 164 165 166
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

167 168
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
169 170
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

171
static unsigned irq_adapt_low_thresh = 8000;
172 173 174 175
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

176
static unsigned irq_adapt_high_thresh = 16000;
177 178 179 180
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

181 182 183 184 185 186 187
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

188 189 190 191 192
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
193

194 195 196
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
197
static void efx_remove_channels(struct efx_nic *efx);
198
static const struct efx_channel_type efx_default_channel_type;
199
static void efx_remove_port(struct efx_nic *efx);
200
static void efx_init_napi_channel(struct efx_channel *channel);
201
static void efx_fini_napi(struct efx_nic *efx);
202
static void efx_fini_napi_channel(struct efx_channel *channel);
203 204 205
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
206 207 208

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
209
		if ((efx->state == STATE_READY) ||	\
210
		    (efx->state == STATE_RECOVERY) ||	\
211
		    (efx->state == STATE_DISABLED))	\
212 213 214
			ASSERT_RTNL();			\
	} while (0)

215 216
static int efx_check_disabled(struct efx_nic *efx)
{
217
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 219 220 221 222 223 224
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

225 226 227 228 229 230 231 232 233 234 235 236 237
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
238
static int efx_process_channel(struct efx_channel *channel, int budget)
239
{
240
	int spent;
241

242
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
243
		return 0;
244

245
	spent = efx_nic_process_eventq(channel, budget);
246 247 248 249
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

250
		efx_rx_flush_packet(channel);
251
		if (rx_queue->enabled)
252
			efx_fast_push_rx_descriptors(rx_queue);
253 254
	}

255
	return spent;
256 257 258 259 260 261 262 263 264 265
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
266 267 268
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
269
	channel->work_pending = false;
270 271
	smp_wmb();

272
	efx_nic_eventq_read_ack(channel);
273 274 275 276 277 278 279 280 281 282 283
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
284
	struct efx_nic *efx = channel->efx;
285
	int spent;
286

287 288 289
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
290

291
	spent = efx_process_channel(channel, budget);
292

293
	if (spent < budget) {
294
		if (efx_channel_has_rx_queue(channel) &&
295 296 297 298
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
299 300
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
301
					efx->type->push_irq_moderation(channel);
302
				}
303 304
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
305 306 307
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
308
					efx->type->push_irq_moderation(channel);
309
				}
310 311 312 313 314
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

315 316
		efx_filter_rfs_expire(channel);

317
		/* There is no race here; although napi_disable() will
318
		 * only wait for napi_complete(), this isn't a problem
319 320 321
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
322
		napi_complete(napi);
323 324 325
		efx_channel_processed(channel);
	}

326
	return spent;
327 328 329 330 331 332 333 334
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
335 336
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
337 338 339 340 341
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

342
	BUG_ON(channel->channel >= efx->n_channels);
343
	BUG_ON(!channel->enabled);
344
	BUG_ON(!efx->loopback_selftest);
345 346

	/* Disable interrupts and wait for ISRs to complete */
347
	efx_nic_disable_interrupts(efx);
348
	if (efx->legacy_irq) {
349
		synchronize_irq(efx->legacy_irq);
350 351
		efx->legacy_irq_enabled = false;
	}
352
	if (channel->irq)
353 354 355 356 357 358
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
359
	efx_process_channel(channel, channel->eventq_mask + 1);
360 361 362 363 364 365

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
366 367
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
368
	efx_nic_enable_interrupts(efx);
369 370 371 372 373 374 375 376 377
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
378 379 380
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

381
	netif_dbg(efx, probe, efx->net_dev,
382
		  "chan %d create event queue\n", channel->channel);
383

384 385 386 387 388 389
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

390
	return efx_nic_probe_eventq(channel);
391 392 393
}

/* Prepare channel's event queue */
394
static void efx_init_eventq(struct efx_channel *channel)
395
{
396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
398 399 400

	channel->eventq_read_ptr = 0;

401
	efx_nic_init_eventq(channel);
402 403
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

432 433
static void efx_fini_eventq(struct efx_channel *channel)
{
434 435
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
436

437
	efx_nic_fini_eventq(channel);
438 439 440 441
}

static void efx_remove_eventq(struct efx_channel *channel)
{
442 443
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
444

445
	efx_nic_remove_eventq(channel);
446 447 448 449 450 451 452 453
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

454
/* Allocate and initialise a channel structure. */
455 456 457 458 459 460 461 462
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

463 464 465
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
466

467 468 469
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
470

471 472 473 474 475 476
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
477

478 479 480 481
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
482

483 484 485 486 487 488 489 490 491 492 493 494 495
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
496

497 498 499 500 501 502 503 504
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
505

506 507 508
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
509
			tx_queue->channel = channel;
510 511
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
512 513 514
	}

	rx_queue = &channel->rx_queue;
515 516
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
517 518 519 520 521 522
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

523 524 525 526 527 528
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

529 530
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
531

532 533 534 535
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

536 537
	rc = efx_probe_eventq(channel);
	if (rc)
538
		goto fail;
539 540 541 542

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
543
			goto fail;
544 545 546 547 548
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
549
			goto fail;
550 551 552 553 554 555
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

556 557
fail:
	efx_remove_channel(channel);
558 559 560
	return rc;
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
579

580 581 582 583
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

584 585 586 587
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
588 589
}

590 591 592 593 594 595 596 597
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

598 599 600 601 602 603
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

621 622 623 624
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
625
static void efx_start_datapath(struct efx_nic *efx)
626
{
627
	bool old_rx_scatter = efx->rx_scatter;
628 629 630
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
631
	size_t rx_buf_len;
632

633 634 635 636
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
637 638 639
	efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
		      EFX_PAGE_IP_ALIGN + efx->rx_dma_len);
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
			     EFX_PAGE_IP_ALIGN + EFX_RX_USR_BUF_SIZE >
			     PAGE_SIZE / 2);
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

657 658 659 660 661 662 663 664 665 666 667
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
668

669 670 671
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
		efx_filter_update_rx_scatter(efx);
672

673 674 675 676 677 678 679 680 681 682
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

683 684
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
685 686
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
687

688
		efx_for_each_channel_rx_queue(rx_queue, channel) {
689
			efx_init_rx_queue(rx_queue);
690 691
			efx_nic_generate_fill_event(rx_queue);
		}
692

693
		WARN_ON(channel->rx_pkt_n_frags);
694 695
	}

696 697
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
698 699
}

700
static void efx_stop_datapath(struct efx_nic *efx)
701 702 703 704
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
705
	struct pci_dev *dev = efx->pci_dev;
706
	int rc;
707 708 709 710

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

711
	/* Only perform flush if dma is enabled */
712
	if (dev->is_busmaster && efx->state != STATE_RECOVERY) {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
729
	}
730

731
	efx_for_each_channel(channel, efx) {
732 733 734 735 736 737 738 739 740 741
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
742 743 744

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
745
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
746 747 748 749 750 751 752 753 754
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

755 756
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
757 758 759

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
760
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
761 762
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
763
	channel->type->post_remove(channel);
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777 778
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
779
	unsigned i, next_buffer_table = 0;
780 781 782 783 784
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
807

808
	efx_device_detach_sync(efx);
809
	efx_stop_all(efx);
810
	efx_stop_interrupts(efx, true);
811

812
	/* Clone channels (where possible) */
813 814
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
815 816 817
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

836 837
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
838 839

	for (i = 0; i < efx->n_channels; i++) {
840 841 842 843 844 845 846
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
847
	}
848

849
out:
850 851 852 853 854 855 856 857 858
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
859

860
	efx_start_interrupts(efx, true);
861
	efx_start_all(efx);
862
	netif_device_attach(efx->net_dev);
863 864 865 866 867 868 869 870 871 872 873 874 875 876
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

877
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
878
{
879
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
880 881
}

882 883
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
884
	.post_remove		= efx_channel_dummy_op_void,
885 886 887 888 889 890 891 892 893 894
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

895 896 897 898
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

899 900 901 902 903 904 905 906 907 908
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
909
void efx_link_status_changed(struct efx_nic *efx)
910
{
911 912
	struct efx_link_state *link_state = &efx->link_state;

913 914 915 916 917 918 919
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

920
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
921 922
		efx->n_link_state_changes++;

923
		if (link_state->up)
924 925 926 927 928 929
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
930
	if (link_state->up)
931 932 933 934 935
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
936
	else
937
		netif_info(efx, link, efx->net_dev, "link down\n");
938 939
}

B
Ben Hutchings 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

953
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

968 969
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
970 971 972 973 974 975 976 977
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
978
{
B
Ben Hutchings 已提交
979 980
	enum efx_phy_mode phy_mode;
	int rc;
981

B
Ben Hutchings 已提交
982
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
983

984
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
985 986
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
987

B
Ben Hutchings 已提交
988 989
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
990 991 992 993 994
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
995
	rc = efx->type->reconfigure_port(efx);
996

B
Ben Hutchings 已提交
997 998
	if (rc)
		efx->phy_mode = phy_mode;
999

B
Ben Hutchings 已提交
1000
	return rc;
1001 1002 1003 1004
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
1005
int efx_reconfigure_port(struct efx_nic *efx)
1006
{
B
Ben Hutchings 已提交
1007 1008
	int rc;

1009 1010 1011
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1012
	rc = __efx_reconfigure_port(efx);
1013
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1014 1015

	return rc;
1016 1017
}

1018 1019 1020
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1021 1022 1023 1024 1025
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1026
	if (efx->port_enabled)
1027
		efx->type->reconfigure_mac(efx);
1028 1029 1030
	mutex_unlock(&efx->mac_lock);
}

1031 1032 1033 1034
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1035
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1036

1037 1038 1039
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1040 1041
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1042
	if (rc)
1043
		return rc;
1044

1045 1046
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1047 1048 1049 1050 1051 1052 1053 1054

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1055
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1056

1057 1058
	mutex_lock(&efx->mac_lock);

1059
	rc = efx->phy_op->init(efx);
1060
	if (rc)
1061
		goto fail1;
1062

1063
	efx->port_initialized = true;
1064

B
Ben Hutchings 已提交
1065 1066
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1067
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1068 1069 1070 1071 1072 1073

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1074
	mutex_unlock(&efx->mac_lock);
1075
	return 0;
1076

1077
fail2:
1078
	efx->phy_op->fini(efx);
1079 1080
fail1:
	mutex_unlock(&efx->mac_lock);
1081
	return rc;
1082 1083 1084 1085
}

static void efx_start_port(struct efx_nic *efx)
{
1086
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1087 1088 1089
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1090
	efx->port_enabled = true;
1091 1092 1093

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1094
	efx->type->reconfigure_mac(efx);
1095

1096 1097 1098
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1099
/* Prevent efx_mac_work() and efx_monitor() from working */
1100 1101
static void efx_stop_port(struct efx_nic *efx)
{
1102
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1103 1104

	mutex_lock(&efx->mac_lock);
1105
	efx->port_enabled = false;
1106 1107 1108
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1109 1110
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1111 1112 1113 1114
}

static void efx_fini_port(struct efx_nic *efx)
{
1115
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1116 1117 1118 1119

	if (!efx->port_initialized)
		return;

1120
	efx->phy_op->fini(efx);
1121
	efx->port_initialized = false;
1122

1123
	efx->link_state.up = false;
1124 1125 1126 1127 1128
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1129
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1130

1131
	efx->type->remove_port(efx);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1147
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1148 1149 1150

	rc = pci_enable_device(pci_dev);
	if (rc) {
1151 1152
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1164 1165
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1166 1167 1168
			if (rc == 0)
				break;
		}
1169 1170 1171
		dma_mask >>= 1;
	}
	if (rc) {
1172 1173
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1174 1175
		goto fail2;
	}
1176 1177
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1178
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1179
	if (rc) {
1180 1181
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1182 1183
		 * but just in case...
		 */
1184 1185
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1186 1187 1188
		goto fail2;
	}

1189 1190
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1191
	if (rc) {
1192 1193
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1194 1195 1196
		rc = -EIO;
		goto fail3;
	}
1197 1198
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1199
	if (!efx->membase) {
1200 1201 1202 1203
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1204 1205 1206
		rc = -ENOMEM;
		goto fail4;
	}
1207 1208 1209 1210
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1211 1212 1213 1214

	return 0;

 fail4:
1215
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1216
 fail3:
1217
	efx->membase_phys = 0;
1218 1219 1220 1221 1222 1223 1224 1225
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1226
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1227 1228 1229 1230 1231 1232 1233

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1234
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1235
		efx->membase_phys = 0;
1236 1237 1238 1239 1240
	}

	pci_disable_device(efx->pci_dev);
}

1241
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1242
{
1243
	cpumask_var_t thread_mask;
1244
	unsigned int count;
1245
	int cpu;
1246

1247 1248 1249 1250 1251 1252 1253 1254
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1266 1267
	}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1279 1280 1281 1282 1283
	}

	return count;
}

1284 1285 1286 1287
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1288 1289
	unsigned int i;
	int rc;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1307 1308 1309
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1310
static int efx_probe_interrupts(struct efx_nic *efx)
1311
{
1312 1313
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1314 1315
	unsigned int extra_channels = 0;
	unsigned int i, j;
1316
	int rc;
1317

1318 1319 1320 1321
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1322
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1323
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1324
		unsigned int n_channels;
1325

1326
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1327 1328
		if (separate_tx_channels)
			n_channels *= 2;
1329
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1330
		n_channels = min(n_channels, max_channels);
1331

B
Ben Hutchings 已提交
1332
		for (i = 0; i < n_channels; i++)
1333
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1334
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1335
		if (rc > 0) {
1336 1337
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1338
				  " available (%d < %u).\n", rc, n_channels);
1339 1340
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1341 1342
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1343
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1344
					     n_channels);
1345 1346 1347
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1348
			efx->n_channels = n_channels;
1349 1350
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1351
			if (separate_tx_channels) {
1352 1353 1354 1355
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1356
			} else {
1357 1358
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1359
			}
1360 1361 1362 1363 1364
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1365
			for (i = 0; i < efx->n_channels; i++)
1366 1367
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1368 1369 1370
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1371 1372
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1373 1374 1375 1376 1377
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1378
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1379 1380
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1381 1382
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1383
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1384
		} else {
1385 1386
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1387 1388 1389 1390 1391 1392
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1393
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1394 1395
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1396 1397
		efx->legacy_irq = efx->pci_dev->irq;
	}
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1414
	/* RSS might be usable on VFs even if it is disabled on the PF */
1415
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1416 1417
			   efx->n_rx_channels : efx_vf_size(efx));

1418
	return 0;
1419 1420
}

1421
/* Enable interrupts, then probe and start the event queues */
1422
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1423 1424 1425
{
	struct efx_channel *channel;

1426 1427
	BUG_ON(efx->state == STATE_DISABLED);

1428 1429 1430 1431 1432
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1433 1434
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1435 1436 1437 1438 1439 1440
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1441
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1442 1443 1444
{
	struct efx_channel *channel;

1445 1446 1447
	if (efx->state == STATE_DISABLED)
		return;

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1461 1462
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1463 1464 1465
	}
}

1466 1467 1468 1469 1470
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1471
	efx_for_each_channel(channel, efx)
1472 1473 1474 1475 1476 1477 1478 1479
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1480
static void efx_set_channels(struct efx_nic *efx)
1481
{
1482 1483 1484
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1485
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1486
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1487

1488 1489
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1490 1491 1492
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1493 1494 1495 1496 1497
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1498 1499 1500 1501
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1502 1503 1504 1505
}

static int efx_probe_nic(struct efx_nic *efx)
{
1506
	size_t i;
1507 1508
	int rc;

1509
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1510 1511

	/* Carry out hardware-type specific initialisation */
1512
	rc = efx->type->probe(efx);
1513 1514 1515
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1516
	/* Determine the number of channels and queues by trying to hook
1517
	 * in MSI-X interrupts. */
1518 1519 1520
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1521

1522 1523
	efx->type->dimension_resources(efx);

1524 1525
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1526
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1527
		efx->rx_indir_table[i] =
1528
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1529

1530
	efx_set_channels(efx);
1531 1532
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1533 1534

	/* Initialise the interrupt moderation settings */
1535 1536
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1537 1538

	return 0;
1539 1540 1541 1542

fail:
	efx->type->remove(efx);
	return rc;
1543 1544 1545 1546
}

static void efx_remove_nic(struct efx_nic *efx)
{
1547
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1548 1549

	efx_remove_interrupts(efx);
1550
	efx->type->remove(efx);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1565
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1566 1567 1568 1569 1570
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1571
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1572 1573 1574
		goto fail2;
	}

1575 1576 1577 1578 1579
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1580
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1581

B
Ben Hutchings 已提交
1582 1583 1584 1585
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1586
		goto fail3;
B
Ben Hutchings 已提交
1587 1588
	}

1589 1590 1591 1592
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1593 1594
	return 0;

B
Ben Hutchings 已提交
1595
 fail4:
1596
	efx_remove_filters(efx);
1597 1598 1599 1600 1601 1602 1603 1604
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1605 1606 1607 1608 1609 1610
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1611
 */
1612 1613 1614
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1615
	BUG_ON(efx->state == STATE_DISABLED);
1616 1617 1618

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1619
	if (efx->port_enabled || !netif_running(efx->net_dev))
1620 1621 1622
		return;

	efx_start_port(efx);
1623
	efx_start_datapath(efx);
1624

1625 1626
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1627 1628
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1629 1630 1631 1632 1633

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1634 1635 1636 1637 1638
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1639

1640
	efx->type->start_stats(efx);
1641 1642 1643 1644 1645 1646 1647
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1648
	/* Make sure the hardware monitor and event self-test are stopped */
1649
	cancel_delayed_work_sync(&efx->monitor_work);
1650
	efx_selftest_async_cancel(efx);
1651
	/* Stop scheduled port reconfigurations */
1652
	cancel_work_sync(&efx->mac_work);
1653 1654
}

1655 1656 1657 1658 1659
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1660 1661 1662 1663 1664 1665 1666 1667
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1668
	efx->type->stop_stats(efx);
1669 1670
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1671
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1672 1673
	efx_flush_all(efx);

1674 1675 1676 1677 1678 1679
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1680 1681 1682
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1683 1684 1685 1686
}

static void efx_remove_all(struct efx_nic *efx)
{
1687
	efx_remove_channels(efx);
1688
	efx_remove_filters(efx);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1699
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1700
{
1701 1702
	if (usecs == 0)
		return 0;
1703
	if (usecs * 1000 < quantum_ns)
1704
		return 1; /* never round down to 0 */
1705
	return usecs * 1000 / quantum_ns;
1706 1707
}

1708
/* Set interrupt moderation parameters */
1709 1710 1711
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1712
{
1713
	struct efx_channel *channel;
1714 1715 1716 1717 1718
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1719 1720 1721

	EFX_ASSERT_RESET_SERIALISED(efx);

1722
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1723 1724
		return -EINVAL;

1725 1726 1727
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1728 1729 1730 1731 1732 1733 1734
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1735
	efx->irq_rx_adaptive = rx_adaptive;
1736
	efx->irq_rx_moderation = rx_ticks;
1737
	efx_for_each_channel(channel, efx) {
1738
		if (efx_channel_has_rx_queue(channel))
1739
			channel->irq_moderation = rx_ticks;
1740
		else if (efx_channel_has_tx_queues(channel))
1741 1742
			channel->irq_moderation = tx_ticks;
	}
1743 1744

	return 0;
1745 1746
}

1747 1748 1749
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1750 1751 1752 1753
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1754
	*rx_adaptive = efx->irq_rx_adaptive;
1755 1756 1757
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1758 1759 1760 1761 1762 1763 1764 1765

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1766
		*tx_usecs = DIV_ROUND_UP(
1767
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1768 1769
			efx->timer_quantum_ns,
			1000);
1770 1771
}

1772 1773 1774 1775 1776 1777
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1778
/* Run periodically off the general workqueue */
1779 1780 1781 1782 1783
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1784 1785 1786
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1787
	BUG_ON(efx->type->monitor == NULL);
1788 1789 1790

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1791 1792 1793 1794 1795 1796
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1813
	struct efx_nic *efx = netdev_priv(net_dev);
1814
	struct mii_ioctl_data *data = if_mii(ifr);
1815

1816 1817 1818
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1819 1820 1821 1822 1823 1824
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1825 1826 1827 1828 1829 1830 1831 1832
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1833 1834 1835 1836 1837 1838 1839 1840 1841
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1842
static void efx_init_napi(struct efx_nic *efx)
1843 1844 1845
{
	struct efx_channel *channel;

1846 1847
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1848 1849 1850 1851 1852 1853 1854
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1855 1856 1857 1858 1859 1860
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1861 1862
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1879
	struct efx_nic *efx = netdev_priv(net_dev);
1880 1881
	struct efx_channel *channel;

1882
	efx_for_each_channel(channel, efx)
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1897
	struct efx_nic *efx = netdev_priv(net_dev);
1898 1899
	int rc;

1900 1901
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1902

1903 1904 1905
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1906 1907
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1908 1909
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1910

1911 1912 1913 1914
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1915
	efx_start_all(efx);
1916
	efx_selftest_async_start(efx);
1917 1918 1919 1920 1921 1922 1923 1924 1925
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1926
	struct efx_nic *efx = netdev_priv(net_dev);
1927

1928 1929
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1930

1931 1932
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1933 1934 1935 1936

	return 0;
}

1937
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1938 1939
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1940
{
1941
	struct efx_nic *efx = netdev_priv(net_dev);
1942 1943
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1944
	spin_lock_bh(&efx->stats_lock);
1945

1946
	efx->type->update_stats(efx);
1947 1948 1949 1950 1951

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1952
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1970 1971
	spin_unlock_bh(&efx->stats_lock);

1972 1973 1974 1975 1976 1977
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1978
	struct efx_nic *efx = netdev_priv(net_dev);
1979

1980 1981 1982
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1983

1984
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1985 1986 1987 1988 1989 1990
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1991
	struct efx_nic *efx = netdev_priv(net_dev);
1992
	int rc;
1993

1994 1995 1996
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1997 1998 1999
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2000
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2001

2002 2003 2004
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2005
	mutex_lock(&efx->mac_lock);
2006
	net_dev->mtu = new_mtu;
2007
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2008 2009
	mutex_unlock(&efx->mac_lock);

2010
	efx_start_all(efx);
2011
	netif_device_attach(efx->net_dev);
2012
	return 0;
2013 2014 2015 2016
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2017
	struct efx_nic *efx = netdev_priv(net_dev);
2018 2019 2020 2021
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2022 2023 2024
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2025
		return -EADDRNOTAVAIL;
2026 2027 2028
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2029
	efx_sriov_mac_address_changed(efx);
2030 2031

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2032
	mutex_lock(&efx->mac_lock);
2033
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2034
	mutex_unlock(&efx->mac_lock);
2035 2036 2037 2038

	return 0;
}

2039
/* Context: netif_addr_lock held, BHs disabled. */
2040
static void efx_set_rx_mode(struct net_device *net_dev)
2041
{
2042
	struct efx_nic *efx = netdev_priv(net_dev);
2043
	struct netdev_hw_addr *ha;
2044 2045 2046 2047
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2048
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2049 2050

	/* Build multicast hash table */
2051
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2052 2053 2054
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2055 2056
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2057
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2058
			__set_bit_le(bit, mc_hash);
2059 2060
		}

2061 2062 2063 2064
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2065
		__set_bit_le(0xff, mc_hash);
2066
	}
2067

2068 2069 2070
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2071 2072
}

2073
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2084 2085 2086
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2087
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2088 2089 2090 2091 2092 2093
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2094
	.ndo_set_rx_mode	= efx_set_rx_mode,
2095
	.ndo_set_features	= efx_set_features,
2096 2097 2098 2099 2100 2101
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2102 2103 2104
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2105
	.ndo_setup_tc		= efx_setup_tc,
2106 2107 2108
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2109 2110
};

2111 2112 2113 2114 2115 2116 2117
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2118 2119 2120
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2121
	struct net_device *net_dev = ptr;
2122

2123 2124 2125
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2126 2127 2128 2129 2130 2131 2132 2133

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2134 2135 2136 2137 2138 2139 2140 2141
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2142 2143 2144
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2145
	struct efx_channel *channel;
2146 2147 2148 2149
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2150
	net_dev->netdev_ops = &efx_netdev_ops;
2151
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2152
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2153

2154
	rtnl_lock();
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2169 2170 2171
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2172
	efx_update_name(efx);
2173

2174 2175 2176
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2177 2178 2179 2180
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2181 2182
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2183 2184
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2185 2186
	}

2187
	rtnl_unlock();
2188

B
Ben Hutchings 已提交
2189 2190
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2191 2192
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2193 2194 2195
		goto fail_registered;
	}

2196
	return 0;
B
Ben Hutchings 已提交
2197

2198 2199 2200
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2201
fail_locked:
2202
	efx->state = STATE_UNINIT;
2203
	rtnl_unlock();
2204
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2205
	return rc;
2206 2207 2208 2209
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2210
	struct efx_channel *channel;
2211 2212 2213 2214 2215
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2216
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2217 2218 2219 2220

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2221 2222 2223 2224
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2225

2226 2227
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2228 2229 2230 2231 2232

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2233 2234 2235 2236 2237 2238 2239 2240
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2241 2242
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2243
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2244 2245 2246
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2247
	efx_stop_all(efx);
2248
	efx_stop_interrupts(efx, false);
2249 2250

	mutex_lock(&efx->mac_lock);
2251 2252
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2253
	efx->type->fini(efx);
2254 2255
}

B
Ben Hutchings 已提交
2256 2257 2258 2259 2260
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2261
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2262 2263 2264
{
	int rc;

B
Ben Hutchings 已提交
2265
	EFX_ASSERT_RESET_SERIALISED(efx);
2266

2267
	rc = efx->type->init(efx);
2268
	if (rc) {
2269
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2270
		goto fail;
2271 2272
	}

2273 2274 2275
	if (!ok)
		goto fail;

2276
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2277 2278 2279 2280
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2281 2282
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2283 2284
	}

2285
	efx->type->reconfigure_mac(efx);
2286

2287
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2288
	efx_restore_filters(efx);
2289
	efx_sriov_reset(efx);
2290 2291 2292 2293 2294 2295 2296 2297 2298

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2299 2300 2301

	mutex_unlock(&efx->mac_lock);

2302 2303 2304
	return rc;
}

2305 2306
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2307
 *
2308
 * Caller must hold the rtnl_lock.
2309
 */
2310
int efx_reset(struct efx_nic *efx, enum reset_type method)
2311
{
2312 2313
	int rc, rc2;
	bool disabled;
2314

2315 2316
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2317

2318
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2319
	efx_reset_down(efx, method);
2320

2321
	rc = efx->type->reset(efx, method);
2322
	if (rc) {
2323
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2324
		goto out;
2325 2326
	}

2327 2328 2329 2330
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2331 2332 2333 2334 2335 2336 2337

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2338
out:
2339
	/* Leave device stopped if necessary */
2340 2341 2342
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2343 2344 2345 2346 2347
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2348 2349
	}

2350
	if (disabled) {
2351
		dev_close(efx->net_dev);
2352
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2353 2354
		efx->state = STATE_DISABLED;
	} else {
2355
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2356
		netif_device_attach(efx->net_dev);
2357
	}
2358 2359 2360
	return rc;
}

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
static int efx_try_recovery(struct efx_nic *efx)
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2387 2388 2389 2390 2391
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2392
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2403

2404
	if (!pending)
2405 2406
		return;

2407
	rtnl_lock();
2408 2409 2410 2411 2412 2413

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2414
		(void)efx_reset(efx, method);
2415

2416
	rtnl_unlock();
2417 2418 2419 2420 2421 2422
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2423 2424 2425 2426 2427 2428 2429
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2430 2431 2432
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2433
	case RESET_TYPE_RECOVER_OR_ALL:
2434 2435
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2436
	case RESET_TYPE_RECOVER_OR_DISABLE:
2437
		method = type;
2438 2439
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2440 2441
		break;
	default:
2442
		method = efx->type->map_reset_reason(type);
2443 2444 2445
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2446 2447
		break;
	}
2448

2449
	set_bit(method, &efx->reset_pending);
2450 2451 2452 2453 2454 2455 2456
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2457

2458 2459 2460 2461
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2462
	queue_work(reset_workqueue, &efx->reset_work);
2463 2464 2465 2466 2467 2468 2469 2470 2471
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2472
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2473 2474
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2475
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2476 2477
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2478
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2479
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2480
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2481
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2482
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2483 2484 2485 2486 2487
	{0}			/* end of list */
};

/**************************************************************************
 *
2488
 * Dummy PHY/MAC operations
2489
 *
2490
 * Can be used for some unimplemented operations
2491 2492 2493 2494 2495 2496 2497 2498 2499
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2500 2501

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2502 2503 2504
{
	return false;
}
2505

2506
static const struct efx_phy_operations efx_dummy_phy_operations = {
2507
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2508
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2509
	.poll		 = efx_port_dummy_op_poll,
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2522
static int efx_init_struct(struct efx_nic *efx,
2523 2524
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2525
	int i;
2526 2527 2528

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2529 2530 2531
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2532 2533
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2534
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2535
	efx->pci_dev = pci_dev;
2536
	efx->msg_enable = debug;
2537
	efx->state = STATE_UNINIT;
2538 2539 2540 2541 2542 2543
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2544
	efx->mdio.dev = net_dev;
2545
	INIT_WORK(&efx->mac_work, efx_mac_work);
2546
	init_waitqueue_head(&efx->flush_wq);
2547 2548

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2549 2550 2551
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2552 2553 2554 2555 2556 2557 2558 2559
	}

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2560 2561 2562 2563
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2564
	if (!efx->workqueue)
2565
		goto fail;
2566

2567
	return 0;
2568 2569 2570 2571

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2572 2573 2574 2575
}

static void efx_fini_struct(struct efx_nic *efx)
{
2576 2577 2578 2579 2580
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2598 2599 2600 2601 2602 2603
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

2604 2605 2606 2607
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2608
	efx_stop_interrupts(efx, false);
2609
	efx_nic_fini_interrupt(efx);
2610
	efx_fini_port(efx);
2611
	efx->type->fini(efx);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
2630
	efx_stop_interrupts(efx, false);
2631 2632
	rtnl_unlock();

2633
	efx_sriov_fini(efx);
2634 2635
	efx_unregister_netdev(efx);

2636 2637
	efx_mtd_remove(efx);

2638 2639 2640
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2641
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2642 2643

	efx_fini_struct(efx);
2644
	pci_set_drvdata(pci_dev, NULL);
2645
	free_netdev(efx->net_dev);
2646 2647

	pci_disable_pcie_error_reporting(pci_dev);
2648 2649
};

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2713
	efx_init_napi(efx);
2714

2715
	rc = efx->type->init(efx);
2716
	if (rc) {
2717 2718
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2719
		goto fail3;
2720 2721 2722 2723
	}

	rc = efx_init_port(efx);
	if (rc) {
2724 2725
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2726
		goto fail4;
2727 2728
	}

2729
	rc = efx_nic_init_interrupt(efx);
2730
	if (rc)
2731
		goto fail5;
2732
	efx_start_interrupts(efx, false);
2733 2734 2735

	return 0;

2736
 fail5:
2737 2738
	efx_fini_port(efx);
 fail4:
2739
	efx->type->fini(efx);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2750
 * theoretically).  It sets up PCI mappings, resets the NIC,
2751 2752 2753 2754 2755
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2756
static int efx_pci_probe(struct pci_dev *pci_dev,
2757
			 const struct pci_device_id *entry)
2758 2759 2760
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2761
	int rc;
2762 2763

	/* Allocate and initialise a struct net_device and struct efx_nic */
2764 2765
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2766 2767
	if (!net_dev)
		return -ENOMEM;
2768 2769 2770
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2771
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2772
			      NETIF_F_RXCSUM);
2773
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2774
		net_dev->features |= NETIF_F_TSO6;
2775 2776
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2777 2778 2779 2780
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2781
	pci_set_drvdata(pci_dev, efx);
2782
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2783
	rc = efx_init_struct(efx, pci_dev, net_dev);
2784 2785 2786
	if (rc)
		goto fail1;

2787
	netif_info(efx, probe, efx->net_dev,
2788
		   "Solarflare NIC detected\n");
2789

2790 2791
	efx_print_product_vpd(efx);

2792 2793 2794 2795 2796
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2797 2798 2799
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2800 2801 2802

	rc = efx_register_netdev(efx);
	if (rc)
2803
		goto fail4;
2804

2805 2806 2807 2808 2809
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2810
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2811

2812
	/* Try to create MTDs, but allow this to fail */
2813
	rtnl_lock();
2814
	rc = efx_mtd_probe(efx);
2815
	rtnl_unlock();
2816 2817 2818 2819
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2820 2821 2822 2823 2824
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2825 2826 2827
	return 0;

 fail4:
2828
	efx_pci_remove_main(efx);
2829 2830 2831 2832 2833
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2834
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2835
	WARN_ON(rc > 0);
2836
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2837 2838 2839 2840
	free_netdev(net_dev);
	return rc;
}

2841 2842 2843 2844
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2845 2846
	rtnl_lock();

2847 2848
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2849

2850
		efx_device_detach_sync(efx);
2851

2852 2853 2854
		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);
	}
2855

2856 2857
	rtnl_unlock();

2858 2859 2860 2861 2862 2863 2864
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2865 2866
	rtnl_lock();

2867 2868
	if (efx->state != STATE_DISABLED) {
		efx_start_interrupts(efx, false);
2869

2870 2871 2872
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2873

2874
		efx_start_all(efx);
2875

2876
		netif_device_attach(efx->net_dev);
2877

2878
		efx->state = STATE_READY;
2879

2880 2881
		efx->type->resume_wol(efx);
	}
2882

2883 2884
	rtnl_unlock();

2885 2886 2887
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2898
	efx->reset_pending = 0;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2940
static const struct dev_pm_ops efx_pm_ops = {
2941 2942 2943 2944 2945 2946 2947 2948
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2949 2950 2951 2952
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2953 2954
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2989
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3048
static struct pci_driver efx_pci_driver = {
3049
	.name		= KBUILD_MODNAME,
3050 3051 3052
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3053
	.driver.pm	= &efx_pm_ops,
3054
	.err_handler	= &efx_err_handlers,
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3077 3078 3079 3080
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3081 3082 3083 3084 3085
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3086 3087 3088 3089 3090 3091 3092 3093

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3094 3095
	destroy_workqueue(reset_workqueue);
 err_reset:
3096 3097
	efx_fini_sriov();
 err_sriov:
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3108
	destroy_workqueue(reset_workqueue);
3109
	efx_fini_sriov();
3110 3111 3112 3113 3114 3115 3116
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3117 3118
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3119 3120 3121
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);