core.c 165.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
13
#include <linux/wait_bit.h>
L
Linus Torvalds 已提交
14
#include <linux/cpuset.h>
15
#include <linux/delayacct.h>
16
#include <linux/init_task.h>
17
#include <linux/context_tracking.h>
18
#include <linux/rcupdate_wait.h>
19 20 21 22 23 24

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
25
#include <linux/prefetch.h>
26 27 28
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
L
Linus Torvalds 已提交
29

30
#include <asm/switch_to.h>
31
#include <asm/tlb.h>
32 33 34
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
35

36
#include "sched.h"
37
#include "../workqueue_internal.h"
38
#include "../smpboot.h"
39

40
#define CREATE_TRACE_POINTS
41
#include <trace/events/sched.h>
42

43
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
44

I
Ingo Molnar 已提交
45 46 47
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
48 49 50 51

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
52
const_debug unsigned int sysctl_sched_features =
53
#include "features.h"
P
Peter Zijlstra 已提交
54 55 56 57
	0;

#undef SCHED_FEAT

58 59 60 61 62 63
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

64 65 66 67 68 69 70 71
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
72
/*
I
Ingo Molnar 已提交
73
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
74 75
 * default: 1s
 */
P
Peter Zijlstra 已提交
76
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
77

78
__read_mostly int scheduler_running;
79

P
Peter Zijlstra 已提交
80 81 82 83 84
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
85

I
Ingo Molnar 已提交
86
/* CPUs with isolated domains */
87 88
cpumask_var_t cpu_isolated_map;

89 90 91
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
92
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 94 95 96 97 98 99 100 101 102
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
103
			rq_pin_lock(rq, rf);
104 105 106 107 108 109 110 111 112 113 114 115
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
116
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
117 118 119 120 121 122
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
123
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
139
		 * If we observe the new CPU in task_rq_lock, the acquire will
140 141 142
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
143
			rq_pin_lock(rq, rf);
144 145 146
			return rq;
		}
		raw_spin_unlock(&rq->lock);
147
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
148 149 150 151 152 153

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
222 223
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
224 225
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
226

227 228 229 230 231 232 233 234
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
253
	struct rq_flags rf;
P
Peter Zijlstra 已提交
254 255 256

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

257
	rq_lock(rq, &rf);
258
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
259
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
260
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
261 262 263 264

	return HRTIMER_NORESTART;
}

265
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
266

267
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
268 269 270
{
	struct hrtimer *timer = &rq->hrtick_timer;

271
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
272 273
}

274 275 276 277
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
278
{
279
	struct rq *rq = arg;
280
	struct rq_flags rf;
281

282
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
283
	__hrtick_restart(rq);
284
	rq->hrtick_csd_pending = 0;
285
	rq_unlock(rq, &rf);
286 287
}

288 289 290 291 292
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
293
void hrtick_start(struct rq *rq, u64 delay)
294
{
295
	struct hrtimer *timer = &rq->hrtick_timer;
296 297 298 299 300 301 302 303 304
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
305

306
	hrtimer_set_expires(timer, time);
307 308

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
309
		__hrtick_restart(rq);
310
	} else if (!rq->hrtick_csd_pending) {
311
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
312 313
		rq->hrtick_csd_pending = 1;
	}
314 315
}

316 317 318 319 320 321
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
322
void hrtick_start(struct rq *rq, u64 delay)
323
{
W
Wanpeng Li 已提交
324 325 326 327 328
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
329 330
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
331 332
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
333

334
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
335
{
336 337
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
338

339 340 341 342
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
343

344 345
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
346
}
A
Andrew Morton 已提交
347
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
348 349 350 351 352 353 354
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
355
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

375
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
376 377 378 379 380 381 382 383 384 385
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
386 387 388 389 390 391 392 393 394 395

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
396
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
397 398 399 400 401 402 403 404 405 406 407 408 409 410

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

411 412 413 414 415 416
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
417 418 419 420 421 422 423

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
424 425
#endif

426 427 428 429 430 431 432 433 434 435
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
436
	 * barrier implied by the wakeup in wake_up_q().
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
459
		/* Task can safely be re-inserted now: */
460 461 462 463 464 465 466 467 468 469 470 471
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
472
/*
473
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
474 475 476 477 478
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
479
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
480
{
481
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
482 483
	int cpu;

484
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
485

486
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
487 488
		return;

489
	cpu = cpu_of(rq);
490

491
	if (cpu == smp_processor_id()) {
492
		set_tsk_need_resched(curr);
493
		set_preempt_need_resched();
I
Ingo Molnar 已提交
494
		return;
495
	}
I
Ingo Molnar 已提交
496

497
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
498
		smp_send_reschedule(cpu);
499 500
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
501 502
}

503
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
504 505 506 507
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

508
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
509
		return;
510
	resched_curr(rq);
511
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
512
}
513

514
#ifdef CONFIG_SMP
515
#ifdef CONFIG_NO_HZ_COMMON
516
/*
I
Ingo Molnar 已提交
517 518
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
519 520
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
521 522
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523
 */
524
int get_nohz_timer_target(void)
525
{
526
	int i, cpu = smp_processor_id();
527 528
	struct sched_domain *sd;

529
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
530 531
		return cpu;

532
	rcu_read_lock();
533
	for_each_domain(cpu, sd) {
534
		for_each_cpu(i, sched_domain_span(sd)) {
535 536 537 538
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
539 540 541 542
				cpu = i;
				goto unlock;
			}
		}
543
	}
544 545 546

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
547 548
unlock:
	rcu_read_unlock();
549 550
	return cpu;
}
I
Ingo Molnar 已提交
551

552 553 554 555 556 557 558 559 560 561
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
562
static void wake_up_idle_cpu(int cpu)
563 564 565 566 567 568
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

569
	if (set_nr_and_not_polling(rq->idle))
570
		smp_send_reschedule(cpu);
571 572
	else
		trace_sched_wake_idle_without_ipi(cpu);
573 574
}

575
static bool wake_up_full_nohz_cpu(int cpu)
576
{
577 578 579 580 581 582
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
583 584
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
585
	if (tick_nohz_full_cpu(cpu)) {
586 587
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
588
			tick_nohz_full_kick_cpu(cpu);
589 590 591 592 593 594
		return true;
	}

	return false;
}

595 596 597 598 599
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
600 601
void wake_up_nohz_cpu(int cpu)
{
602
	if (!wake_up_full_nohz_cpu(cpu))
603 604 605
		wake_up_idle_cpu(cpu);
}

606
static inline bool got_nohz_idle_kick(void)
607
{
608
	int cpu = smp_processor_id();
609 610 611 612 613 614 615 616 617 618 619 620 621

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
622 623
}

624
#else /* CONFIG_NO_HZ_COMMON */
625

626
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
627
{
628
	return false;
P
Peter Zijlstra 已提交
629 630
}

631
#endif /* CONFIG_NO_HZ_COMMON */
632

633
#ifdef CONFIG_NO_HZ_FULL
634
bool sched_can_stop_tick(struct rq *rq)
635
{
636 637 638 639 640 641
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

642
	/*
643 644
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
645
	 */
646 647 648 649 650
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
651 652
	}

653 654 655 656 657 658 659 660 661 662 663 664 665 666
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
667
		return false;
668

669
	return true;
670 671
}
#endif /* CONFIG_NO_HZ_FULL */
672

673
void sched_avg_update(struct rq *rq)
674
{
675 676
	s64 period = sched_avg_period();

677
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 679 680 681 682 683
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
684 685 686
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
687 688
}

689
#endif /* CONFIG_SMP */
690

691 692
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693
/*
694 695 696 697
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
698
 */
699
int walk_tg_tree_from(struct task_group *from,
700
			     tg_visitor down, tg_visitor up, void *data)
701 702
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
703
	int ret;
704

705 706
	parent = from;

707
down:
P
Peter Zijlstra 已提交
708 709
	ret = (*down)(parent, data);
	if (ret)
710
		goto out;
711 712 713 714 715 716 717
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
718
	ret = (*up)(parent, data);
719 720
	if (ret || parent == from)
		goto out;
721 722 723 724 725

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
726
out:
P
Peter Zijlstra 已提交
727
	return ret;
728 729
}

730
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
731
{
732
	return 0;
P
Peter Zijlstra 已提交
733
}
734 735
#endif

736 737
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
738 739 740
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
741 742 743
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
744
	if (idle_policy(p->policy)) {
745
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
746
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
747 748
		return;
	}
749

750 751
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
752 753
}

754
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
755
{
756 757 758
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

759 760
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
761

762
	p->sched_class->enqueue_task(rq, p, flags);
763 764
}

765
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767 768 769
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

770 771
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
772

773
	p->sched_class->dequeue_task(rq, p, flags);
774 775
}

776
void activate_task(struct rq *rq, struct task_struct *p, int flags)
777 778 779 780
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

781
	enqueue_task(rq, p, flags);
782 783
}

784
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
785 786 787 788
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

789
	dequeue_task(rq, p, flags);
790 791
}

792
/*
I
Ingo Molnar 已提交
793
 * __normal_prio - return the priority that is based on the static prio
794 795 796
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
797
	return p->static_prio;
798 799
}

800 801 802 803 804 805 806
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
807
static inline int normal_prio(struct task_struct *p)
808 809 810
{
	int prio;

811 812 813
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
814 815 816 817 818 819 820 821 822 823 824 825 826
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
827
static int effective_prio(struct task_struct *p)
828 829 830 831 832 833 834 835 836 837 838 839
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
840 841 842
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
843 844
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
845
 */
846
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
847 848 849 850
{
	return cpu_curr(task_cpu(p)) == p;
}

851
/*
852 853 854 855 856
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
857
 */
858 859
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
860
				       int oldprio)
861 862 863
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
864
			prev_class->switched_from(rq, p);
865

P
Peter Zijlstra 已提交
866
		p->sched_class->switched_to(rq, p);
867
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
868
		p->sched_class->prio_changed(rq, p, oldprio);
869 870
}

871
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
872 873 874 875 876 877 878 879 880 881
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
882
				resched_curr(rq);
883 884 885 886 887 888 889 890 891
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
892
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
893
		rq_clock_skip_update(rq, true);
894 895
}

L
Linus Torvalds 已提交
896
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
916 917
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
918 919 920 921
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
922
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
923
	set_task_cpu(p, new_cpu);
924
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
925 926 927

	rq = cpu_rq(new_cpu);

928
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
929 930
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
931
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
932 933 934 935 936 937 938 939 940 941 942
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
943
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
944 945 946 947 948 949 950
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
951 952
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
953
{
954 955 956 957 958 959 960
	if (p->flags & PF_KTHREAD) {
		if (unlikely(!cpu_online(dest_cpu)))
			return rq;
	} else {
		if (unlikely(!cpu_active(dest_cpu)))
			return rq;
	}
P
Peter Zijlstra 已提交
961 962

	/* Affinity changed (again). */
963
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
964
		return rq;
P
Peter Zijlstra 已提交
965

966
	update_rq_clock(rq);
967
	rq = move_queued_task(rq, rf, p, dest_cpu);
968 969

	return rq;
P
Peter Zijlstra 已提交
970 971 972 973 974 975 976 977 978 979
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
980 981
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
982
	struct rq_flags rf;
P
Peter Zijlstra 已提交
983 984

	/*
I
Ingo Molnar 已提交
985 986
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
995 996

	raw_spin_lock(&p->pi_lock);
997
	rq_lock(rq, &rf);
998 999 1000 1001 1002
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1003 1004
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1005
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1006 1007 1008
		else
			p->wake_cpu = arg->dest_cpu;
	}
1009
	rq_unlock(rq, &rf);
1010 1011
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1012 1013 1014 1015
	local_irq_enable();
	return 0;
}

1016 1017 1018 1019 1020
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1021 1022 1023 1024 1025
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1026 1027
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1028 1029 1030
	struct rq *rq = task_rq(p);
	bool queued, running;

1031
	lockdep_assert_held(&p->pi_lock);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1042
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1043 1044 1045 1046
	}
	if (running)
		put_prev_task(rq, p);

1047
	p->sched_class->set_cpus_allowed(p, new_mask);
1048 1049

	if (queued)
1050
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1051
	if (running)
1052
		set_curr_task(rq, p);
1053 1054
}

P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1064 1065
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1066
{
1067
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1068
	unsigned int dest_cpu;
1069 1070
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1071 1072
	int ret = 0;

1073
	rq = task_rq_lock(p, &rf);
1074
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1075

1076 1077 1078 1079 1080 1081 1082
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1083 1084 1085 1086 1087 1088 1089 1090 1091
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1092 1093 1094
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1095
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1102 1103 1104
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1105
		 * !active we want to ensure they are strict per-CPU threads.
1106 1107 1108 1109 1110 1111
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1112 1113 1114 1115
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1116
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1117 1118 1119
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1120
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1121 1122 1123
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1124 1125 1126 1127 1128
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1129
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1130
	}
P
Peter Zijlstra 已提交
1131
out:
1132
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1133 1134 1135

	return ret;
}
1136 1137 1138 1139 1140

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1141 1142
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1143
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1144
{
1145 1146 1147 1148 1149
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1150
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1151
			!p->on_rq);
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1162
#ifdef CONFIG_LOCKDEP
1163 1164 1165 1166 1167
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1168
	 * see task_group().
1169 1170 1171 1172
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1173 1174 1175
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1176 1177 1178 1179
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1180 1181
#endif

1182
	trace_sched_migrate_task(p, new_cpu);
1183

1184
	if (task_cpu(p) != new_cpu) {
1185
		if (p->sched_class->migrate_task_rq)
1186
			p->sched_class->migrate_task_rq(p);
1187
		p->se.nr_migrations++;
1188
		perf_event_task_migrate(p);
1189
	}
I
Ingo Molnar 已提交
1190 1191

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1192 1193
}

1194 1195
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1196
	if (task_on_rq_queued(p)) {
1197
		struct rq *src_rq, *dst_rq;
1198
		struct rq_flags srf, drf;
1199 1200 1201 1202

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1203 1204 1205
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1206
		p->on_rq = TASK_ON_RQ_MIGRATING;
1207 1208 1209
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1210
		p->on_rq = TASK_ON_RQ_QUEUED;
1211
		check_preempt_curr(dst_rq, p, 0);
1212 1213 1214 1215

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1216 1217 1218 1219
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1220
		 * previous CPU our target instead of where it really is.
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1237 1238 1239
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1240 1241 1242
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1243 1244
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1245
	double_rq_lock(src_rq, dst_rq);
1246

1247 1248 1249 1250 1251 1252
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1253
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1254 1255
		goto unlock;

1256
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1257 1258 1259 1260 1261 1262 1263 1264 1265
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1266 1267
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1290 1291 1292 1293
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1294 1295 1296
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1297
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1298 1299
		goto out;

1300
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1301 1302
		goto out;

1303
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1304 1305 1306 1307 1308 1309
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1310 1311 1312
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1313 1314 1315 1316 1317 1318 1319
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1326
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1327
{
1328
	int running, queued;
1329
	struct rq_flags rf;
R
Roland McGrath 已提交
1330
	unsigned long ncsw;
1331
	struct rq *rq;
L
Linus Torvalds 已提交
1332

1333 1334 1335 1336 1337 1338 1339 1340
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1353 1354 1355
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1356
			cpu_relax();
R
Roland McGrath 已提交
1357
		}
1358

1359 1360 1361 1362 1363
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1364
		rq = task_rq_lock(p, &rf);
1365
		trace_sched_wait_task(p);
1366
		running = task_running(rq, p);
1367
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1368
		ncsw = 0;
1369
		if (!match_state || p->state == match_state)
1370
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1371
		task_rq_unlock(rq, p, &rf);
1372

R
Roland McGrath 已提交
1373 1374 1375 1376 1377 1378
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1389

1390 1391 1392 1393 1394
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1395
		 * So if it was still runnable (but just not actively
1396 1397 1398
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1399
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1400
			ktime_t to = NSEC_PER_SEC / HZ;
1401 1402 1403

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1404 1405
			continue;
		}
1406

1407 1408 1409 1410 1411 1412 1413
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1414 1415

	return ncsw;
L
Linus Torvalds 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1425
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1431
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1441
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1442

1443
/*
1444
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1445 1446 1447 1448 1449 1450 1451
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1452
 *    CPU isn't yet part of the sched domains, and balancing will not
1453 1454
 *    see it.
 *
I
Ingo Molnar 已提交
1455
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1456
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1457
 *    CPU. Existing tasks will remain running there and will be taken
1458 1459 1460 1461 1462 1463
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1464
 */
1465 1466
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1467 1468
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1469 1470
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1471

1472
	/*
I
Ingo Molnar 已提交
1473 1474 1475
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1476 1477 1478 1479 1480 1481 1482 1483
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1484
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1485 1486
				return dest_cpu;
		}
1487
	}
1488

1489 1490
	for (;;) {
		/* Any allowed, online CPU? */
1491
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1492 1493 1494
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1495 1496 1497
				continue;
			goto out;
		}
1498

1499
		/* No more Mr. Nice Guy. */
1500 1501
		switch (state) {
		case cpuset:
1502 1503 1504 1505 1506
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1507
			/* Fall-through */
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1527
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1528 1529
					task_pid_nr(p), p->comm, cpu);
		}
1530 1531 1532 1533 1534
	}

	return dest_cpu;
}

1535
/*
1536
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1537
 */
1538
static inline
1539
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1540
{
1541 1542
	lockdep_assert_held(&p->pi_lock);

1543
	if (p->nr_cpus_allowed > 1)
1544
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1545
	else
1546
		cpu = cpumask_any(&p->cpus_allowed);
1547 1548 1549 1550

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1551
	 * CPU.
1552 1553 1554 1555 1556 1557
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1558
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1559
		     !cpu_online(cpu)))
1560
		cpu = select_fallback_rq(task_cpu(p), p);
1561 1562

	return cpu;
1563
}
1564 1565 1566 1567 1568 1569

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1601 1602 1603 1604 1605 1606 1607 1608
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1609
#endif /* CONFIG_SMP */
1610

P
Peter Zijlstra 已提交
1611
static void
1612
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1613
{
1614
	struct rq *rq;
1615

1616 1617 1618 1619
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1620

1621 1622
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1623 1624
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1625 1626 1627
	} else {
		struct sched_domain *sd;

1628
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1629
		rcu_read_lock();
1630
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1631
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1632
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1633 1634 1635
				break;
			}
		}
1636
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1637
	}
1638 1639

	if (wake_flags & WF_MIGRATED)
1640
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1641 1642
#endif /* CONFIG_SMP */

1643 1644
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1645 1646

	if (wake_flags & WF_SYNC)
1647
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1648 1649
}

1650
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1651
{
T
Tejun Heo 已提交
1652
	activate_task(rq, p, en_flags);
1653
	p->on_rq = TASK_ON_RQ_QUEUED;
1654

I
Ingo Molnar 已提交
1655
	/* If a worker is waking up, notify the workqueue: */
1656 1657
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1658 1659
}

1660 1661 1662
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1663
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1664
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1665 1666 1667
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1668 1669
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1670
#ifdef CONFIG_SMP
1671 1672
	if (p->sched_class->task_woken) {
		/*
1673 1674
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1675
		 */
1676
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1677
		p->sched_class->task_woken(rq, p);
1678
		rq_repin_lock(rq, rf);
1679
	}
T
Tejun Heo 已提交
1680

1681
	if (rq->idle_stamp) {
1682
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1683
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1684

1685 1686 1687
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1688
			rq->avg_idle = max;
1689

T
Tejun Heo 已提交
1690 1691 1692 1693 1694
		rq->idle_stamp = 0;
	}
#endif
}

1695
static void
1696
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1697
		 struct rq_flags *rf)
1698
{
1699
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1700

1701 1702
	lockdep_assert_held(&rq->lock);

1703 1704 1705
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1706 1707

	if (wake_flags & WF_MIGRATED)
1708
		en_flags |= ENQUEUE_MIGRATED;
1709 1710
#endif

1711
	ttwu_activate(rq, p, en_flags);
1712
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1723
	struct rq_flags rf;
1724 1725 1726
	struct rq *rq;
	int ret = 0;

1727
	rq = __task_rq_lock(p, &rf);
1728
	if (task_on_rq_queued(p)) {
1729 1730
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1731
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1732 1733
		ret = 1;
	}
1734
	__task_rq_unlock(rq, &rf);
1735 1736 1737 1738

	return ret;
}

1739
#ifdef CONFIG_SMP
1740
void sched_ttwu_pending(void)
1741 1742
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1743
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1744
	struct task_struct *p, *t;
1745
	struct rq_flags rf;
1746

1747 1748 1749
	if (!llist)
		return;

1750
	rq_lock_irqsave(rq, &rf);
1751
	update_rq_clock(rq);
1752

1753 1754
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1755

1756
	rq_unlock_irqrestore(rq, &rf);
1757 1758 1759 1760
}

void scheduler_ipi(void)
{
1761 1762 1763 1764 1765
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1766
	preempt_fold_need_resched();
1767

1768
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1785
	sched_ttwu_pending();
1786 1787 1788 1789

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1790
	if (unlikely(got_nohz_idle_kick())) {
1791
		this_rq()->idle_balance = 1;
1792
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1793
	}
1794
	irq_exit();
1795 1796
}

P
Peter Zijlstra 已提交
1797
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1798
{
1799 1800
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1801 1802
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1803 1804 1805 1806 1807 1808
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1809
}
1810

1811 1812 1813
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1814
	struct rq_flags rf;
1815

1816 1817 1818 1819
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1820 1821 1822 1823

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1824
		rq_lock_irqsave(rq, &rf);
1825 1826
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1827
		/* Else CPU is not idle, do nothing here: */
1828
		rq_unlock_irqrestore(rq, &rf);
1829
	}
1830 1831 1832

out:
	rcu_read_unlock();
1833 1834
}

1835
bool cpus_share_cache(int this_cpu, int that_cpu)
1836 1837 1838
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1839
#endif /* CONFIG_SMP */
1840

1841
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1842 1843
{
	struct rq *rq = cpu_rq(cpu);
1844
	struct rq_flags rf;
1845

1846
#if defined(CONFIG_SMP)
1847
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1848
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1849
		ttwu_queue_remote(p, cpu, wake_flags);
1850 1851 1852 1853
		return;
	}
#endif

1854
	rq_lock(rq, &rf);
1855
	update_rq_clock(rq);
1856
	ttwu_do_activate(rq, p, wake_flags, &rf);
1857
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1858 1859
}

1860 1861 1862 1863 1864 1865
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1866 1867
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1878
 * Note: the CPU doing B need not be c0 or c1
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1910
 *   2) smp_cond_load_acquire(!X->on_cpu)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1921
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1947
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1948 1949 1950
 *
 */

T
Tejun Heo 已提交
1951
/**
L
Linus Torvalds 已提交
1952
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1953
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1954
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1955
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1956
 *
1957
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1958
 *
1959 1960 1961 1962 1963 1964 1965
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1966
 */
1967 1968
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1969 1970
{
	unsigned long flags;
1971
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1972

1973 1974 1975 1976 1977 1978
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1979
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1980
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1981
	if (!(p->state & state))
L
Linus Torvalds 已提交
1982 1983
		goto out;

1984 1985
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1986 1987
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1988 1989
	cpu = task_cpu(p);

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2012 2013
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2014 2015

#ifdef CONFIG_SMP
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2035
	/*
I
Ingo Molnar 已提交
2036
	 * If the owning (remote) CPU is still in the middle of schedule() with
2037
	 * this task as prev, wait until its done referencing the task.
2038 2039 2040 2041 2042
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2043
	 */
2044
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2045

2046
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2047
	p->state = TASK_WAKING;
2048

2049 2050 2051 2052 2053
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2054
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2055 2056
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2057
		set_task_cpu(p, cpu);
2058
	}
2059 2060 2061 2062 2063 2064 2065 2066

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2067 2068
#endif /* CONFIG_SMP */

2069
	ttwu_queue(p, cpu, wake_flags);
2070
stat:
2071
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2072
out:
2073
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2074 2075 2076 2077

	return success;
}

T
Tejun Heo 已提交
2078 2079 2080
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2081
 * @rf: request-queue flags for pinning
T
Tejun Heo 已提交
2082
 *
2083
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2084
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2085
 * the current task.
T
Tejun Heo 已提交
2086
 */
2087
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2088 2089 2090
{
	struct rq *rq = task_rq(p);

2091 2092 2093 2094
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2095 2096
	lockdep_assert_held(&rq->lock);

2097
	if (!raw_spin_trylock(&p->pi_lock)) {
2098 2099 2100 2101 2102 2103
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2104
		rq_unlock(rq, rf);
2105
		raw_spin_lock(&p->pi_lock);
2106
		rq_relock(rq, rf);
2107 2108
	}

T
Tejun Heo 已提交
2109
	if (!(p->state & TASK_NORMAL))
2110
		goto out;
T
Tejun Heo 已提交
2111

2112 2113
	trace_sched_waking(p);

2114 2115 2116 2117 2118
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
2119
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2120
	}
P
Peter Zijlstra 已提交
2121

2122
	ttwu_do_wakeup(rq, p, 0, rf);
2123
	ttwu_stat(p, smp_processor_id(), 0);
2124 2125
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2126 2127
}

2128 2129 2130 2131 2132
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2133 2134 2135
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2136 2137 2138 2139
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2140
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2141
{
2142
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2143 2144 2145
}
EXPORT_SYMBOL(wake_up_process);

2146
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2154 2155 2156
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2157
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2158
{
P
Peter Zijlstra 已提交
2159 2160 2161
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2162 2163
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2164
	p->se.prev_sum_exec_runtime	= 0;
2165
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2166
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2167
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2168

2169 2170 2171 2172
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2173
#ifdef CONFIG_SCHEDSTATS
2174
	/* Even if schedstat is disabled, there should not be garbage */
2175
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2176
#endif
N
Nick Piggin 已提交
2177

2178
	RB_CLEAR_NODE(&p->dl.rb_node);
2179
	init_dl_task_timer(&p->dl);
2180
	init_dl_inactive_task_timer(&p->dl);
2181
	__dl_clear_params(p);
2182

P
Peter Zijlstra 已提交
2183
	INIT_LIST_HEAD(&p->rt.run_list);
2184 2185 2186 2187
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2188

2189 2190 2191
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2192 2193 2194

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2195
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2196 2197 2198
		p->mm->numa_scan_seq = 0;
	}

2199 2200 2201 2202 2203
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2204 2205
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2206
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2207
	p->numa_work.next = &p->numa_work;
2208
	p->numa_faults = NULL;
2209 2210
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2211 2212

	p->numa_group = NULL;
2213
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2214 2215
}

2216 2217
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2218
#ifdef CONFIG_NUMA_BALANCING
2219

2220 2221 2222
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2223
		static_branch_enable(&sched_numa_balancing);
2224
	else
2225
		static_branch_disable(&sched_numa_balancing);
2226
}
2227 2228 2229 2230 2231 2232 2233

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2234
	int state = static_branch_likely(&sched_numa_balancing);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2250

2251 2252
#ifdef CONFIG_SCHEDSTATS

2253
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2254
static bool __initdata __sched_schedstats = false;
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2278 2279 2280 2281 2282
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2283
	if (!strcmp(str, "enable")) {
2284
		__sched_schedstats = true;
2285 2286
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2287
		__sched_schedstats = false;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2298 2299 2300 2301 2302
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2323 2324 2325 2326
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2327 2328 2329 2330

/*
 * fork()/clone()-time setup:
 */
2331
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2332
{
2333
	unsigned long flags;
I
Ingo Molnar 已提交
2334 2335
	int cpu = get_cpu();

2336
	__sched_fork(clone_flags, p);
2337
	/*
2338
	 * We mark the process as NEW here. This guarantees that
2339 2340 2341
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2342
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2343

2344 2345 2346 2347 2348
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2349 2350 2351 2352
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2353
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2354
			p->policy = SCHED_NORMAL;
2355
			p->static_prio = NICE_TO_PRIO(0);
2356 2357 2358 2359 2360 2361
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2362

2363 2364 2365 2366 2367 2368
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2369

2370 2371 2372 2373 2374 2375
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2376
		p->sched_class = &fair_sched_class;
2377
	}
2378

2379
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2380

2381 2382 2383 2384 2385 2386 2387
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2388
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2389
	/*
I
Ingo Molnar 已提交
2390
	 * We're setting the CPU for the first time, we don't migrate,
2391 2392 2393 2394 2395
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2396
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2397

2398
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2399
	if (likely(sched_info_on()))
2400
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2401
#endif
P
Peter Zijlstra 已提交
2402 2403
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2404
#endif
2405
	init_task_preempt_count(p);
2406
#ifdef CONFIG_SMP
2407
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2408
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2409
#endif
2410

N
Nick Piggin 已提交
2411
	put_cpu();
2412
	return 0;
L
Linus Torvalds 已提交
2413 2414
}

2415 2416 2417
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2418
		return BW_UNIT;
2419 2420 2421 2422 2423 2424 2425 2426 2427

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2428
	return div64_u64(runtime << BW_SHIFT, period);
2429 2430
}

L
Linus Torvalds 已提交
2431 2432 2433 2434 2435 2436 2437
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2438
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2439
{
2440
	struct rq_flags rf;
I
Ingo Molnar 已提交
2441
	struct rq *rq;
2442

2443
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2444
	p->state = TASK_RUNNING;
2445 2446 2447 2448
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2449
	 *  - any previously selected CPU might disappear through hotplug
2450 2451 2452
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2453
	 */
2454
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2455
#endif
2456
	rq = __task_rq_lock(p, &rf);
2457
	update_rq_clock(rq);
2458
	post_init_entity_util_avg(&p->se);
2459

2460
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2461
	p->on_rq = TASK_ON_RQ_QUEUED;
2462
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2463
	check_preempt_curr(rq, p, WF_FORK);
2464
#ifdef CONFIG_SMP
2465 2466 2467 2468 2469
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2470
		rq_unpin_lock(rq, &rf);
2471
		p->sched_class->task_woken(rq, p);
2472
		rq_repin_lock(rq, &rf);
2473
	}
2474
#endif
2475
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2476 2477
}

2478 2479
#ifdef CONFIG_PREEMPT_NOTIFIERS

2480 2481
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2494
/**
2495
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2496
 * @notifier: notifier struct to register
2497 2498 2499
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2500 2501 2502
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2503 2504 2505 2506 2507 2508
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2509
 * @notifier: notifier struct to unregister
2510
 *
2511
 * This is *not* safe to call from within a preemption notifier.
2512 2513 2514 2515 2516 2517 2518
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2519
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2520 2521 2522
{
	struct preempt_notifier *notifier;

2523
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2524 2525 2526
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2527 2528 2529 2530 2531 2532
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2533
static void
2534 2535
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2536 2537 2538
{
	struct preempt_notifier *notifier;

2539
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2540 2541 2542
		notifier->ops->sched_out(notifier, next);
}

2543 2544 2545 2546 2547 2548 2549 2550
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2551
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2552

2553
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2554 2555 2556
{
}

2557
static inline void
2558 2559 2560 2561 2562
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2563
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2564

2565 2566 2567
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2568
 * @prev: the current task that is being switched out
2569 2570 2571 2572 2573 2574 2575 2576 2577
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2578 2579 2580
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2581
{
2582
	sched_info_switch(rq, prev, next);
2583
	perf_event_task_sched_out(prev, next);
2584
	fire_sched_out_preempt_notifiers(prev, next);
2585 2586 2587 2588
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2589 2590 2591 2592
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2593 2594 2595 2596
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2597 2598
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2599
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2600 2601
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2602 2603 2604 2605 2606
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2607
 */
2608
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2609 2610
	__releases(rq->lock)
{
2611
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2612
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2613
	long prev_state;
L
Linus Torvalds 已提交
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2626 2627 2628 2629
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2630

L
Linus Torvalds 已提交
2631 2632 2633 2634
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2635
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2636 2637
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2638 2639 2640 2641 2642
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2643
	 */
O
Oleg Nesterov 已提交
2644
	prev_state = prev->state;
2645
	vtime_task_switch(prev);
2646
	perf_event_task_sched_in(prev, current);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	/*
	 * The membarrier system call requires a full memory barrier
	 * after storing to rq->curr, before going back to user-space.
	 *
	 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
	 * up adding a full barrier to switch_mm(), or we should figure
	 * out if a smp_mb__after_unlock_lock is really the proper API
	 * to use.
	 */
	smp_mb__after_unlock_lock();
2657
	finish_lock_switch(rq, prev);
2658
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2659

2660
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2661 2662
	if (mm)
		mmdrop(mm);
2663
	if (unlikely(prev_state == TASK_DEAD)) {
2664 2665 2666
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2667 2668 2669
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2670
		 */
2671
		kprobe_flush_task(prev);
2672 2673 2674 2675

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2676
		put_task_struct(prev);
2677
	}
2678

2679
	tick_nohz_task_switch();
2680
	return rq;
L
Linus Torvalds 已提交
2681 2682
}

2683 2684 2685
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2686
static void __balance_callback(struct rq *rq)
2687
{
2688 2689 2690
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2691

2692 2693 2694 2695 2696 2697 2698 2699
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2700

2701
		func(rq);
2702
	}
2703 2704 2705 2706 2707 2708 2709
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2710 2711 2712
}

#else
2713

2714
static inline void balance_callback(struct rq *rq)
2715
{
L
Linus Torvalds 已提交
2716 2717
}

2718 2719
#endif

L
Linus Torvalds 已提交
2720 2721 2722 2723
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2724
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2725 2726
	__releases(rq->lock)
{
2727
	struct rq *rq;
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2738
	rq = finish_task_switch(prev);
2739
	balance_callback(rq);
2740
	preempt_enable();
2741

L
Linus Torvalds 已提交
2742
	if (current->set_child_tid)
2743
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2744 2745 2746
}

/*
2747
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2748
 */
2749
static __always_inline struct rq *
2750
context_switch(struct rq *rq, struct task_struct *prev,
2751
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2752
{
I
Ingo Molnar 已提交
2753
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2754

2755
	prepare_task_switch(rq, prev, next);
2756

I
Ingo Molnar 已提交
2757 2758
	mm = next->mm;
	oldmm = prev->active_mm;
2759 2760 2761 2762 2763
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2764
	arch_start_context_switch(prev);
2765

2766
	if (!mm) {
L
Linus Torvalds 已提交
2767
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2768
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2769 2770
		enter_lazy_tlb(oldmm, next);
	} else
2771
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2772

2773
	if (!prev->mm) {
L
Linus Torvalds 已提交
2774 2775 2776
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2777

2778
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2779

2780 2781 2782 2783 2784 2785
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2786
	rq_unpin_lock(rq, rf);
2787
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2788 2789 2790

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2791
	barrier();
2792 2793

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2794 2795 2796
}

/*
2797
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2798 2799
 *
 * externally visible scheduler statistics: current number of runnable
2800
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2810
}
L
Linus Torvalds 已提交
2811

2812
/*
I
Ingo Molnar 已提交
2813
 * Check if only the current task is running on the CPU.
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2824 2825 2826
 */
bool single_task_running(void)
{
2827
	return raw_rq()->nr_running == 1;
2828 2829 2830
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2831
unsigned long long nr_context_switches(void)
2832
{
2833 2834
	int i;
	unsigned long long sum = 0;
2835

2836
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2837
		sum += cpu_rq(i)->nr_switches;
2838

L
Linus Torvalds 已提交
2839 2840
	return sum;
}
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2872 2873 2874
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2875

2876
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2877
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2878

L
Linus Torvalds 已提交
2879 2880
	return sum;
}
2881

2882 2883 2884 2885 2886 2887 2888
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2889
unsigned long nr_iowait_cpu(int cpu)
2890
{
2891
	struct rq *this = cpu_rq(cpu);
2892 2893
	return atomic_read(&this->nr_iowait);
}
2894

2895 2896
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2897 2898 2899
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2900 2901
}

I
Ingo Molnar 已提交
2902
#ifdef CONFIG_SMP
2903

2904
/*
P
Peter Zijlstra 已提交
2905 2906
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2907
 */
P
Peter Zijlstra 已提交
2908
void sched_exec(void)
2909
{
P
Peter Zijlstra 已提交
2910
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2911
	unsigned long flags;
2912
	int dest_cpu;
2913

2914
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2915
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2916 2917
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2918

2919
	if (likely(cpu_active(dest_cpu))) {
2920
		struct migration_arg arg = { p, dest_cpu };
2921

2922 2923
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2924 2925
		return;
	}
2926
unlock:
2927
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2928
}
I
Ingo Molnar 已提交
2929

L
Linus Torvalds 已提交
2930 2931 2932
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2933
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2934 2935

EXPORT_PER_CPU_SYMBOL(kstat);
2936
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2955 2956 2957 2958 2959 2960 2961
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2962
	struct rq_flags rf;
2963
	struct rq *rq;
2964
	u64 ns;
2965

2966 2967 2968 2969 2970 2971
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
2972 2973
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
2974
	 * indistinguishable from the read occurring a few cycles earlier.
2975 2976
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2977
	 */
2978
	if (!p->on_cpu || !task_on_rq_queued(p))
2979 2980 2981
		return p->se.sum_exec_runtime;
#endif

2982
	rq = task_rq_lock(p, &rf);
2983 2984 2985 2986 2987 2988
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2989
		prefetch_curr_exec_start(p);
2990 2991 2992 2993
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2994
	task_rq_unlock(rq, p, &rf);
2995 2996 2997

	return ns;
}
2998

2999 3000 3001 3002 3003 3004 3005 3006
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3007
	struct task_struct *curr = rq->curr;
3008
	struct rq_flags rf;
3009 3010

	sched_clock_tick();
I
Ingo Molnar 已提交
3011

3012 3013
	rq_lock(rq, &rf);

3014
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3015
	curr->sched_class->task_tick(rq, curr, 0);
3016
	cpu_load_update_active(rq);
3017
	calc_global_load_tick(rq);
3018 3019

	rq_unlock(rq, &rf);
3020

3021
	perf_event_task_tick();
3022

3023
#ifdef CONFIG_SMP
3024
	rq->idle_balance = idle_cpu(cpu);
3025
	trigger_load_balance(rq);
3026
#endif
3027
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3028 3029
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3041 3042
 *
 * Return: Maximum deferment in nanoseconds.
3043 3044 3045 3046
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3047
	unsigned long next, now = READ_ONCE(jiffies);
3048 3049 3050 3051 3052 3053

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3054
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3055
}
3056
#endif
L
Linus Torvalds 已提交
3057

3058 3059
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3074

3075
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3076
{
3077
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3078 3079 3080
	/*
	 * Underflow?
	 */
3081 3082
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3083
#endif
3084
	__preempt_count_add(val);
3085
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3086 3087 3088
	/*
	 * Spinlock count overflowing soon?
	 */
3089 3090
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3091
#endif
3092
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3093
}
3094
EXPORT_SYMBOL(preempt_count_add);
3095
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3107
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3108
{
3109
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3110 3111 3112
	/*
	 * Underflow?
	 */
3113
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3114
		return;
L
Linus Torvalds 已提交
3115 3116 3117
	/*
	 * Is the spinlock portion underflowing?
	 */
3118 3119 3120
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3121
#endif
3122

3123
	preempt_latency_stop(val);
3124
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3125
}
3126
EXPORT_SYMBOL(preempt_count_sub);
3127
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3128

3129 3130 3131
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3132 3133
#endif

3134 3135 3136 3137 3138 3139 3140 3141 3142
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3143
/*
I
Ingo Molnar 已提交
3144
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3145
 */
I
Ingo Molnar 已提交
3146
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3147
{
3148 3149 3150
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3151 3152 3153
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3154 3155
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3156

I
Ingo Molnar 已提交
3157
	debug_show_held_locks(prev);
3158
	print_modules();
I
Ingo Molnar 已提交
3159 3160
	if (irqs_disabled())
		print_irqtrace_events(prev);
3161 3162
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3163
		pr_err("Preemption disabled at:");
3164
		print_ip_sym(preempt_disable_ip);
3165 3166
		pr_cont("\n");
	}
3167 3168 3169
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3170
	dump_stack();
3171
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3172
}
L
Linus Torvalds 已提交
3173

I
Ingo Molnar 已提交
3174 3175 3176 3177 3178
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3179
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3180 3181
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3182
#endif
3183

3184
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3185
		__schedule_bug(prev);
3186 3187
		preempt_count_set(PREEMPT_DISABLED);
	}
3188
	rcu_sleep_check();
I
Ingo Molnar 已提交
3189

L
Linus Torvalds 已提交
3190 3191
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3192
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3193 3194 3195 3196 3197 3198
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3199
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3200
{
3201
	const struct sched_class *class;
I
Ingo Molnar 已提交
3202
	struct task_struct *p;
L
Linus Torvalds 已提交
3203 3204

	/*
3205 3206 3207 3208
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3209
	 */
3210 3211 3212 3213
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3214
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3215 3216 3217
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3218
		/* Assumes fair_sched_class->next == idle_sched_class */
3219
		if (unlikely(!p))
3220
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3221 3222

		return p;
L
Linus Torvalds 已提交
3223 3224
	}

3225
again:
3226
	for_each_class(class) {
3227
		p = class->pick_next_task(rq, prev, rf);
3228 3229 3230
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3231
			return p;
3232
		}
I
Ingo Molnar 已提交
3233
	}
3234

I
Ingo Molnar 已提交
3235 3236
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3237
}
L
Linus Torvalds 已提交
3238

I
Ingo Molnar 已提交
3239
/*
3240
 * __schedule() is the main scheduler function.
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3275
 *
3276
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3277
 */
3278
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3279 3280
{
	struct task_struct *prev, *next;
3281
	unsigned long *switch_count;
3282
	struct rq_flags rf;
I
Ingo Molnar 已提交
3283
	struct rq *rq;
3284
	int cpu;
I
Ingo Molnar 已提交
3285 3286 3287 3288 3289 3290

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3291

3292
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3293
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3294

3295
	local_irq_disable();
3296
	rcu_note_context_switch(preempt);
3297

3298 3299 3300 3301 3302
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
3303
	rq_lock(rq, &rf);
3304
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3305

I
Ingo Molnar 已提交
3306 3307
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3308
	update_rq_clock(rq);
3309

3310
	switch_count = &prev->nivcsw;
3311
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3312
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3313
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3314
		} else {
3315
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3316 3317
			prev->on_rq = 0;

3318 3319 3320 3321 3322
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3323
			/*
3324 3325 3326
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3327 3328 3329 3330
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3331
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3332
				if (to_wakeup)
3333
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3334 3335
			}
		}
I
Ingo Molnar 已提交
3336
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3337 3338
	}

3339
	next = pick_next_task(rq, prev, &rf);
3340
	clear_tsk_need_resched(prev);
3341
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3342 3343 3344 3345

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
		 * rq->curr, before returning to user-space. For TSO
		 * (e.g. x86), the architecture must provide its own
		 * barrier in switch_mm(). For weakly ordered machines
		 * for which spin_unlock() acts as a full memory
		 * barrier, finish_lock_switch() in common code takes
		 * care of this barrier. For weakly ordered machines for
		 * which spin_unlock() acts as a RELEASE barrier (only
		 * arm64 and PowerPC), arm64 has a full barrier in
		 * switch_to(), and PowerPC has
		 * smp_mb__after_unlock_lock() before
		 * finish_lock_switch().
		 */
L
Linus Torvalds 已提交
3361 3362
		++*switch_count;

3363
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3364 3365 3366

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3367
	} else {
3368
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3369
		rq_unlock_irq(rq, &rf);
3370
	}
L
Linus Torvalds 已提交
3371

3372
	balance_callback(rq);
L
Linus Torvalds 已提交
3373
}
3374

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
3389 3390
	raw_spin_lock_irq(&current->pi_lock);
	raw_spin_unlock_irq(&current->pi_lock);
3391

I
Ingo Molnar 已提交
3392
	/* Causes final put_task_struct in finish_task_switch(): */
3393
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3394 3395 3396 3397

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3398 3399
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3400 3401

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3402
	for (;;)
I
Ingo Molnar 已提交
3403
		cpu_relax();
3404 3405
}

3406 3407
static inline void sched_submit_work(struct task_struct *tsk)
{
3408
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3409 3410 3411 3412 3413 3414 3415 3416 3417
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3418
asmlinkage __visible void __sched schedule(void)
3419
{
3420 3421 3422
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3423
	do {
3424
		preempt_disable();
3425
		__schedule(false);
3426
		sched_preempt_enable_no_resched();
3427
	} while (need_resched());
3428
}
L
Linus Torvalds 已提交
3429 3430
EXPORT_SYMBOL(schedule);

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3456
#ifdef CONFIG_CONTEXT_TRACKING
3457
asmlinkage __visible void __sched schedule_user(void)
3458 3459 3460 3461 3462 3463
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3464 3465
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3466
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3467
	 * too frequently to make sense yet.
3468
	 */
3469
	enum ctx_state prev_state = exception_enter();
3470
	schedule();
3471
	exception_exit(prev_state);
3472 3473 3474
}
#endif

3475 3476 3477 3478 3479 3480 3481
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3482
	sched_preempt_enable_no_resched();
3483 3484 3485 3486
	schedule();
	preempt_disable();
}

3487
static void __sched notrace preempt_schedule_common(void)
3488 3489
{
	do {
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3503
		preempt_disable_notrace();
3504
		preempt_latency_start(1);
3505
		__schedule(true);
3506
		preempt_latency_stop(1);
3507
		preempt_enable_no_resched_notrace();
3508 3509 3510 3511 3512 3513 3514 3515

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3516 3517
#ifdef CONFIG_PREEMPT
/*
3518
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3519
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3520 3521
 * occur there and call schedule directly.
 */
3522
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3523 3524 3525
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3526
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3527
	 */
3528
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3529 3530
		return;

3531
	preempt_schedule_common();
L
Linus Torvalds 已提交
3532
}
3533
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3534
EXPORT_SYMBOL(preempt_schedule);
3535 3536

/**
3537
 * preempt_schedule_notrace - preempt_schedule called by tracing
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3550
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3551 3552 3553 3554 3555 3556 3557
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3571
		preempt_disable_notrace();
3572
		preempt_latency_start(1);
3573 3574 3575 3576 3577 3578
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3579
		__schedule(true);
3580 3581
		exception_exit(prev_ctx);

3582
		preempt_latency_stop(1);
3583
		preempt_enable_no_resched_notrace();
3584 3585
	} while (need_resched());
}
3586
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3587

3588
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3589 3590

/*
3591
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3592 3593 3594 3595
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3596
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3597
{
3598
	enum ctx_state prev_state;
3599

3600
	/* Catch callers which need to be fixed */
3601
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3602

3603 3604
	prev_state = exception_enter();

3605
	do {
3606
		preempt_disable();
3607
		local_irq_enable();
3608
		__schedule(true);
3609
		local_irq_disable();
3610
		sched_preempt_enable_no_resched();
3611
	} while (need_resched());
3612 3613

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3614 3615
}

3616
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3617
			  void *key)
L
Linus Torvalds 已提交
3618
{
P
Peter Zijlstra 已提交
3619
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3620 3621 3622
}
EXPORT_SYMBOL(default_wake_function);

3623 3624
#ifdef CONFIG_RT_MUTEXES

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3640 3641
/*
 * rt_mutex_setprio - set the current priority of a task
3642 3643
 * @p: task to boost
 * @pi_task: donor task
3644 3645 3646 3647
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3648 3649
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3650
 */
3651
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3652
{
3653
	int prio, oldprio, queued, running, queue_flag =
3654
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3655
	const struct sched_class *prev_class;
3656 3657
	struct rq_flags rf;
	struct rq *rq;
3658

3659 3660 3661 3662 3663 3664 3665 3666
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3667

3668
	rq = __task_rq_lock(p, &rf);
3669
	update_rq_clock(rq);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3687

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3706
	trace_sched_pi_setprio(p, pi_task);
3707
	oldprio = p->prio;
3708 3709 3710 3711

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3712
	prev_class = p->sched_class;
3713
	queued = task_on_rq_queued(p);
3714
	running = task_current(rq, p);
3715
	if (queued)
3716
		dequeue_task(rq, p, queue_flag);
3717
	if (running)
3718
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3719

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3730 3731
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3732
			p->dl.dl_boosted = 1;
3733
			queue_flag |= ENQUEUE_REPLENISH;
3734 3735
		} else
			p->dl.dl_boosted = 0;
3736
		p->sched_class = &dl_sched_class;
3737 3738 3739 3740
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3741
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3742
		p->sched_class = &rt_sched_class;
3743 3744 3745
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3746 3747
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3748
		p->sched_class = &fair_sched_class;
3749
	}
I
Ingo Molnar 已提交
3750

3751 3752
	p->prio = prio;

3753
	if (queued)
3754
		enqueue_task(rq, p, queue_flag);
3755
	if (running)
3756
		set_curr_task(rq, p);
3757

P
Peter Zijlstra 已提交
3758
	check_class_changed(rq, p, prev_class, oldprio);
3759
out_unlock:
I
Ingo Molnar 已提交
3760 3761
	/* Avoid rq from going away on us: */
	preempt_disable();
3762
	__task_rq_unlock(rq, &rf);
3763 3764 3765

	balance_callback(rq);
	preempt_enable();
3766
}
3767 3768 3769 3770 3771
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3772
#endif
3773

3774
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3775
{
P
Peter Zijlstra 已提交
3776 3777
	bool queued, running;
	int old_prio, delta;
3778
	struct rq_flags rf;
3779
	struct rq *rq;
L
Linus Torvalds 已提交
3780

3781
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3782 3783 3784 3785 3786
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3787
	rq = task_rq_lock(p, &rf);
3788 3789
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3790 3791 3792 3793
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3794
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3795
	 */
3796
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3797 3798 3799
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3800
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3801
	running = task_current(rq, p);
3802
	if (queued)
3803
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3804 3805
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3806 3807

	p->static_prio = NICE_TO_PRIO(nice);
3808
	set_load_weight(p);
3809 3810 3811
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3812

3813
	if (queued) {
3814
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3815
		/*
3816 3817
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3818
		 */
3819
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3820
			resched_curr(rq);
L
Linus Torvalds 已提交
3821
	}
P
Peter Zijlstra 已提交
3822 3823
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3824
out_unlock:
3825
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3826 3827 3828
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3829 3830 3831 3832 3833
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3834
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3835
{
I
Ingo Molnar 已提交
3836
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3837
	int nice_rlim = nice_to_rlimit(nice);
3838

3839
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3840 3841 3842
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3852
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3853
{
3854
	long nice, retval;
L
Linus Torvalds 已提交
3855 3856 3857 3858 3859 3860

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3861
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3862
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3863

3864
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3865 3866 3867
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3882
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3883 3884 3885
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3886
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3892
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3893
 * @cpu: the processor in question.
3894 3895
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3896 3897 3898
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3913 3914 3915
}

/**
I
Ingo Molnar 已提交
3916
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3917
 * @cpu: the processor in question.
3918
 *
I
Ingo Molnar 已提交
3919
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3920
 */
3921
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926 3927 3928
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3929 3930
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3931
 */
A
Alexey Dobriyan 已提交
3932
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3933
{
3934
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3935 3936
}

3937 3938 3939 3940 3941 3942
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3943 3944
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3945
{
3946 3947
	int policy = attr->sched_policy;

3948
	if (policy == SETPARAM_POLICY)
3949 3950
		policy = p->policy;

L
Linus Torvalds 已提交
3951
	p->policy = policy;
3952

3953 3954
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3955
	else if (fair_policy(policy))
3956 3957
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3958 3959 3960 3961 3962 3963
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3964
	p->normal_prio = normal_prio(p);
3965 3966
	set_load_weight(p);
}
3967

3968 3969
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3970
			   const struct sched_attr *attr, bool keep_boost)
3971 3972
{
	__setscheduler_params(p, attr);
3973

3974
	/*
3975 3976
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3977
	 */
3978
	p->prio = normal_prio(p);
3979
	if (keep_boost)
3980
		p->prio = rt_effective_prio(p, p->prio);
3981

3982 3983 3984
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3985 3986 3987
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3988
}
3989

3990
/*
I
Ingo Molnar 已提交
3991
 * Check the target process has a UID that matches the current process's:
3992 3993 3994 3995 3996 3997 3998 3999
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4000 4001
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4002 4003 4004 4005
	rcu_read_unlock();
	return match;
}

4006 4007
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4008
				bool user, bool pi)
L
Linus Torvalds 已提交
4009
{
4010 4011
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4012
	int retval, oldprio, oldpolicy = -1, queued, running;
4013
	int new_effective_prio, policy = attr->sched_policy;
4014
	const struct sched_class *prev_class;
4015
	struct rq_flags rf;
4016
	int reset_on_fork;
4017
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4018
	struct rq *rq;
L
Linus Torvalds 已提交
4019

4020 4021
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4022
recheck:
I
Ingo Molnar 已提交
4023
	/* Double check policy once rq lock held: */
4024 4025
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4026
		policy = oldpolicy = p->policy;
4027
	} else {
4028
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4029

4030
		if (!valid_policy(policy))
4031 4032 4033
			return -EINVAL;
	}

4034 4035
	if (attr->sched_flags &
		~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4036 4037
		return -EINVAL;

L
Linus Torvalds 已提交
4038 4039
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4040 4041
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4042
	 */
4043
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4044
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4045
		return -EINVAL;
4046 4047
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4048 4049
		return -EINVAL;

4050 4051 4052
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4053
	if (user && !capable(CAP_SYS_NICE)) {
4054
		if (fair_policy(policy)) {
4055
			if (attr->sched_nice < task_nice(p) &&
4056
			    !can_nice(p, attr->sched_nice))
4057 4058 4059
				return -EPERM;
		}

4060
		if (rt_policy(policy)) {
4061 4062
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4063

I
Ingo Molnar 已提交
4064
			/* Can't set/change the rt policy: */
4065 4066 4067
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4068
			/* Can't increase priority: */
4069 4070
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4071 4072
				return -EPERM;
		}
4073

4074 4075 4076 4077 4078 4079 4080 4081 4082
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4083
		/*
4084 4085
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4086
		 */
4087
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4088
			if (!can_nice(p, task_nice(p)))
4089 4090
				return -EPERM;
		}
4091

I
Ingo Molnar 已提交
4092
		/* Can't change other user's priorities: */
4093
		if (!check_same_owner(p))
4094
			return -EPERM;
4095

I
Ingo Molnar 已提交
4096
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4097 4098
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4099
	}
L
Linus Torvalds 已提交
4100

4101
	if (user) {
4102
		retval = security_task_setscheduler(p);
4103 4104 4105 4106
		if (retval)
			return retval;
	}

4107
	/*
I
Ingo Molnar 已提交
4108
	 * Make sure no PI-waiters arrive (or leave) while we are
4109
	 * changing the priority of the task:
4110
	 *
L
Lucas De Marchi 已提交
4111
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4112 4113
	 * runqueue lock must be held.
	 */
4114
	rq = task_rq_lock(p, &rf);
4115
	update_rq_clock(rq);
4116

4117
	/*
I
Ingo Molnar 已提交
4118
	 * Changing the policy of the stop threads its a very bad idea:
4119 4120
	 */
	if (p == rq->stop) {
4121
		task_rq_unlock(rq, p, &rf);
4122 4123 4124
		return -EINVAL;
	}

4125
	/*
4126 4127
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4128
	 */
4129
	if (unlikely(policy == p->policy)) {
4130
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4131 4132 4133
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4134
		if (dl_policy(policy) && dl_param_changed(p, attr))
4135
			goto change;
4136

4137
		p->sched_reset_on_fork = reset_on_fork;
4138
		task_rq_unlock(rq, p, &rf);
4139 4140
		return 0;
	}
4141
change:
4142

4143
	if (user) {
4144
#ifdef CONFIG_RT_GROUP_SCHED
4145 4146 4147 4148 4149
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4150 4151
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4152
			task_rq_unlock(rq, p, &rf);
4153 4154 4155
			return -EPERM;
		}
#endif
4156 4157 4158 4159 4160 4161 4162 4163 4164
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4165 4166
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4167
				task_rq_unlock(rq, p, &rf);
4168 4169 4170 4171 4172
				return -EPERM;
			}
		}
#endif
	}
4173

I
Ingo Molnar 已提交
4174
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4175 4176
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4177
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4178 4179
		goto recheck;
	}
4180 4181 4182 4183 4184 4185

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4186
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4187
		task_rq_unlock(rq, p, &rf);
4188 4189 4190
		return -EBUSY;
	}

4191 4192 4193
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4194 4195 4196 4197 4198 4199 4200 4201
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4202
		new_effective_prio = rt_effective_prio(p, newprio);
4203 4204
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4205 4206
	}

4207
	queued = task_on_rq_queued(p);
4208
	running = task_current(rq, p);
4209
	if (queued)
4210
		dequeue_task(rq, p, queue_flags);
4211
	if (running)
4212
		put_prev_task(rq, p);
4213

4214
	prev_class = p->sched_class;
4215
	__setscheduler(rq, p, attr, pi);
4216

4217
	if (queued) {
4218 4219 4220 4221
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4222 4223
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4224

4225
		enqueue_task(rq, p, queue_flags);
4226
	}
4227
	if (running)
4228
		set_curr_task(rq, p);
4229

P
Peter Zijlstra 已提交
4230
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4231 4232 4233

	/* Avoid rq from going away on us: */
	preempt_disable();
4234
	task_rq_unlock(rq, p, &rf);
4235

4236 4237
	if (pi)
		rt_mutex_adjust_pi(p);
4238

I
Ingo Molnar 已提交
4239
	/* Run balance callbacks after we've adjusted the PI chain: */
4240 4241
	balance_callback(rq);
	preempt_enable();
4242

L
Linus Torvalds 已提交
4243 4244
	return 0;
}
4245

4246 4247 4248 4249 4250 4251 4252 4253 4254
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4255 4256
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4257 4258 4259 4260 4261
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4262
	return __sched_setscheduler(p, &attr, check, true);
4263
}
4264 4265 4266 4267 4268 4269
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4270 4271
 * Return: 0 on success. An error code otherwise.
 *
4272 4273 4274
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4275
		       const struct sched_param *param)
4276
{
4277
	return _sched_setscheduler(p, policy, param, true);
4278
}
L
Linus Torvalds 已提交
4279 4280
EXPORT_SYMBOL_GPL(sched_setscheduler);

4281 4282
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4283
	return __sched_setscheduler(p, attr, true, true);
4284 4285 4286
}
EXPORT_SYMBOL_GPL(sched_setattr);

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4297 4298
 *
 * Return: 0 on success. An error code otherwise.
4299 4300
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4301
			       const struct sched_param *param)
4302
{
4303
	return _sched_setscheduler(p, policy, param, false);
4304
}
4305
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4306

I
Ingo Molnar 已提交
4307 4308
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4309 4310 4311
{
	struct sched_param lparam;
	struct task_struct *p;
4312
	int retval;
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4318 4319 4320

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4321
	p = find_process_by_pid(pid);
4322 4323 4324
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4325

L
Linus Torvalds 已提交
4326 4327 4328
	return retval;
}

4329 4330 4331
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4332
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4333 4334 4335 4336 4337 4338 4339
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4340
	/* Zero the full structure, so that a short copy will be nice: */
4341 4342 4343 4344 4345 4346
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4347 4348
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4349 4350
		goto err_size;

I
Ingo Molnar 已提交
4351 4352
	/* ABI compatibility quirk: */
	if (!size)
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4387
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4388 4389
	 * to be strict and return an error on out-of-bounds values?
	 */
4390
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4391

4392
	return 0;
4393 4394 4395

err_size:
	put_user(sizeof(*attr), &uattr->size);
4396
	return -E2BIG;
4397 4398
}

L
Linus Torvalds 已提交
4399 4400 4401 4402 4403
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4404 4405
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4406
 */
I
Ingo Molnar 已提交
4407
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4408
{
4409 4410 4411
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417 4418
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4419 4420
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4421
 */
4422
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4423
{
4424
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4425 4426
}

4427 4428 4429
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4430
 * @uattr: structure containing the extended parameters.
4431
 * @flags: for future extension.
4432
 */
4433 4434
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4435 4436 4437 4438 4439
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4440
	if (!uattr || pid < 0 || flags)
4441 4442
		return -EINVAL;

4443 4444 4445
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4446

4447
	if ((int)attr.sched_policy < 0)
4448
		return -EINVAL;
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4460 4461 4462
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4463 4464 4465
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4466
 */
4467
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4468
{
4469
	struct task_struct *p;
4470
	int retval;
L
Linus Torvalds 已提交
4471 4472

	if (pid < 0)
4473
		return -EINVAL;
L
Linus Torvalds 已提交
4474 4475

	retval = -ESRCH;
4476
	rcu_read_lock();
L
Linus Torvalds 已提交
4477 4478 4479 4480
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4481 4482
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4483
	}
4484
	rcu_read_unlock();
L
Linus Torvalds 已提交
4485 4486 4487 4488
	return retval;
}

/**
4489
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4490 4491
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4492 4493 4494
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4495
 */
4496
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4497
{
4498
	struct sched_param lp = { .sched_priority = 0 };
4499
	struct task_struct *p;
4500
	int retval;
L
Linus Torvalds 已提交
4501 4502

	if (!param || pid < 0)
4503
		return -EINVAL;
L
Linus Torvalds 已提交
4504

4505
	rcu_read_lock();
L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4515 4516
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4517
	rcu_read_unlock();
L
Linus Torvalds 已提交
4518 4519 4520 4521 4522 4523 4524 4525 4526

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4527
	rcu_read_unlock();
L
Linus Torvalds 已提交
4528 4529 4530
	return retval;
}

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4554
				return -EFBIG;
4555 4556 4557 4558 4559
		}

		attr->size = usize;
	}

4560
	ret = copy_to_user(uattr, attr, attr->size);
4561 4562 4563
	if (ret)
		return -EFAULT;

4564
	return 0;
4565 4566 4567
}

/**
4568
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4569
 * @pid: the pid in question.
J
Juri Lelli 已提交
4570
 * @uattr: structure containing the extended parameters.
4571
 * @size: sizeof(attr) for fwd/bwd comp.
4572
 * @flags: for future extension.
4573
 */
4574 4575
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4576 4577 4578 4579 4580 4581 4582 4583
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4584
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4598 4599
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4600 4601 4602
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4603 4604
		attr.sched_priority = p->rt_priority;
	else
4605
		attr.sched_nice = task_nice(p);
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4617
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4618
{
4619
	cpumask_var_t cpus_allowed, new_mask;
4620 4621
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4622

4623
	rcu_read_lock();
L
Linus Torvalds 已提交
4624 4625 4626

	p = find_process_by_pid(pid);
	if (!p) {
4627
		rcu_read_unlock();
L
Linus Torvalds 已提交
4628 4629 4630
		return -ESRCH;
	}

4631
	/* Prevent p going away */
L
Linus Torvalds 已提交
4632
	get_task_struct(p);
4633
	rcu_read_unlock();
L
Linus Torvalds 已提交
4634

4635 4636 4637 4638
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4639 4640 4641 4642 4643 4644 4645 4646
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4647
	retval = -EPERM;
E
Eric W. Biederman 已提交
4648 4649 4650 4651
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4652
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4653 4654 4655
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4656

4657
	retval = security_task_setscheduler(p);
4658
	if (retval)
4659
		goto out_free_new_mask;
4660

4661 4662 4663 4664

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4665 4666 4667 4668 4669 4670 4671
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4672 4673 4674
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4675
			retval = -EBUSY;
4676
			rcu_read_unlock();
4677
			goto out_free_new_mask;
4678
		}
4679
		rcu_read_unlock();
4680 4681
	}
#endif
P
Peter Zijlstra 已提交
4682
again:
4683
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4684

P
Paul Menage 已提交
4685
	if (!retval) {
4686 4687
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4688 4689 4690 4691 4692
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4693
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4694 4695 4696
			goto again;
		}
	}
4697
out_free_new_mask:
4698 4699 4700 4701
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4702 4703 4704 4705 4706
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4707
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4708
{
4709 4710 4711 4712 4713
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4714 4715 4716 4717
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4718
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4719 4720
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4721
 * @user_mask_ptr: user-space pointer to the new CPU mask
4722 4723
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4724
 */
4725 4726
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4727
{
4728
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4729 4730
	int retval;

4731 4732
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4733

4734 4735 4736 4737 4738
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4739 4740
}

4741
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4742
{
4743
	struct task_struct *p;
4744
	unsigned long flags;
L
Linus Torvalds 已提交
4745 4746
	int retval;

4747
	rcu_read_lock();
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4754 4755 4756 4757
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4758
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4759
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4760
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4761 4762

out_unlock:
4763
	rcu_read_unlock();
L
Linus Torvalds 已提交
4764

4765
	return retval;
L
Linus Torvalds 已提交
4766 4767 4768
}

/**
I
Ingo Molnar 已提交
4769
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4770 4771
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4772
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4773
 *
4774 4775
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4776
 */
4777 4778
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4779 4780
{
	int ret;
4781
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4782

A
Anton Blanchard 已提交
4783
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4784 4785
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4786 4787
		return -EINVAL;

4788 4789
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4790

4791 4792
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4793
		size_t retlen = min_t(size_t, len, cpumask_size());
4794 4795

		if (copy_to_user(user_mask_ptr, mask, retlen))
4796 4797
			ret = -EFAULT;
		else
4798
			ret = retlen;
4799 4800
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4801

4802
	return ret;
L
Linus Torvalds 已提交
4803 4804 4805 4806 4807
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4808 4809
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4810 4811
 *
 * Return: 0.
L
Linus Torvalds 已提交
4812
 */
4813
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4814
{
4815 4816 4817 4818 4819 4820
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4821

4822
	schedstat_inc(rq->yld_count);
4823
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4824 4825 4826 4827 4828

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4829 4830
	preempt_disable();
	rq_unlock(rq, &rf);
4831
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4832 4833 4834 4835 4836 4837

	schedule();

	return 0;
}

4838
#ifndef CONFIG_PREEMPT
4839
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4840
{
4841
	if (should_resched(0)) {
4842
		preempt_schedule_common();
L
Linus Torvalds 已提交
4843 4844 4845 4846
		return 1;
	}
	return 0;
}
4847
EXPORT_SYMBOL(_cond_resched);
4848
#endif
L
Linus Torvalds 已提交
4849 4850

/*
4851
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4852 4853
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4854
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4855 4856 4857
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4858
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4859
{
4860
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4861 4862
	int ret = 0;

4863 4864
	lockdep_assert_held(lock);

4865
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4866
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4867
		if (resched)
4868
			preempt_schedule_common();
N
Nick Piggin 已提交
4869 4870
		else
			cpu_relax();
J
Jan Kara 已提交
4871
		ret = 1;
L
Linus Torvalds 已提交
4872 4873
		spin_lock(lock);
	}
J
Jan Kara 已提交
4874
	return ret;
L
Linus Torvalds 已提交
4875
}
4876
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4877

4878
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4879 4880 4881
{
	BUG_ON(!in_softirq());

4882
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4883
		local_bh_enable();
4884
		preempt_schedule_common();
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889
		local_bh_disable();
		return 1;
	}
	return 0;
}
4890
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4891 4892 4893 4894

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
4904
 *	yield();
P
Peter Zijlstra 已提交
4905 4906 4907 4908 4909 4910 4911 4912
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4913 4914 4915 4916 4917 4918 4919 4920
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4921 4922 4923 4924
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4925 4926
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4927 4928 4929 4930
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4931
 * Return:
4932 4933 4934
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4935
 */
4936
int __sched yield_to(struct task_struct *p, bool preempt)
4937 4938 4939 4940
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4941
	int yielded = 0;
4942 4943 4944 4945 4946 4947

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4948 4949 4950 4951 4952 4953 4954 4955 4956
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4957
	double_rq_lock(rq, p_rq);
4958
	if (task_rq(p) != p_rq) {
4959 4960 4961 4962 4963
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4964
		goto out_unlock;
4965 4966

	if (curr->sched_class != p->sched_class)
4967
		goto out_unlock;
4968 4969

	if (task_running(p_rq, p) || p->state)
4970
		goto out_unlock;
4971 4972

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4973
	if (yielded) {
4974
		schedstat_inc(rq->yld_count);
4975 4976 4977 4978 4979
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4980
			resched_curr(p_rq);
4981
	}
4982

4983
out_unlock:
4984
	double_rq_unlock(rq, p_rq);
4985
out_irq:
4986 4987
	local_irq_restore(flags);

4988
	if (yielded > 0)
4989 4990 4991 4992 4993 4994
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5010
/*
I
Ingo Molnar 已提交
5011
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5012 5013 5014 5015
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5016
	int token;
L
Linus Torvalds 已提交
5017 5018
	long ret;

5019
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5020
	ret = schedule_timeout(timeout);
5021
	io_schedule_finish(token);
5022

L
Linus Torvalds 已提交
5023 5024
	return ret;
}
5025
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5026

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5037 5038 5039 5040
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5041 5042 5043
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5044
 */
5045
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5054
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5055
	case SCHED_NORMAL:
5056
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5057
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5068 5069 5070
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5071
 */
5072
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079 5080
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5081
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5082
	case SCHED_NORMAL:
5083
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5084
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5097 5098 5099
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5100
 */
5101
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5102
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5103
{
5104
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5105
	unsigned int time_slice;
5106 5107
	struct rq_flags rf;
	struct timespec t;
5108
	struct rq *rq;
5109
	int retval;
L
Linus Torvalds 已提交
5110 5111

	if (pid < 0)
5112
		return -EINVAL;
L
Linus Torvalds 已提交
5113 5114

	retval = -ESRCH;
5115
	rcu_read_lock();
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120 5121 5122 5123
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5124
	rq = task_rq_lock(p, &rf);
5125 5126 5127
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5128
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5129

5130
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5131
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5132 5133
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5134

L
Linus Torvalds 已提交
5135
out_unlock:
5136
	rcu_read_unlock();
L
Linus Torvalds 已提交
5137 5138 5139
	return retval;
}

5140
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5141 5142
{
	unsigned long free = 0;
5143
	int ppid;
5144

5145 5146
	if (!try_get_task_stack(p))
		return;
5147 5148 5149 5150

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5151
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5152
#ifdef CONFIG_DEBUG_STACK_USAGE
5153
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5154
#endif
5155
	ppid = 0;
5156
	rcu_read_lock();
5157 5158
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5159
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5160
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5161
		task_pid_nr(p), ppid,
5162
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5163

5164
	print_worker_info(KERN_INFO, p);
5165
	show_stack(p, NULL);
5166
	put_task_stack(p);
L
Linus Torvalds 已提交
5167 5168
}

I
Ingo Molnar 已提交
5169
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5170
{
5171
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5172

5173
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5174 5175
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5176
#else
P
Peter Zijlstra 已提交
5177 5178
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5179
#endif
5180
	rcu_read_lock();
5181
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5182 5183
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5184
		 * console might take a lot of time:
5185 5186 5187
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5188 5189
		 */
		touch_nmi_watchdog();
5190
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5191
		if (!state_filter || (p->state & state_filter))
5192
			sched_show_task(p);
5193
	}
L
Linus Torvalds 已提交
5194

I
Ingo Molnar 已提交
5195
#ifdef CONFIG_SCHED_DEBUG
5196 5197
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5198
#endif
5199
	rcu_read_unlock();
I
Ingo Molnar 已提交
5200 5201 5202
	/*
	 * Only show locks if all tasks are dumped:
	 */
5203
	if (!state_filter)
I
Ingo Molnar 已提交
5204
		debug_show_all_locks();
L
Linus Torvalds 已提交
5205 5206
}

5207 5208 5209
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5210
 * @cpu: CPU the idle task belongs to
5211 5212 5213 5214
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5215
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5216
{
5217
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5218 5219
	unsigned long flags;

5220 5221
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5222

5223
	__sched_fork(0, idle);
5224
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5225
	idle->se.exec_start = sched_clock();
5226
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5227

5228 5229
	kasan_unpoison_task_stack(idle);

5230 5231 5232 5233 5234 5235 5236 5237 5238
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5239 5240
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5241
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5242 5243 5244 5245 5246 5247 5248 5249
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5250
	__set_task_cpu(idle, cpu);
5251
	rcu_read_unlock();
L
Linus Torvalds 已提交
5252 5253

	rq->curr = rq->idle = idle;
5254
	idle->on_rq = TASK_ON_RQ_QUEUED;
5255
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5256
	idle->on_cpu = 1;
5257
#endif
5258 5259
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5260 5261

	/* Set the preempt count _outside_ the spinlocks! */
5262
	init_idle_preempt_count(idle, cpu);
5263

I
Ingo Molnar 已提交
5264 5265 5266 5267
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5268
	ftrace_graph_init_idle_task(idle, cpu);
5269
	vtime_init_idle(idle, cpu);
5270
#ifdef CONFIG_SMP
5271 5272
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5273 5274
}

5275 5276
#ifdef CONFIG_SMP

5277 5278 5279
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5280
	int ret = 1;
5281

5282 5283 5284
	if (!cpumask_weight(cur))
		return ret;

5285
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5286 5287 5288 5289

	return ret;
}

5290 5291 5292 5293 5294 5295 5296
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5297
	 * to a new cpuset; we don't want to change their CPU
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5310 5311
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5312 5313 5314 5315 5316

out:
	return ret;
}

5317
bool sched_smp_initialized __read_mostly;
5318

5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5329
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5330 5331 5332 5333
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5334
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5335 5336
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5337 5338 5339 5340 5341 5342 5343

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5344
	bool queued, running;
5345 5346
	struct rq_flags rf;
	struct rq *rq;
5347

5348
	rq = task_rq_lock(p, &rf);
5349
	queued = task_on_rq_queued(p);
5350 5351
	running = task_current(rq, p);

5352
	if (queued)
5353
		dequeue_task(rq, p, DEQUEUE_SAVE);
5354
	if (running)
5355
		put_prev_task(rq, p);
5356 5357 5358

	p->numa_preferred_nid = nid;

5359
	if (queued)
5360
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5361
	if (running)
5362
		set_curr_task(rq, p);
5363
	task_rq_unlock(rq, p, &rf);
5364
}
P
Peter Zijlstra 已提交
5365
#endif /* CONFIG_NUMA_BALANCING */
5366

L
Linus Torvalds 已提交
5367
#ifdef CONFIG_HOTPLUG_CPU
5368
/*
I
Ingo Molnar 已提交
5369
 * Ensure that the idle task is using init_mm right before its CPU goes
5370
 * offline.
5371
 */
5372
void idle_task_exit(void)
L
Linus Torvalds 已提交
5373
{
5374
	struct mm_struct *mm = current->active_mm;
5375

5376
	BUG_ON(cpu_online(smp_processor_id()));
5377

5378
	if (mm != &init_mm) {
5379
		switch_mm(mm, &init_mm, current);
5380 5381
		finish_arch_post_lock_switch();
	}
5382
	mmdrop(mm);
L
Linus Torvalds 已提交
5383 5384 5385
}

/*
5386 5387
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5388 5389 5390
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5391 5392
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5393
 */
5394
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5395
{
5396
	long delta = calc_load_fold_active(rq, 1);
5397 5398
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5399 5400
}

5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5417
/*
5418 5419 5420 5421 5422 5423
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5424
 */
5425
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5426
{
5427
	struct rq *rq = dead_rq;
5428
	struct task_struct *next, *stop = rq->stop;
5429
	struct rq_flags orf = *rf;
5430
	int dest_cpu;
L
Linus Torvalds 已提交
5431 5432

	/*
5433 5434 5435 5436 5437 5438 5439
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5440
	 */
5441
	rq->stop = NULL;
5442

5443 5444 5445 5446 5447 5448 5449
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5450
	for (;;) {
5451 5452
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5453
		 * remaining thread:
5454 5455
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5456
			break;
5457

5458
		/*
I
Ingo Molnar 已提交
5459
		 * pick_next_task() assumes pinned rq->lock:
5460
		 */
5461
		next = pick_next_task(rq, &fake_task, rf);
5462
		BUG_ON(!next);
V
Viresh Kumar 已提交
5463
		put_prev_task(rq, next);
5464

W
Wanpeng Li 已提交
5465 5466 5467 5468 5469 5470 5471 5472 5473
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5474
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5475
		raw_spin_lock(&next->pi_lock);
5476
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5488
		/* Find suitable destination for @next, with force if needed. */
5489
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5490
		rq = __migrate_task(rq, rf, next, dest_cpu);
5491
		if (rq != dead_rq) {
5492
			rq_unlock(rq, rf);
5493
			rq = dead_rq;
5494 5495
			*rf = orf;
			rq_relock(rq, rf);
5496
		}
W
Wanpeng Li 已提交
5497
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5498
	}
5499

5500
	rq->stop = stop;
5501
}
L
Linus Torvalds 已提交
5502 5503
#endif /* CONFIG_HOTPLUG_CPU */

5504
void set_rq_online(struct rq *rq)
5505 5506 5507 5508
{
	if (!rq->online) {
		const struct sched_class *class;

5509
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5510 5511 5512 5513 5514 5515 5516 5517 5518
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5519
void set_rq_offline(struct rq *rq)
5520 5521 5522 5523 5524 5525 5526 5527 5528
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5529
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5530 5531 5532 5533
		rq->online = 0;
	}
}

5534
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5535
{
5536
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5537

5538 5539 5540
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5541 5542 5543 5544
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5545

L
Linus Torvalds 已提交
5546
/*
5547 5548 5549
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5550 5551 5552
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5553
 */
5554
static void cpuset_cpu_active(void)
5555
{
5556
	if (cpuhp_tasks_frozen) {
5557 5558 5559 5560 5561 5562
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5563 5564
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5565
			return;
5566 5567 5568 5569 5570
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5571
		cpuset_force_rebuild();
5572
	}
5573
	cpuset_update_active_cpus();
5574
}
5575

5576
static int cpuset_cpu_inactive(unsigned int cpu)
5577
{
5578
	if (!cpuhp_tasks_frozen) {
5579
		if (dl_cpu_busy(cpu))
5580
			return -EBUSY;
5581
		cpuset_update_active_cpus();
5582
	} else {
5583 5584
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5585
	}
5586
	return 0;
5587 5588
}

5589
int sched_cpu_activate(unsigned int cpu)
5590
{
5591
	struct rq *rq = cpu_rq(cpu);
5592
	struct rq_flags rf;
5593

5594
	set_cpu_active(cpu, true);
5595

5596
	if (sched_smp_initialized) {
5597
		sched_domains_numa_masks_set(cpu);
5598
		cpuset_cpu_active();
5599
	}
5600 5601 5602 5603 5604

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5605
	 *    after all CPUs have been brought up.
5606 5607 5608 5609
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5610
	rq_lock_irqsave(rq, &rf);
5611 5612 5613 5614
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5615
	rq_unlock_irqrestore(rq, &rf);
5616 5617 5618

	update_max_interval();

5619
	return 0;
5620 5621
}

5622
int sched_cpu_deactivate(unsigned int cpu)
5623 5624 5625
{
	int ret;

5626
	set_cpu_active(cpu, false);
5627 5628 5629 5630 5631 5632 5633
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5634
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5635 5636 5637 5638 5639 5640 5641 5642

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5643
	}
5644 5645
	sched_domains_numa_masks_clear(cpu);
	return 0;
5646 5647
}

5648 5649 5650 5651 5652 5653 5654 5655
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5656 5657 5658
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5659
	sched_rq_cpu_starting(cpu);
5660
	return 0;
5661 5662
}

5663 5664 5665 5666
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5667
	struct rq_flags rf;
5668 5669 5670

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5671 5672

	rq_lock_irqsave(rq, &rf);
5673 5674 5675 5676
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5677
	migrate_tasks(rq, &rf);
5678
	BUG_ON(rq->nr_running != 1);
5679 5680
	rq_unlock_irqrestore(rq, &rf);

5681 5682
	calc_load_migrate(rq);
	update_max_interval();
5683
	nohz_balance_exit_idle(cpu);
5684
	hrtick_clear(rq);
5685 5686 5687 5688
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5705 5706
void __init sched_init_smp(void)
{
5707 5708 5709
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5710

5711 5712
	sched_init_numa();

5713 5714
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5715
	 * CPU masks are stable and all blatant races in the below code cannot
5716 5717
	 * happen.
	 */
5718
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5719
	sched_init_domains(cpu_active_mask);
5720 5721 5722
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5723
	mutex_unlock(&sched_domains_mutex);
5724

5725
	/* Move init over to a non-isolated CPU */
5726
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5727
		BUG();
I
Ingo Molnar 已提交
5728
	sched_init_granularity();
5729
	free_cpumask_var(non_isolated_cpus);
5730

5731
	init_sched_rt_class();
5732
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5733 5734 5735

	sched_init_smt();

5736
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5737
}
5738 5739 5740

static int __init migration_init(void)
{
5741
	sched_rq_cpu_starting(smp_processor_id());
5742
	return 0;
L
Linus Torvalds 已提交
5743
}
5744 5745
early_initcall(migration_init);

L
Linus Torvalds 已提交
5746 5747 5748
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5749
	sched_init_granularity();
L
Linus Torvalds 已提交
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5760
#ifdef CONFIG_CGROUP_SCHED
5761 5762 5763 5764
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5765
struct task_group root_task_group;
5766
LIST_HEAD(task_groups);
5767 5768 5769

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5770
#endif
P
Peter Zijlstra 已提交
5771

5772
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5773
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5774

L
Linus Torvalds 已提交
5775 5776
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5777
	int i, j;
5778 5779
	unsigned long alloc_size = 0, ptr;

5780
	sched_clock_init();
5781
	wait_bit_init();
5782

5783 5784 5785 5786 5787 5788 5789
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5790
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5791 5792

#ifdef CONFIG_FAIR_GROUP_SCHED
5793
		root_task_group.se = (struct sched_entity **)ptr;
5794 5795
		ptr += nr_cpu_ids * sizeof(void **);

5796
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5797
		ptr += nr_cpu_ids * sizeof(void **);
5798

5799
#endif /* CONFIG_FAIR_GROUP_SCHED */
5800
#ifdef CONFIG_RT_GROUP_SCHED
5801
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5802 5803
		ptr += nr_cpu_ids * sizeof(void **);

5804
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5805 5806
		ptr += nr_cpu_ids * sizeof(void **);

5807
#endif /* CONFIG_RT_GROUP_SCHED */
5808
	}
5809
#ifdef CONFIG_CPUMASK_OFFSTACK
5810 5811 5812
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5813 5814
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5815
	}
5816
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5817

I
Ingo Molnar 已提交
5818 5819
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5820

G
Gregory Haskins 已提交
5821 5822 5823 5824
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5825
#ifdef CONFIG_RT_GROUP_SCHED
5826
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5827
			global_rt_period(), global_rt_runtime());
5828
#endif /* CONFIG_RT_GROUP_SCHED */
5829

D
Dhaval Giani 已提交
5830
#ifdef CONFIG_CGROUP_SCHED
5831 5832
	task_group_cache = KMEM_CACHE(task_group, 0);

5833 5834
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
5835
	INIT_LIST_HEAD(&root_task_group.siblings);
5836
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
5837
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
5838

5839
	for_each_possible_cpu(i) {
5840
		struct rq *rq;
L
Linus Torvalds 已提交
5841 5842

		rq = cpu_rq(i);
5843
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
5844
		rq->nr_running = 0;
5845 5846
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
5847
		init_cfs_rq(&rq->cfs);
5848 5849
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
5850
#ifdef CONFIG_FAIR_GROUP_SCHED
5851
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
5852
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5853
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
5854
		/*
I
Ingo Molnar 已提交
5855
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
5856 5857
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
5858 5859
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
5860
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
5861 5862 5863
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
5864
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
5865
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
5866
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
5867
		 *
5868
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
5869
		 *
5870 5871
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
5872
		 */
5873
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5874
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
5875 5876 5877
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5878
#ifdef CONFIG_RT_GROUP_SCHED
5879
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
5880
#endif
L
Linus Torvalds 已提交
5881

I
Ingo Molnar 已提交
5882 5883
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
5884

L
Linus Torvalds 已提交
5885
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
5886
		rq->sd = NULL;
G
Gregory Haskins 已提交
5887
		rq->rd = NULL;
5888
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5889
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
5890
		rq->active_balance = 0;
I
Ingo Molnar 已提交
5891
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
5892
		rq->push_cpu = 0;
5893
		rq->cpu = i;
5894
		rq->online = 0;
5895 5896
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
5897
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5898 5899 5900

		INIT_LIST_HEAD(&rq->cfs_tasks);

5901
		rq_attach_root(rq, &def_root_domain);
5902
#ifdef CONFIG_NO_HZ_COMMON
5903
		rq->last_load_update_tick = jiffies;
5904
		rq->nohz_flags = 0;
5905
#endif
5906 5907 5908
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
5909
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
5910
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
5911 5912 5913
		atomic_set(&rq->nr_iowait, 0);
	}

5914
	set_load_weight(&init_task);
5915

L
Linus Torvalds 已提交
5916 5917 5918
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
5919
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
5920 5921 5922 5923 5924 5925 5926 5927 5928
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
5929 5930 5931

	calc_load_update = jiffies + LOAD_FREQ;

5932
#ifdef CONFIG_SMP
R
Rusty Russell 已提交
5933 5934 5935
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
5936
	idle_thread_set_boot_cpu();
5937
	set_cpu_rq_start_time(smp_processor_id());
5938 5939
#endif
	init_sched_fair_class();
5940

5941 5942
	init_schedstats();

5943
	scheduler_running = 1;
L
Linus Torvalds 已提交
5944 5945
}

5946
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5947 5948
static inline int preempt_count_equals(int preempt_offset)
{
5949
	int nested = preempt_count() + rcu_preempt_depth();
5950

A
Arnd Bergmann 已提交
5951
	return (nested == preempt_offset);
5952 5953
}

5954
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
5955
{
P
Peter Zijlstra 已提交
5956 5957 5958 5959 5960
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
5961
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
5962 5963 5964 5965
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
5966
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
5967

5968 5969 5970 5971 5972
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
5973
{
I
Ingo Molnar 已提交
5974 5975 5976
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

5977
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
5978

I
Ingo Molnar 已提交
5979 5980 5981
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

5982 5983
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
5984 5985
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
5986
		return;
5987

I
Ingo Molnar 已提交
5988 5989 5990 5991
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
5992
	/* Save this before calling printk(), since that will clobber it: */
5993 5994
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
5995 5996 5997 5998 5999 6000 6001
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6002

6003 6004 6005
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6006 6007 6008
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6009 6010
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6011
		pr_err("Preemption disabled at:");
6012
		print_ip_sym(preempt_disable_ip);
6013 6014
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6015
	dump_stack();
6016
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6017
}
6018
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6019 6020 6021
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6022
void normalize_rt_tasks(void)
6023
{
6024
	struct task_struct *g, *p;
6025 6026 6027
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6028

6029
	read_lock(&tasklist_lock);
6030
	for_each_process_thread(g, p) {
6031 6032 6033
		/*
		 * Only normalize user tasks:
		 */
6034
		if (p->flags & PF_KTHREAD)
6035 6036
			continue;

6037 6038 6039 6040
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6041

6042
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6043 6044 6045 6046
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6047
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6048
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6049
			continue;
I
Ingo Molnar 已提交
6050
		}
L
Linus Torvalds 已提交
6051

6052
		__sched_setscheduler(p, &attr, false, false);
6053
	}
6054
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6055 6056 6057
}

#endif /* CONFIG_MAGIC_SYSRQ */
6058

6059
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6060
/*
6061
 * These functions are only useful for the IA64 MCA handling, or kdb.
6062 6063 6064 6065 6066 6067 6068 6069 6070
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6071
 * curr_task - return the current task for a given CPU.
6072 6073 6074
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6075 6076
 *
 * Return: The current task for @cpu.
6077
 */
6078
struct task_struct *curr_task(int cpu)
6079 6080 6081 6082
{
	return cpu_curr(cpu);
}

6083 6084 6085
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6086
/**
I
Ingo Molnar 已提交
6087
 * set_curr_task - set the current task for a given CPU.
6088 6089 6090 6091
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6092
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6093
 * notion of the current task on a CPU in a non-blocking manner. This function
6094 6095 6096 6097 6098 6099 6100
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6101
void ia64_set_curr_task(int cpu, struct task_struct *p)
6102 6103 6104 6105 6106
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6107

D
Dhaval Giani 已提交
6108
#ifdef CONFIG_CGROUP_SCHED
6109 6110 6111
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6112
static void sched_free_group(struct task_group *tg)
6113 6114 6115
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6116
	autogroup_free(tg);
6117
	kmem_cache_free(task_group_cache, tg);
6118 6119 6120
}

/* allocate runqueue etc for a new task group */
6121
struct task_group *sched_create_group(struct task_group *parent)
6122 6123 6124
{
	struct task_group *tg;

6125
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6126 6127 6128
	if (!tg)
		return ERR_PTR(-ENOMEM);

6129
	if (!alloc_fair_sched_group(tg, parent))
6130 6131
		goto err;

6132
	if (!alloc_rt_sched_group(tg, parent))
6133 6134
		goto err;

6135 6136 6137
	return tg;

err:
6138
	sched_free_group(tg);
6139 6140 6141 6142 6143 6144 6145
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6146
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6147
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6148

I
Ingo Molnar 已提交
6149 6150
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6151 6152 6153

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6154
	list_add_rcu(&tg->siblings, &parent->children);
6155
	spin_unlock_irqrestore(&task_group_lock, flags);
6156 6157

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6158 6159
}

6160
/* rcu callback to free various structures associated with a task group */
6161
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6162
{
I
Ingo Molnar 已提交
6163
	/* Now it should be safe to free those cfs_rqs: */
6164
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6165 6166
}

6167
void sched_destroy_group(struct task_group *tg)
6168
{
I
Ingo Molnar 已提交
6169
	/* Wait for possible concurrent references to cfs_rqs complete: */
6170
	call_rcu(&tg->rcu, sched_free_group_rcu);
6171 6172 6173
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6174
{
6175
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6176

I
Ingo Molnar 已提交
6177
	/* End participation in shares distribution: */
6178
	unregister_fair_sched_group(tg);
6179 6180

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6181
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6182
	list_del_rcu(&tg->siblings);
6183
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6184 6185
}

6186
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6187
{
P
Peter Zijlstra 已提交
6188
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6189

6190 6191 6192 6193 6194 6195
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6196 6197 6198 6199
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6200
#ifdef CONFIG_FAIR_GROUP_SCHED
6201 6202
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6203
	else
P
Peter Zijlstra 已提交
6204
#endif
6205
		set_task_rq(tsk, task_cpu(tsk));
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6217 6218
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6219 6220 6221 6222
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6223
	update_rq_clock(rq);
6224 6225 6226 6227 6228

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6229
		dequeue_task(rq, tsk, queue_flags);
6230
	if (running)
6231 6232 6233
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6234

6235
	if (queued)
6236
		enqueue_task(rq, tsk, queue_flags);
6237
	if (running)
6238
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6239

6240
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6241
}
6242

6243
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6244
{
6245
	return css ? container_of(css, struct task_group, css) : NULL;
6246 6247
}

6248 6249
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6250
{
6251 6252
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6253

6254
	if (!parent) {
6255
		/* This is early initialization for the top cgroup */
6256
		return &root_task_group.css;
6257 6258
	}

6259
	tg = sched_create_group(parent);
6260 6261 6262 6263 6264 6265
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6277
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6278
{
6279
	struct task_group *tg = css_tg(css);
6280

6281
	sched_offline_group(tg);
6282 6283
}

6284
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6285
{
6286
	struct task_group *tg = css_tg(css);
6287

6288 6289 6290 6291
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6292 6293
}

6294 6295 6296 6297
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6298
static void cpu_cgroup_fork(struct task_struct *task)
6299
{
6300 6301 6302 6303 6304
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6305
	update_rq_clock(rq);
6306 6307 6308
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6309 6310
}

6311
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6312
{
6313
	struct task_struct *task;
6314
	struct cgroup_subsys_state *css;
6315
	int ret = 0;
6316

6317
	cgroup_taskset_for_each(task, css, tset) {
6318
#ifdef CONFIG_RT_GROUP_SCHED
6319
		if (!sched_rt_can_attach(css_tg(css), task))
6320
			return -EINVAL;
6321
#else
6322 6323 6324
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6325
#endif
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6342
	}
6343
	return ret;
6344
}
6345

6346
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6347
{
6348
	struct task_struct *task;
6349
	struct cgroup_subsys_state *css;
6350

6351
	cgroup_taskset_for_each(task, css, tset)
6352
		sched_move_task(task);
6353 6354
}

6355
#ifdef CONFIG_FAIR_GROUP_SCHED
6356 6357
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6358
{
6359
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6360 6361
}

6362 6363
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6364
{
6365
	struct task_group *tg = css_tg(css);
6366

6367
	return (u64) scale_load_down(tg->shares);
6368
}
6369 6370

#ifdef CONFIG_CFS_BANDWIDTH
6371 6372
static DEFINE_MUTEX(cfs_constraints_mutex);

6373 6374 6375
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6376 6377
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6378 6379
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6380
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6381
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6402 6403 6404 6405 6406
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6407 6408 6409 6410 6411
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6412
	runtime_enabled = quota != RUNTIME_INF;
6413
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6414 6415 6416 6417 6418 6419
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6420 6421 6422
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6423

P
Paul Turner 已提交
6424
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6425 6426

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6427 6428
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6429

6430 6431
	raw_spin_unlock_irq(&cfs_b->lock);

6432
	for_each_online_cpu(i) {
6433
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6434
		struct rq *rq = cfs_rq->rq;
6435
		struct rq_flags rf;
6436

6437
		rq_lock_irq(rq, &rf);
6438
		cfs_rq->runtime_enabled = runtime_enabled;
6439
		cfs_rq->runtime_remaining = 0;
6440

6441
		if (cfs_rq->throttled)
6442
			unthrottle_cfs_rq(cfs_rq);
6443
		rq_unlock_irq(rq, &rf);
6444
	}
6445 6446
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6447 6448
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6449
	put_online_cpus();
6450

6451
	return ret;
6452 6453 6454 6455 6456 6457
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6458
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6471
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6472 6473
		return -1;

6474
	quota_us = tg->cfs_bandwidth.quota;
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6485
	quota = tg->cfs_bandwidth.quota;
6486 6487 6488 6489 6490 6491 6492 6493

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6494
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6495 6496 6497 6498 6499
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6500 6501
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6502
{
6503
	return tg_get_cfs_quota(css_tg(css));
6504 6505
}

6506 6507
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6508
{
6509
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6510 6511
}

6512 6513
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6514
{
6515
	return tg_get_cfs_period(css_tg(css));
6516 6517
}

6518 6519
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6520
{
6521
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6522 6523
}

6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6556
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6557 6558 6559 6560 6561
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6562
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6563 6564

		quota = normalize_cfs_quota(tg, d);
6565
		parent_quota = parent_b->hierarchical_quota;
6566 6567

		/*
I
Ingo Molnar 已提交
6568 6569
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
6570 6571 6572 6573 6574 6575
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
6576
	cfs_b->hierarchical_quota = quota;
6577 6578 6579 6580 6581 6582

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6583
	int ret;
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6595 6596 6597 6598 6599
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6600
}
6601

6602
static int cpu_stats_show(struct seq_file *sf, void *v)
6603
{
6604
	struct task_group *tg = css_tg(seq_css(sf));
6605
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6606

6607 6608 6609
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6610 6611 6612

	return 0;
}
6613
#endif /* CONFIG_CFS_BANDWIDTH */
6614
#endif /* CONFIG_FAIR_GROUP_SCHED */
6615

6616
#ifdef CONFIG_RT_GROUP_SCHED
6617 6618
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6619
{
6620
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6621 6622
}

6623 6624
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6625
{
6626
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6627
}
6628

6629 6630
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6631
{
6632
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6633 6634
}

6635 6636
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6637
{
6638
	return sched_group_rt_period(css_tg(css));
6639
}
6640
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6641

6642
static struct cftype cpu_files[] = {
6643
#ifdef CONFIG_FAIR_GROUP_SCHED
6644 6645
	{
		.name = "shares",
6646 6647
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6648
	},
6649
#endif
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6661 6662
	{
		.name = "stat",
6663
		.seq_show = cpu_stats_show,
6664
	},
6665
#endif
6666
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6667
	{
P
Peter Zijlstra 已提交
6668
		.name = "rt_runtime_us",
6669 6670
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6671
	},
6672 6673
	{
		.name = "rt_period_us",
6674 6675
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6676
	},
6677
#endif
I
Ingo Molnar 已提交
6678
	{ }	/* Terminate */
6679 6680
};

6681
struct cgroup_subsys cpu_cgrp_subsys = {
6682
	.css_alloc	= cpu_cgroup_css_alloc,
6683
	.css_online	= cpu_cgroup_css_online,
6684
	.css_released	= cpu_cgroup_css_released,
6685
	.css_free	= cpu_cgroup_css_free,
6686
	.fork		= cpu_cgroup_fork,
6687 6688
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
6689
	.legacy_cftypes	= cpu_files,
6690
	.early_init	= true,
6691 6692
};

6693
#endif	/* CONFIG_CGROUP_SCHED */
6694

6695 6696 6697 6698 6699
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};