intel_pm.c 205.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 63 64 65

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);
66
}
67

68
static void skl_init_clock_gating(struct drm_device *dev)
69
{
70
	struct drm_i915_private *dev_priv = dev->dev_private;
71

72 73
	gen9_init_clock_gating(dev);

74
	if (INTEL_REVID(dev) <= SKL_REVID_B0) {
75 76
		/*
		 * WaDisableSDEUnitClockGating:skl
77
		 * WaSetGAPSunitClckGateDisable:skl
78 79
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
80
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
81
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
82 83 84 85

		/* WaDisableVFUnitClockGating:skl */
		I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
			   GEN6_VFUNIT_CLOCK_GATE_DISABLE);
86
	}
87

88
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
89 90 91 92
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

93 94
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
95
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
96
	}
97

98 99 100
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
101 102 103 104
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
105 106
}

107 108
static void bxt_init_clock_gating(struct drm_device *dev)
{
109 110
	struct drm_i915_private *dev_priv = dev->dev_private;

111
	gen9_init_clock_gating(dev);
112 113 114 115

	/*
	 * FIXME:
	 * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
116
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
117 118 119
	 */
	 /* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
120 121
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
122

123 124
	/* FIXME: apply on A0 only */
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
125 126
}

127 128
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
129
	struct drm_i915_private *dev_priv = dev->dev_private;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
168
	struct drm_i915_private *dev_priv = dev->dev_private;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339 340
	struct drm_device *dev = dev_priv->dev;
	u32 val;
341

342 343
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
344
		POSTING_READ(FW_BLC_SELF_VLV);
345
		dev_priv->wm.vlv.cxsr = enable;
346 347
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
348
		POSTING_READ(FW_BLC_SELF);
349 350 351 352
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
353
		POSTING_READ(DSPFW3);
354 355 356 357
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
358
		POSTING_READ(FW_BLC_SELF);
359 360 361 362
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
363
		POSTING_READ(INSTPM);
364 365 366
	} else {
		return;
	}
367

368 369
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
370 371
}

372

373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
387
static const int pessimal_latency_ns = 5000;
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

444
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

460
static int i830_get_fifo_size(struct drm_device *dev, int plane)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

477
static int i845_get_fifo_size(struct drm_device *dev, int plane)
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
495 496 497 498 499
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
502 503 504 505 506
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params pineview_cursor_wm = {
509 510 511 512 513
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
516 517 518 519 520
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params g4x_wm_info = {
523 524 525 526 527
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
528 529
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
530 531 532 533 534
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
535 536
};
static const struct intel_watermark_params valleyview_wm_info = {
537 538 539 540 541
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
542 543
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
544 545 546 547 548
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
549 550
};
static const struct intel_watermark_params i965_cursor_wm_info = {
551 552 553 554 555
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
556 557
};
static const struct intel_watermark_params i945_wm_info = {
558 559 560 561 562
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
563 564
};
static const struct intel_watermark_params i915_wm_info = {
565 566 567 568 569
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
570
};
571
static const struct intel_watermark_params i830_a_wm_info = {
572 573 574 575 576
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
577
};
578 579 580 581 582 583 584
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
585
static const struct intel_watermark_params i845_wm_info = {
586 587 588 589 590
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
640 641 642 643 644 645 646 647 648 649 650

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

651 652 653 654 655 656 657
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

658
	for_each_crtc(dev, crtc) {
659
		if (intel_crtc_active(crtc)) {
660 661 662 663 664 665 666 667 668
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

669
static void pineview_update_wm(struct drm_crtc *unused_crtc)
670
{
671
	struct drm_device *dev = unused_crtc->dev;
672 673 674 675 676 677 678 679 680 681
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
682
		intel_set_memory_cxsr(dev_priv, false);
683 684 685 686 687
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
688
		const struct drm_display_mode *adjusted_mode;
689
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
690 691
		int clock;

692
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
693
		clock = adjusted_mode->crtc_clock;
694 695 696 697 698 699 700

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
701
		reg |= FW_WM(wm, SR);
702 703 704 705 706 707 708 709 710
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
711
		reg |= FW_WM(wm, CURSOR_SR);
712 713 714 715 716 717 718 719
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
720
		reg |= FW_WM(wm, HPLL_SR);
721 722 723 724 725 726 727 728
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
729
		reg |= FW_WM(wm, HPLL_CURSOR);
730 731 732
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

733
		intel_set_memory_cxsr(dev_priv, true);
734
	} else {
735
		intel_set_memory_cxsr(dev_priv, false);
736 737 738 739 740 741 742 743 744 745 746 747 748
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
749
	const struct drm_display_mode *adjusted_mode;
750 751 752 753 754
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
755
	if (!intel_crtc_active(crtc)) {
756 757 758 759 760
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

761
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
762
	clock = adjusted_mode->crtc_clock;
763
	htotal = adjusted_mode->crtc_htotal;
764
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
765
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
766 767 768 769 770 771 772 773 774 775 776 777

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
778
	line_time_us = max(htotal * 1000 / clock, 1);
779
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
780
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
835
	const struct drm_display_mode *adjusted_mode;
836 837 838 839 840 841 842 843 844 845 846 847
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
848
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
849
	clock = adjusted_mode->crtc_clock;
850
	htotal = adjusted_mode->crtc_htotal;
851
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
852
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
853

854
	line_time_us = max(htotal * 1000 / clock, 1);
855 856 857 858 859 860 861 862 863 864 865
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
866
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
867 868 869 870 871 872 873 874
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

875 876 877
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

878 879 880 881 882 883 884 885 886 887 888 889
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

890
	I915_WRITE(DSPFW1,
891 892 893 894
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
895
	I915_WRITE(DSPFW2,
896 897 898
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
899
	I915_WRITE(DSPFW3,
900
		   FW_WM(wm->sr.cursor, CURSOR_SR));
901 902 903

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
904 905
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
906
		I915_WRITE(DSPFW8_CHV,
907 908
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
909
		I915_WRITE(DSPFW9_CHV,
910 911
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
912
		I915_WRITE(DSPHOWM,
913 914 915 916 917 918 919 920 921 922
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
923 924
	} else {
		I915_WRITE(DSPFW7,
925 926
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
927
		I915_WRITE(DSPHOWM,
928 929 930 931 932 933 934
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
935 936
	}

937 938 939 940 941 942
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

943
	POSTING_READ(DSPFW1);
944 945
}

946 947
#undef FW_WM_VLV

948 949 950 951 952 953 954 955
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
	CHV_WM_NUM_LEVELS,
	VLV_WM_NUM_LEVELS = 1,
};

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1123
static void vlv_compute_wm(struct intel_crtc *crtc)
1124 1125 1126 1127 1128 1129 1130 1131 1132
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1133
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1134 1135 1136 1137 1138 1139 1140
	if (IS_CHERRYVIEW(dev))
		wm_state->num_levels = CHV_WM_NUM_LEVELS;
	else
		wm_state->num_levels = VLV_WM_NUM_LEVELS;

	wm_state->num_active_planes = 0;

1141
	vlv_compute_fifo(crtc);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
					wm_state->sr[level].cursor;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
	for (level = wm_state->num_levels; level < CHV_WM_NUM_LEVELS; level++) {
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	if (IS_CHERRYVIEW(dev))
		wm->level = VLV_WM_LEVEL_DDR_DVFS;
	else
		wm->level = VLV_WM_LEVEL_PM2;
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1343 1344 1345
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1372
	vlv_compute_wm(intel_crtc);
1373 1374
	vlv_merge_wm(dev, &wm);

1375 1376 1377
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1378
		return;
1379
	}
1380 1381 1382 1383 1384 1385 1386 1387 1388

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1389
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1390 1391
		intel_set_memory_cxsr(dev_priv, false);

1392 1393 1394
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1395 1396 1397 1398 1399 1400 1401 1402
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1403
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1415 1416
}

1417 1418
#define single_plane_enabled(mask) is_power_of_2(mask)

1419
static void g4x_update_wm(struct drm_crtc *crtc)
1420
{
1421
	struct drm_device *dev = crtc->dev;
1422 1423 1424 1425 1426
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1427
	bool cxsr_enabled;
1428

1429
	if (g4x_compute_wm0(dev, PIPE_A,
1430 1431
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1432
			    &planea_wm, &cursora_wm))
1433
		enabled |= 1 << PIPE_A;
1434

1435
	if (g4x_compute_wm0(dev, PIPE_B,
1436 1437
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1438
			    &planeb_wm, &cursorb_wm))
1439
		enabled |= 1 << PIPE_B;
1440 1441 1442 1443 1444 1445

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1446
			     &plane_sr, &cursor_sr)) {
1447
		cxsr_enabled = true;
1448
	} else {
1449
		cxsr_enabled = false;
1450
		intel_set_memory_cxsr(dev_priv, false);
1451 1452
		plane_sr = cursor_sr = 0;
	}
1453

1454 1455
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1456 1457 1458 1459 1460
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1461 1462 1463 1464
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1465
	I915_WRITE(DSPFW2,
1466
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1467
		   FW_WM(cursora_wm, CURSORA));
1468 1469
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1470
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1471
		   FW_WM(cursor_sr, CURSOR_SR));
1472 1473 1474

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1475 1476
}

1477
static void i965_update_wm(struct drm_crtc *unused_crtc)
1478
{
1479
	struct drm_device *dev = unused_crtc->dev;
1480 1481 1482 1483
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1484
	bool cxsr_enabled;
1485 1486 1487 1488 1489 1490

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1491
		const struct drm_display_mode *adjusted_mode =
1492
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1493
		int clock = adjusted_mode->crtc_clock;
1494
		int htotal = adjusted_mode->crtc_htotal;
1495
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1496
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1497 1498 1499
		unsigned long line_time_us;
		int entries;

1500
		line_time_us = max(htotal * 1000 / clock, 1);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1514
			pixel_size * crtc->cursor->state->crtc_w;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1526
		cxsr_enabled = true;
1527
	} else {
1528
		cxsr_enabled = false;
1529
		/* Turn off self refresh if both pipes are enabled */
1530
		intel_set_memory_cxsr(dev_priv, false);
1531 1532 1533 1534 1535 1536
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1537 1538 1539 1540 1541 1542
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1543
	/* update cursor SR watermark */
1544
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1545 1546 1547

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1548 1549
}

1550 1551
#undef FW_WM

1552
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1553
{
1554
	struct drm_device *dev = unused_crtc->dev;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1569
		wm_info = &i830_a_wm_info;
1570 1571 1572

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1573
	if (intel_crtc_active(crtc)) {
1574
		const struct drm_display_mode *adjusted_mode;
1575
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1576 1577 1578
		if (IS_GEN2(dev))
			cpp = 4;

1579
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1580
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1581
					       wm_info, fifo_size, cpp,
1582
					       pessimal_latency_ns);
1583
		enabled = crtc;
1584
	} else {
1585
		planea_wm = fifo_size - wm_info->guard_size;
1586 1587 1588 1589 1590 1591
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1592 1593 1594

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1595
	if (intel_crtc_active(crtc)) {
1596
		const struct drm_display_mode *adjusted_mode;
1597
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1598 1599 1600
		if (IS_GEN2(dev))
			cpp = 4;

1601
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1602
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1603
					       wm_info, fifo_size, cpp,
1604
					       pessimal_latency_ns);
1605 1606 1607 1608
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1609
	} else {
1610
		planeb_wm = fifo_size - wm_info->guard_size;
1611 1612 1613
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1614 1615 1616

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1617
	if (IS_I915GM(dev) && enabled) {
1618
		struct drm_i915_gem_object *obj;
1619

1620
		obj = intel_fb_obj(enabled->primary->state->fb);
1621 1622

		/* self-refresh seems busted with untiled */
1623
		if (obj->tiling_mode == I915_TILING_NONE)
1624 1625 1626
			enabled = NULL;
	}

1627 1628 1629 1630 1631 1632
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1633
	intel_set_memory_cxsr(dev_priv, false);
1634 1635 1636 1637 1638

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1639
		const struct drm_display_mode *adjusted_mode =
1640
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1641
		int clock = adjusted_mode->crtc_clock;
1642
		int htotal = adjusted_mode->crtc_htotal;
1643
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1644
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1645 1646 1647
		unsigned long line_time_us;
		int entries;

1648
		line_time_us = max(htotal * 1000 / clock, 1);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1679 1680
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1681 1682
}

1683
static void i845_update_wm(struct drm_crtc *unused_crtc)
1684
{
1685
	struct drm_device *dev = unused_crtc->dev;
1686 1687
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1688
	const struct drm_display_mode *adjusted_mode;
1689 1690 1691 1692 1693 1694 1695
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1696
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1697
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1698
				       &i845_wm_info,
1699
				       dev_priv->display.get_fifo_size(dev, 0),
1700
				       4, pessimal_latency_ns);
1701 1702 1703 1704 1705 1706 1707 1708
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1709
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1710
{
1711
	uint32_t pixel_rate;
1712

1713
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1714 1715 1716 1717

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1718
	if (pipe_config->pch_pfit.enabled) {
1719
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1720 1721 1722 1723
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1739
/* latency must be in 0.1us units. */
1740
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1741 1742 1743 1744
			       uint32_t latency)
{
	uint64_t ret;

1745 1746 1747
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1748 1749 1750 1751 1752 1753
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1754
/* latency must be in 0.1us units. */
1755
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1756 1757 1758 1759 1760
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1761 1762 1763
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1764 1765 1766 1767 1768 1769
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1770
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1771 1772 1773 1774 1775
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1776 1777 1778 1779 1780 1781 1782 1783
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1784
struct ilk_pipe_wm_parameters {
1785 1786 1787
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1788 1789 1790
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1791 1792
};

1793
struct ilk_wm_maximums {
1794 1795 1796 1797 1798 1799
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1800 1801 1802 1803 1804 1805 1806
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1807 1808 1809 1810
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1811
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1812 1813
				   uint32_t mem_value,
				   bool is_lp)
1814
{
1815 1816
	uint32_t method1, method2;

1817
	if (!params->active || !params->pri.enabled)
1818 1819
		return 0;

1820
	method1 = ilk_wm_method1(params->pixel_rate,
1821
				 params->pri.bytes_per_pixel,
1822 1823 1824 1825 1826
				 mem_value);

	if (!is_lp)
		return method1;

1827
	method2 = ilk_wm_method2(params->pixel_rate,
1828
				 params->pipe_htotal,
1829 1830
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1831 1832 1833
				 mem_value);

	return min(method1, method2);
1834 1835
}

1836 1837 1838 1839
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1840
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1841 1842 1843 1844
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1845
	if (!params->active || !params->spr.enabled)
1846 1847
		return 0;

1848
	method1 = ilk_wm_method1(params->pixel_rate,
1849
				 params->spr.bytes_per_pixel,
1850
				 mem_value);
1851
	method2 = ilk_wm_method2(params->pixel_rate,
1852
				 params->pipe_htotal,
1853 1854
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1855 1856 1857 1858
				 mem_value);
	return min(method1, method2);
}

1859 1860 1861 1862
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1863
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1864 1865
				   uint32_t mem_value)
{
1866
	if (!params->active || !params->cur.enabled)
1867 1868
		return 0;

1869
	return ilk_wm_method2(params->pixel_rate,
1870
			      params->pipe_htotal,
1871 1872
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1873 1874 1875
			      mem_value);
}

1876
/* Only for WM_LP. */
1877
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1878
				   uint32_t pri_val)
1879
{
1880
	if (!params->active || !params->pri.enabled)
1881 1882
		return 0;

1883
	return ilk_wm_fbc(pri_val,
1884 1885
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1886 1887
}

1888 1889
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1890 1891 1892
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1893 1894 1895 1896 1897
		return 768;
	else
		return 512;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1932 1933 1934
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1935
				     const struct intel_wm_config *config,
1936 1937 1938 1939 1940 1941
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1942
	if (is_sprite && !config->sprites_enabled)
1943 1944 1945
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1946
	if (level == 0 || config->num_pipes_active > 1) {
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1958
	if (config->sprites_enabled) {
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1970
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1971 1972 1973 1974
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1975 1976
				      int level,
				      const struct intel_wm_config *config)
1977 1978
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1979
	if (level > 0 && config->num_pipes_active > 1)
1980 1981 1982
		return 64;

	/* otherwise just report max that registers can hold */
1983
	return ilk_cursor_wm_reg_max(dev, level);
1984 1985
}

1986
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1987 1988 1989
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1990
				    struct ilk_wm_maximums *max)
1991
{
1992 1993 1994
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1995
	max->fbc = ilk_fbc_wm_reg_max(dev);
1996 1997
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2008
static bool ilk_validate_wm_level(int level,
2009
				  const struct ilk_wm_maximums *max,
2010
				  struct intel_wm_level *result)
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2049
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2050
				 int level,
2051
				 const struct ilk_pipe_wm_parameters *p,
2052
				 struct intel_wm_level *result)
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2072 2073
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2074 2075
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2076
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
2078
	u32 linetime, ips_linetime;
2079

2080
	if (!intel_crtc->active)
2081
		return 0;
2082

2083 2084 2085
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2086 2087 2088
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2089
					 dev_priv->cdclk_freq);
2090

2091 2092
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2093 2094
}

2095
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2096 2097 2098
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2099 2100
	if (IS_GEN9(dev)) {
		uint32_t val;
2101
		int ret, i;
2102
		int level, max_level = ilk_wm_max_level(dev);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2145
		/*
2146 2147
		 * WaWmMemoryReadLatency:skl
		 *
2148 2149 2150 2151 2152 2153 2154 2155
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2156 2157 2158 2159 2160
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2161 2162 2163 2164 2165
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2166 2167 2168
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2169

2170 2171
				break;
			}
2172
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2173 2174 2175 2176 2177
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2178 2179 2180 2181
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2182 2183 2184 2185 2186 2187 2188
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2189 2190 2191 2192 2193 2194 2195
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2196 2197 2198
	}
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2217
int ilk_wm_max_level(const struct drm_device *dev)
2218 2219
{
	/* how many WM levels are we expecting */
2220
	if (INTEL_INFO(dev)->gen >= 9)
2221 2222
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2223
		return 4;
2224
	else if (INTEL_INFO(dev)->gen >= 6)
2225
		return 3;
2226
	else
2227 2228
		return 2;
}
2229

2230 2231
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2232
				   const uint16_t wm[8])
2233 2234
{
	int level, max_level = ilk_wm_max_level(dev);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2245 2246 2247 2248 2249 2250 2251
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2252 2253 2254 2255 2256 2257 2258 2259
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2297
static void ilk_setup_wm_latency(struct drm_device *dev)
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2310 2311 2312 2313

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2314 2315 2316

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2317 2318
}

2319 2320 2321 2322 2323 2324 2325 2326
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2327
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2328
				      struct ilk_pipe_wm_parameters *p)
2329
{
2330 2331 2332 2333
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2334

2335
	if (!intel_crtc->active)
2336
		return;
2337

2338
	p->active = true;
2339
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2340
	p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2341

2342
	if (crtc->primary->state->fb)
2343 2344
		p->pri.bytes_per_pixel =
			crtc->primary->state->fb->bits_per_pixel / 8;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	else
		p->pri.bytes_per_pixel = 4;

	p->cur.bytes_per_pixel = 4;
	/*
	 * TODO: for now, assume primary and cursor planes are always enabled.
	 * Setting them to false makes the screen flicker.
	 */
	p->pri.enabled = true;
	p->cur.enabled = true;
2355

2356
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2357
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2358

2359
	drm_for_each_legacy_plane(plane, dev) {
2360 2361
		struct intel_plane *intel_plane = to_intel_plane(plane);

2362
		if (intel_plane->pipe == pipe) {
2363
			p->spr = intel_plane->wm;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2375
	for_each_intel_crtc(dev, intel_crtc) {
2376
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2377

2378 2379
		if (!wm->pipe_enabled)
			continue;
2380

2381 2382 2383
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2384
	}
2385 2386
}

2387 2388
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2389
				  const struct ilk_pipe_wm_parameters *params,
2390 2391 2392
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2393
	const struct drm_i915_private *dev_priv = dev->dev_private;
2394 2395 2396 2397 2398 2399 2400
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2401
	struct ilk_wm_maximums max;
2402

2403 2404 2405 2406
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2407 2408 2409 2410 2411 2412 2413 2414
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2415
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2416

2417
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2418
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2419

2420 2421 2422
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2423
	/* At least LP0 must be valid */
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2457 2458
	ret_wm->enable = true;

2459
	for_each_intel_crtc(dev, intel_crtc) {
2460 2461 2462 2463 2464
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2465

2466 2467 2468 2469 2470
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2471
		if (!wm->enable)
2472
			ret_wm->enable = false;
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2485
			 const struct intel_wm_config *config,
2486
			 const struct ilk_wm_maximums *max,
2487 2488
			 struct intel_pipe_wm *merged)
{
2489
	struct drm_i915_private *dev_priv = dev->dev_private;
2490
	int level, max_level = ilk_wm_max_level(dev);
2491
	int last_enabled_level = max_level;
2492

2493 2494 2495 2496 2497
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2498 2499
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2500 2501 2502 2503 2504 2505 2506

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2507 2508 2509 2510 2511
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2512 2513 2514 2515 2516 2517

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2518 2519
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2520 2521 2522
			wm->fbc_val = 0;
		}
	}
2523 2524 2525 2526 2527 2528 2529

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2530 2531
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
	    intel_fbc_enabled(dev_priv)) {
2532 2533 2534 2535 2536 2537
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2538 2539
}

2540 2541 2542 2543 2544 2545
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2546 2547 2548 2549 2550
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2551
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2552 2553 2554 2555 2556
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2557
static void ilk_compute_wm_results(struct drm_device *dev,
2558
				   const struct intel_pipe_wm *merged,
2559
				   enum intel_ddb_partitioning partitioning,
2560
				   struct ilk_wm_values *results)
2561
{
2562 2563
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2564

2565
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2566
	results->partitioning = partitioning;
2567

2568
	/* LP1+ register values */
2569
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2570
		const struct intel_wm_level *r;
2571

2572
		level = ilk_wm_lp_to_level(wm_lp, merged);
2573

2574
		r = &merged->wm[level];
2575

2576 2577 2578 2579 2580
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2581
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2582 2583 2584
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2585 2586 2587
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2588 2589 2590 2591 2592 2593 2594
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2595 2596 2597 2598
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2599 2600 2601 2602 2603
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2604
	}
2605

2606
	/* LP0 register values */
2607
	for_each_intel_crtc(dev, intel_crtc) {
2608 2609 2610 2611 2612 2613 2614 2615
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2616

2617 2618 2619 2620
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2621 2622 2623
	}
}

2624 2625
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2626
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2627 2628
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2629
{
2630 2631
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2632

2633 2634 2635 2636 2637
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2638 2639
	}

2640 2641
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2642 2643 2644
			return r2;
		else
			return r1;
2645
	} else if (level1 > level2) {
2646 2647 2648 2649 2650 2651
		return r1;
	} else {
		return r2;
	}
}

2652 2653 2654 2655 2656 2657 2658 2659
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2660
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2661 2662
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2663 2664 2665 2666 2667
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2668
	for_each_pipe(dev_priv, pipe) {
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2712 2713
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2714
{
2715
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2716
	bool changed = false;
2717

2718 2719 2720
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2721
		changed = true;
2722 2723 2724 2725
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2726
		changed = true;
2727 2728 2729 2730
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2731
		changed = true;
2732
	}
2733

2734 2735 2736 2737
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2738

2739 2740 2741 2742 2743 2744 2745
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2746 2747
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2748 2749
{
	struct drm_device *dev = dev_priv->dev;
2750
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2751 2752 2753
	unsigned int dirty;
	uint32_t val;

2754
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2755 2756 2757 2758 2759
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2760
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2761
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2762
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2763
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2764
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2765 2766
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2767
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2768
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2769
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2770
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2771
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2772 2773
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2774
	if (dirty & WM_DIRTY_DDB) {
2775
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2790 2791
	}

2792
	if (dirty & WM_DIRTY_FBC) {
2793 2794 2795 2796 2797 2798 2799 2800
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2801 2802 2803 2804 2805
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2806 2807 2808 2809 2810
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2811

2812
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2813
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2814
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2815
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2816
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2817
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2818 2819

	dev_priv->wm.hw = *results;
2820 2821
}

2822 2823 2824 2825 2826 2827 2828
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2829 2830 2831 2832 2833 2834
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2835
#define BXT_DDB_SIZE		512
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2854 2855 2856 2857
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2858 2859 2860 2861 2862

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2863
		if (!to_intel_crtc(crtc)->active)
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2874
	alloc->end = alloc->start + pipe_size;
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2885 2886 2887 2888
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2889 2890
	if (entry->end)
		entry->end += 1;
2891 2892
}

2893 2894
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2895 2896 2897 2898 2899 2900
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2901
		for_each_plane(dev_priv, pipe, plane) {
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2912
static unsigned int
2913
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2914
{
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

	/* for planar format */
	if (p->y_bytes_per_pixel) {
		if (y)  /* y-plane data rate */
			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
		else    /* uv-plane data rate */
			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
	}

	/* for packed formats */
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

2947 2948 2949 2950
		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
		if (p->y_bytes_per_pixel) {
			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
		}
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2963
	struct drm_i915_private *dev_priv = dev->dev_private;
2964 2965
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2966
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2967
	uint16_t alloc_size, start, cursor_blocks;
2968
	uint16_t minimum[I915_MAX_PLANES];
2969
	uint16_t y_minimum[I915_MAX_PLANES];
2970 2971 2972
	unsigned int total_data_rate;
	int plane;

2973 2974
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2975 2976 2977 2978 2979 2980 2981
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2982 2983
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2984 2985

	alloc_size -= cursor_blocks;
2986
	alloc->end -= cursor_blocks;
2987

2988
	/* 1. Allocate the mininum required blocks for each active plane */
2989
	for_each_plane(dev_priv, pipe, plane) {
2990 2991 2992 2993 2994 2995 2996 2997
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
2998 2999
		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
		alloc_size -= y_minimum[plane];
3000 3001
	}

3002
	/*
3003 3004
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3005 3006 3007 3008 3009
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

3010
	start = alloc->start;
3011 3012
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
3013 3014
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3015 3016 3017 3018 3019

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

3020
		data_rate = skl_plane_relative_data_rate(p, 0);
3021 3022

		/*
3023
		 * allocation for (packed formats) or (uv-plane part of planar format):
3024 3025 3026
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3027 3028 3029
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3030 3031

		ddb->plane[pipe][plane].start = start;
3032
		ddb->plane[pipe][plane].end = start + plane_blocks;
3033 3034

		start += plane_blocks;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050

		/*
		 * allocation for y_plane part of planar format:
		 */
		if (p->y_bytes_per_pixel) {
			y_data_rate = skl_plane_relative_data_rate(p, 1);
			y_plane_blocks = y_minimum[plane];
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

			ddb->y_plane[pipe][plane].start = start;
			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;

			start += y_plane_blocks;
		}

3051 3052 3053 3054
	}

}

3055
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3056 3057
{
	/* TODO: Take into account the scalers once we support them */
3058
	return config->base.adjusted_mode.crtc_clock;
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3075
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3076 3077 3078 3079 3080 3081 3082
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3083
			       uint64_t tiling, uint32_t latency)
3084
{
3085 3086 3087
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3088 3089 3090 3091 3092

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3103 3104
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3105
				plane_blocks_per_line;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3136
		config->num_pipes_active += to_intel_crtc(crtc)->active;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
3154
	struct drm_framebuffer *fb;
3155 3156
	int i = 1; /* Index for sprite planes start */

3157
	p->active = intel_crtc->active;
3158
	if (p->active) {
3159 3160
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3161

3162
		fb = crtc->primary->state->fb;
3163
		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3164 3165
		if (fb) {
			p->plane[0].enabled = true;
3166 3167 3168 3169
			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 1) : fb->bits_per_pixel / 8;
			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3170
			p->plane[0].tiling = fb->modifier[0];
3171 3172 3173
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
3174
			p->plane[0].y_bytes_per_pixel = 0;
3175 3176 3177 3178
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3179
		p->plane[0].rotation = crtc->primary->state->rotation;
3180

3181
		fb = crtc->cursor->state->fb;
3182
		p->cursor.y_bytes_per_pixel = 0;
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		if (fb) {
			p->cursor.enabled = true;
			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->cursor.enabled = false;
			p->cursor.bytes_per_pixel = 0;
			p->cursor.horiz_pixels = 64;
			p->cursor.vert_pixels = 64;
		}
3194 3195 3196 3197 3198
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

3199 3200
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
3201 3202 3203 3204
			p->plane[i++] = intel_plane->wm;
	}
}

3205 3206
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
3207 3208
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
3209
				 int level,
3210 3211
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3212
{
3213 3214 3215 3216 3217
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3218
	uint8_t bytes_per_pixel;
3219

3220
	if (latency == 0 || !p->active || !p_params->enabled)
3221 3222
		return false;

3223 3224 3225
	bytes_per_pixel = p_params->y_bytes_per_pixel ?
		p_params->y_bytes_per_pixel :
		p_params->bytes_per_pixel;
3226
	method1 = skl_wm_method1(p->pixel_rate,
3227
				 bytes_per_pixel,
3228
				 latency);
3229 3230 3231
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
3232
				 bytes_per_pixel,
3233
				 p_params->tiling,
3234
				 latency);
3235

3236
	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3237
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3238

3239 3240
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
		if (intel_rotation_90_or_270(p_params->rotation)) {
			switch (p_params->bytes_per_pixel) {
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3253
			}
3254 3255
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3256 3257 3258 3259 3260 3261 3262
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3263

3264 3265
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3266

3267 3268 3269 3270 3271 3272 3273
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
3274

3275
	if (res_blocks >= ddb_allocation || res_lines > 31)
3276 3277 3278 3279
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3298 3299
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
3300
						ddb_blocks,
3301
						level,
3302 3303 3304 3305 3306
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3307 3308 3309
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
3310 3311 3312
						 &result->cursor_res_l);
}

3313 3314 3315
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
3316
	if (!to_intel_crtc(crtc)->active)
3317 3318
		return 0;

3319 3320
	if (WARN_ON(p->pixel_rate == 0))
		return 0;
3321

3322
	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3323 3324 3325 3326
}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
3327
				      struct skl_wm_level *trans_wm /* out */)
3328
{
3329 3330 3331
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

3332 3333
	if (!params->active)
		return;
3334 3335 3336 3337 3338

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
3339 3340
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

3358
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3369 3370
	uint32_t temp;
	int i;
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

3416 3417 3418
	r->wm_linetime[pipe] = p_wm->linetime;
}

3419 3420 3421 3422 3423 3424 3425 3426 3427
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3438 3439
		if (!new->dirty[pipe])
			continue;
3440

3441
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3442

3443 3444 3445 3446 3447 3448
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
3449
		}
3450 3451 3452 3453 3454
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

3455
		for (i = 0; i < intel_num_planes(crtc); i++) {
3456 3457 3458
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3459 3460 3461 3462
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3463 3464 3465

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3466 3467 3468
	}
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3493 3494
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3495 3496 3497
{
	int plane;

3498 3499
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3500
	for_each_plane(dev_priv, pipe, plane) {
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3527
	bool reallocated[I915_MAX_PIPES] = {};
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3550
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3575
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3576
			intel_wait_for_vblank(dev, pipe);
3577
			reallocated[pipe] = true;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3600
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3601 3602 3603
	}
}

3604 3605 3606 3607 3608 3609 3610 3611 3612
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3613
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3614 3615 3616 3617 3618 3619
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
3620

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3696
	skl_flush_wm_values(dev_priv, results);
3697 3698 3699

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3700 3701 3702 3703 3704 3705 3706 3707
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3708
	struct drm_framebuffer *fb = plane->state->fb;
3709 3710 3711 3712 3713

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
3714
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3715 3716 3717 3718 3719 3720 3721 3722 3723

	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
	intel_plane->wm.bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
	intel_plane->wm.y_bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;

3724 3725 3726 3727 3728 3729
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3730
	intel_plane->wm.rotation = plane->state->rotation;
3731 3732 3733 3734

	skl_update_wm(crtc);
}

3735
static void ilk_update_wm(struct drm_crtc *crtc)
3736
{
3737
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3738
	struct drm_device *dev = crtc->dev;
3739
	struct drm_i915_private *dev_priv = dev->dev_private;
3740 3741 3742
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3743
	enum intel_ddb_partitioning partitioning;
3744
	struct intel_pipe_wm pipe_wm = {};
3745
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3746
	struct intel_wm_config config = {};
3747

3748
	ilk_compute_wm_parameters(crtc, &params);
3749 3750 3751 3752 3753

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3754

3755
	intel_crtc->wm.active = pipe_wm;
3756

3757 3758
	ilk_compute_wm_config(dev, &config);

3759
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3760
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3761 3762

	/* 5/6 split only in single pipe config on IVB+ */
3763 3764
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3765
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3766
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3767

3768
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3769
	} else {
3770
		best_lp_wm = &lp_wm_1_2;
3771 3772
	}

3773
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3774
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3775

3776
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3777

3778
	ilk_write_wm_values(dev_priv, &results);
3779 3780
}

3781 3782 3783 3784 3785
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3786
{
3787
	struct drm_device *dev = plane->dev;
3788
	struct intel_plane *intel_plane = to_intel_plane(plane);
3789

3790 3791 3792
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3793
	intel_plane->wm.vert_pixels = sprite_width;
3794
	intel_plane->wm.bytes_per_pixel = pixel_size;
3795

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3806
	ilk_update_wm(crtc);
3807 3808
}

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3879
	if (!intel_crtc->active)
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3907 3908
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3909 3910
	struct drm_crtc *crtc;

3911
	skl_ddb_get_hw_state(dev_priv, ddb);
3912 3913 3914 3915
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3916 3917 3918 3919
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3920
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3931
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3932
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3933

3934
	active->pipe_enabled = intel_crtc->active;
3935 3936

	if (active->pipe_enabled) {
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
		if ((val & FORCE_DDR_HIGH_FREQ) == 0)
			wm->level = VLV_WM_LEVEL_DDR_DVFS;

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4096 4097 4098
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4099
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4100 4101
	struct drm_crtc *crtc;

4102
	for_each_crtc(dev, crtc)
4103 4104 4105 4106 4107 4108 4109
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4110 4111 4112 4113
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4114

4115
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4116 4117 4118 4119 4120
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4121 4122 4123 4124 4125

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4158
void intel_update_watermarks(struct drm_crtc *crtc)
4159
{
4160
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4161 4162

	if (dev_priv->display.update_wm)
4163
		dev_priv->display.update_wm(crtc);
4164 4165
}

4166 4167
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
4168 4169 4170
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
4171
				    bool enabled, bool scaled)
4172
{
4173
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
4174 4175

	if (dev_priv->display.update_sprite_wm)
4176 4177
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
4178
						   pixel_size, enabled, scaled);
4179 4180
}

4181 4182 4183 4184 4185 4186 4187 4188 4189
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4190 4191 4192 4193 4194
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4195 4196
	assert_spin_locked(&mchdev_lock);

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4214
static void ironlake_enable_drps(struct drm_device *dev)
4215 4216 4217 4218 4219
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4220 4221
	spin_lock_irq(&mchdev_lock);

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

4245 4246
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4247

4248 4249 4250
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4267
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4268
		DRM_ERROR("stuck trying to change perf mode\n");
D
Daniel Vetter 已提交
4269
	msleep(1);
4270 4271 4272

	ironlake_set_drps(dev, fstart);

4273
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4274
		I915_READ(0x112e0);
4275 4276
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
4277
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4278 4279

	spin_unlock_irq(&mchdev_lock);
4280 4281
}

4282
static void ironlake_disable_drps(struct drm_device *dev)
4283 4284
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4285 4286 4287 4288 4289
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4290 4291 4292 4293 4294 4295 4296 4297 4298

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4299
	ironlake_set_drps(dev, dev_priv->ips.fstart);
D
Daniel Vetter 已提交
4300
	msleep(1);
4301 4302
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
D
Daniel Vetter 已提交
4303
	msleep(1);
4304

4305
	spin_unlock_irq(&mchdev_lock);
4306 4307
}

4308 4309 4310 4311 4312
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4313
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4314
{
4315
	u32 limits;
4316

4317 4318 4319 4320 4321 4322
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4323 4324 4325 4326 4327 4328 4329 4330 4331
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4332 4333 4334 4335

	return limits;
}

4336 4337 4338
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4339 4340
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4341 4342 4343 4344

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4345
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4346 4347 4348 4349
			new_power = BETWEEN;
		break;

	case BETWEEN:
4350
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4351
			new_power = LOW_POWER;
4352
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4353 4354 4355 4356
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4357
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4358 4359 4360 4361
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4362
	if (val <= dev_priv->rps.min_freq_softlimit)
4363
		new_power = LOW_POWER;
4364
	if (val >= dev_priv->rps.max_freq_softlimit)
4365 4366 4367 4368 4369 4370 4371 4372
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4373 4374
		ei_up = 16000;
		threshold_up = 95;
4375 4376

		/* Downclock if less than 85% busy over 32ms */
4377 4378
		ei_down = 32000;
		threshold_down = 85;
4379 4380 4381 4382
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4383 4384
		ei_up = 13000;
		threshold_up = 90;
4385 4386

		/* Downclock if less than 75% busy over 32ms */
4387 4388
		ei_down = 32000;
		threshold_down = 75;
4389 4390 4391 4392
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4393 4394
		ei_up = 10000;
		threshold_up = 85;
4395 4396

		/* Downclock if less than 60% busy over 32ms */
4397 4398
		ei_down = 32000;
		threshold_down = 60;
4399 4400 4401
		break;
	}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4420
	dev_priv->rps.power = new_power;
4421 4422
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4423 4424 4425
	dev_priv->rps.last_adj = 0;
}

4426 4427 4428 4429 4430
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4431
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4432
	if (val < dev_priv->rps.max_freq_softlimit)
4433
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4434

4435 4436
	mask &= dev_priv->pm_rps_events;

4437
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4438 4439
}

4440 4441 4442
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4443
static void gen6_set_rps(struct drm_device *dev, u8 val)
4444 4445
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4446

4447
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4448 4449
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4450

C
Chris Wilson 已提交
4451 4452 4453 4454 4455
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4456

4457 4458 4459 4460
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4461 4462 4463 4464 4465 4466 4467
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4468
	}
4469 4470 4471 4472

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4473
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4474
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4475

4476 4477
	POSTING_READ(GEN6_RPNSWREQ);

4478
	dev_priv->rps.cur_freq = val;
4479
	trace_intel_gpu_freq_change(val * 50);
4480 4481
}

4482 4483 4484 4485 4486
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4487 4488
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4489 4490 4491 4492 4493

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4494 4495
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4496
	if (val != dev_priv->rps.cur_freq) {
4497
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4498 4499 4500
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4501 4502 4503 4504 4505

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4506
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4507 4508
 *
 * * If Gfx is Idle, then
4509 4510 4511
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4512 4513 4514
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4515
	u32 val = dev_priv->rps.idle_freq;
4516

4517
	if (dev_priv->rps.cur_freq <= val)
4518 4519
		return;

4520 4521 4522 4523 4524
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4525 4526
}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4539 4540
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4541 4542
	struct drm_device *dev = dev_priv->dev;

4543
	mutex_lock(&dev_priv->rps.hw_lock);
4544
	if (dev_priv->rps.enabled) {
4545
		if (IS_VALLEYVIEW(dev))
4546
			vlv_set_rps_idle(dev_priv);
4547
		else
4548
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4549
		dev_priv->rps.last_adj = 0;
4550
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4551
	}
4552
	mutex_unlock(&dev_priv->rps.hw_lock);
4553

4554
	spin_lock(&dev_priv->rps.client_lock);
4555 4556
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4557
	spin_unlock(&dev_priv->rps.client_lock);
4558 4559
}

4560
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4561 4562
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4563
{
4564 4565 4566 4567 4568 4569 4570
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4571

4572 4573 4574
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4575
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4576 4577
		rps = NULL;

4578 4579 4580 4581 4582 4583 4584 4585
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4586

4587 4588 4589
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4590 4591
		} else
			dev_priv->rps.boosts++;
4592
	}
4593
	spin_unlock(&dev_priv->rps.client_lock);
4594 4595
}

4596
void intel_set_rps(struct drm_device *dev, u8 val)
4597
{
4598 4599 4600 4601
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4602 4603
}

Z
Zhe Wang 已提交
4604 4605 4606 4607 4608
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4609
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4610 4611
}

4612
static void gen6_disable_rps(struct drm_device *dev)
4613 4614 4615 4616
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4617 4618 4619
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4620 4621 4622 4623 4624 4625 4626
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4627 4628 4629 4630
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4631 4632
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4633
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4634

4635
	I915_WRITE(GEN6_RC_CONTROL, 0);
4636

4637
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4638 4639
}

B
Ben Widawsky 已提交
4640 4641
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4642 4643 4644 4645 4646 4647
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4648 4649 4650 4651 4652 4653 4654 4655 4656
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4657 4658
}

I
Imre Deak 已提交
4659
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4660
{
4661 4662
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4663 4664
		return 0;

4665
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4666 4667 4668
	if (enable_rc6 >= 0) {
		int mask;

4669
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4670 4671 4672 4673 4674 4675
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4676 4677
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4678 4679 4680

		return enable_rc6 & mask;
	}
4681

4682
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4683
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4684 4685

	return INTEL_RC6_ENABLE;
4686 4687
}

I
Imre Deak 已提交
4688 4689 4690 4691 4692
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4693
static void gen6_init_rps_frequencies(struct drm_device *dev)
4694
{
4695 4696 4697 4698 4699
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4700 4701
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4702
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4715 4716 4717
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4718
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4719
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4720 4721 4722 4723 4724
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4725 4726 4727 4728
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4729 4730
	}

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4741 4742
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4743 4744 4745 4746
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4747 4748 4749
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4750 4751
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4752 4753 4754 4755
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4756 4757
}

J
Jesse Barnes 已提交
4758
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4759
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4760 4761 4762 4763 4764
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4765 4766
	gen6_init_rps_frequencies(dev);

4767 4768 4769 4770 4771 4772 4773 4774
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4775 4776
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4777 4778 4779 4780 4781
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4782 4783 4784 4785 4786

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4798
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4812 4813 4814 4815
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4825 4826 4827 4828
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
	 * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
	 */
4829
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4830
			GEN9_MEDIA_PG_ENABLE : 0);
4831

4832

4833
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4834 4835 4836

}

4837 4838 4839
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4840
	struct intel_engine_cs *ring;
4841
	uint32_t rc6_mask = 0;
4842 4843 4844 4845 4846 4847 4848
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4849
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4850 4851 4852 4853

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4854 4855
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4856 4857 4858 4859 4860 4861 4862 4863

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4864 4865 4866 4867
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4868 4869 4870 4871

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4872
	intel_print_rc6_info(dev, rc6_mask);
4873 4874 4875 4876 4877 4878 4879 4880
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4881 4882

	/* 4 Program defaults and thresholds for RPS*/
4883 4884 4885 4886
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4901 4902

	/* 5: Enable RPS */
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4913
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4914
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4915

4916
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4917 4918
}

4919
static void gen6_enable_rps(struct drm_device *dev)
4920
{
4921
	struct drm_i915_private *dev_priv = dev->dev_private;
4922
	struct intel_engine_cs *ring;
4923
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4924 4925
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4926
	int i, ret;
4927

4928
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4929

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4944
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4945

4946 4947
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4948

4949 4950 4951 4952 4953 4954 4955 4956 4957
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4958 4959
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4960 4961 4962

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4963
	if (IS_IVYBRIDGE(dev))
4964 4965 4966
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4967
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4968 4969
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4970
	/* Check if we are enabling RC6 */
4971 4972 4973 4974
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4975 4976 4977 4978
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4979

4980 4981 4982
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4983

B
Ben Widawsky 已提交
4984
	intel_print_rc6_info(dev, rc6_mask);
4985 4986 4987 4988 4989 4990

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4991 4992
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4993 4994
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4995
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4996
	if (ret)
B
Ben Widawsky 已提交
4997
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4998 4999 5000 5001

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5002
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5003
				 (pcu_mbox & 0xff) * 50);
5004
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5005 5006
	}

5007
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5008
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5009

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5024
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5025 5026
}

5027
static void __gen6_update_ring_freq(struct drm_device *dev)
5028
{
5029
	struct drm_i915_private *dev_priv = dev->dev_private;
5030
	int min_freq = 15;
5031 5032
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5033
	unsigned int max_gpu_freq, min_gpu_freq;
5034
	int scaling_factor = 180;
5035
	struct cpufreq_policy *policy;
5036

5037
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5038

5039 5040 5041 5042 5043 5044 5045 5046 5047
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5048
		max_ia_freq = tsc_khz;
5049
	}
5050 5051 5052 5053

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5054
	min_ring_freq = I915_READ(DCLK) & 0xf;
5055 5056
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5057

5058 5059 5060 5061 5062 5063 5064 5065 5066
	if (IS_SKYLAKE(dev)) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5067 5068 5069 5070 5071
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5072 5073
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5074 5075
		unsigned int ia_freq = 0, ring_freq = 0;

5076 5077 5078 5079 5080 5081 5082
		if (IS_SKYLAKE(dev)) {
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5083 5084 5085
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5086
			ring_freq = mult_frac(gpu_freq, 5, 4);
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5103

B
Ben Widawsky 已提交
5104 5105
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5106 5107 5108
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5109 5110 5111
	}
}

5112 5113 5114 5115
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5116
	if (!HAS_CORE_RING_FREQ(dev))
5117 5118 5119 5120 5121 5122 5123
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5124
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5125
{
5126
	struct drm_device *dev = dev_priv->dev;
5127 5128
	u32 val, rp0;

5129 5130
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5131

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5168 5169
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
5170
	struct drm_device *dev = dev_priv->dev;
5171 5172
	u32 val, rp1;

5173 5174 5175 5176 5177 5178 5179 5180 5181
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
5182 5183 5184
	return rp1;
}

5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5196
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5197 5198 5199
{
	u32 val, rp0;

5200
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5213
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5214
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5215
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5216 5217 5218 5219 5220
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5221
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5222
{
5223
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5224 5225
}

5226 5227 5228 5229 5230 5231 5232 5233 5234
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5256
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5257 5258 5259 5260 5261 5262
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5263 5264

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5265 5266
}

5267 5268 5269 5270 5271 5272 5273 5274
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5275 5276
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5277 5278 5279 5280 5281 5282 5283 5284
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5285
								      I915_GTT_OFFSET_NONE,
5286 5287 5288 5289
								      pctx_size);
		goto out;
	}

5290 5291
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5310
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5311 5312 5313
	dev_priv->vlv_pctx = pctx;
}

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5325 5326 5327
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5328
	u32 val;
5329 5330 5331 5332 5333

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5347
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348

5349 5350 5351
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353 5354 5355 5356
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358 5359
			 dev_priv->rps.efficient_freq);

5360 5361
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363 5364
			 dev_priv->rps.rp1_freq);

5365 5366
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368 5369
			 dev_priv->rps.min_freq);

5370 5371
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5382 5383
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5384
	struct drm_i915_private *dev_priv = dev->dev_private;
5385
	u32 val;
5386

5387
	cherryview_setup_pctx(dev);
5388 5389 5390

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5391
	mutex_lock(&dev_priv->sb_lock);
5392
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5393
	mutex_unlock(&dev_priv->sb_lock);
5394

5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
5418
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5419

5420 5421 5422
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5423
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5424 5425 5426 5427
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5428
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5429 5430
			 dev_priv->rps.efficient_freq);

5431 5432
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5433
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5434 5435
			 dev_priv->rps.rp1_freq);

5436 5437
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5438
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5439
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5440 5441
			 dev_priv->rps.min_freq);

5442 5443 5444 5445 5446 5447
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5448 5449
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5450 5451 5452 5453 5454 5455 5456 5457
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5458 5459
}

5460 5461 5462 5463 5464
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5465 5466 5467 5468
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5469
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5485
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5486

5487 5488 5489
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5490 5491 5492 5493 5494 5495 5496 5497 5498
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5499 5500
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5514
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5515 5516 5517

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5518
	/* 4 Program defaults and thresholds for RPS*/
5519
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5530
		   GEN6_RP_MEDIA_IS_GFX |
5531 5532 5533 5534
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5535 5536 5537 5538 5539 5540
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5541 5542
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5543 5544 5545
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5546
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5547 5548 5549 5550
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5551
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5552 5553 5554
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5555
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5556 5557 5558 5559
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5560
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5561 5562
}

5563 5564 5565
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5566
	struct intel_engine_cs *ring;
5567
	u32 gtfifodbg, val, rc6_mode = 0;
5568 5569 5570 5571
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5572 5573
	valleyview_check_pctx(dev_priv);

5574
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5575 5576
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5577 5578 5579
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5580
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5581
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5582

5583 5584 5585
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5586
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5609
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5610 5611

	/* allows RC6 residency counter to work */
5612
	I915_WRITE(VLV_COUNTER_CONTROL,
5613 5614
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5615 5616
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5617

5618
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5619
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5620 5621 5622

	intel_print_rc6_info(dev, rc6_mode);

5623
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5624

D
Deepak S 已提交
5625 5626 5627 5628 5629 5630
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5631
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5632

5633 5634 5635
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5636
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5637 5638
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5639
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5640
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5641
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5642
			 dev_priv->rps.cur_freq);
5643

5644
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5645
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5646
			 dev_priv->rps.efficient_freq);
5647

5648
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5649

5650
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5651 5652
}

5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5682
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5683 5684 5685 5686 5687 5688
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5689 5690
	assert_spin_locked(&mchdev_lock);

5691
	diff1 = now - dev_priv->ips.last_time1;
5692 5693 5694 5695 5696 5697 5698

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5699
		return dev_priv->ips.chipset_power;
5700 5701 5702 5703 5704 5705 5706 5707

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5708 5709
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5710 5711
		diff += total_count;
	} else {
5712
		diff = total_count - dev_priv->ips.last_count1;
5713 5714 5715
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5716 5717
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5728 5729
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5730

5731
	dev_priv->ips.chipset_power = ret;
5732 5733 5734 5735

	return ret;
}

5736 5737
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5738
	struct drm_device *dev = dev_priv->dev;
5739 5740
	unsigned long val;

5741
	if (INTEL_INFO(dev)->gen != 5)
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5780
{
5781
	struct drm_device *dev = dev_priv->dev;
5782 5783 5784
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5785
	if (INTEL_INFO(dev)->is_mobile)
5786 5787 5788
		return vm > 0 ? vm : 0;

	return vd;
5789 5790
}

5791
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5792
{
5793
	u64 now, diff, diffms;
5794 5795
	u32 count;

5796
	assert_spin_locked(&mchdev_lock);
5797

5798 5799 5800
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5801 5802 5803 5804 5805 5806 5807

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5808 5809
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5810 5811
		diff += count;
	} else {
5812
		diff = count - dev_priv->ips.last_count2;
5813 5814
	}

5815 5816
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5817 5818 5819 5820

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5821
	dev_priv->ips.gfx_power = diff;
5822 5823
}

5824 5825
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5826 5827 5828
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5829 5830
		return;

5831
	spin_lock_irq(&mchdev_lock);
5832 5833 5834

	__i915_update_gfx_val(dev_priv);

5835
	spin_unlock_irq(&mchdev_lock);
5836 5837
}

5838
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5839 5840 5841 5842
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5843 5844
	assert_spin_locked(&mchdev_lock);

5845
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5865
	corr2 = (corr * dev_priv->ips.corr);
5866 5867 5868 5869

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5870
	__i915_update_gfx_val(dev_priv);
5871

5872
	return dev_priv->ips.gfx_power + state2;
5873 5874
}

5875 5876
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5877
	struct drm_device *dev = dev_priv->dev;
5878 5879
	unsigned long val;

5880
	if (INTEL_INFO(dev)->gen != 5)
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5903
	spin_lock_irq(&mchdev_lock);
5904 5905 5906 5907
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5908 5909
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5910 5911 5912 5913

	ret = chipset_val + graphics_val;

out_unlock:
5914
	spin_unlock_irq(&mchdev_lock);
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5930
	spin_lock_irq(&mchdev_lock);
5931 5932 5933 5934 5935 5936
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5937 5938
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5939 5940

out_unlock:
5941
	spin_unlock_irq(&mchdev_lock);
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5958
	spin_lock_irq(&mchdev_lock);
5959 5960 5961 5962 5963 5964
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5965 5966
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5967 5968

out_unlock:
5969
	spin_unlock_irq(&mchdev_lock);
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5983
	struct intel_engine_cs *ring;
5984
	bool ret = false;
5985
	int i;
5986

5987
	spin_lock_irq(&mchdev_lock);
5988 5989 5990 5991
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5992 5993
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5994 5995

out_unlock:
5996
	spin_unlock_irq(&mchdev_lock);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6013
	spin_lock_irq(&mchdev_lock);
6014 6015 6016 6017 6018 6019
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6020
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6021

6022
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6023 6024 6025
		ret = false;

out_unlock:
6026
	spin_unlock_irq(&mchdev_lock);
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6054 6055
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6056
	spin_lock_irq(&mchdev_lock);
6057
	i915_mch_dev = dev_priv;
6058
	spin_unlock_irq(&mchdev_lock);
6059 6060 6061 6062 6063 6064

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6065
	spin_lock_irq(&mchdev_lock);
6066
	i915_mch_dev = NULL;
6067
	spin_unlock_irq(&mchdev_lock);
6068
}
6069

6070
static void intel_init_emon(struct drm_device *dev)
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6138
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6139 6140
}

6141 6142
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6143 6144
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6145 6146 6147
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6148
		valleyview_init_gt_powersave(dev);
6149 6150 6151 6152
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6153 6154 6155
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6156
		valleyview_cleanup_gt_powersave(dev);
6157 6158
}

6159 6160 6161 6162 6163 6164
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6165
	gen6_disable_rps_interrupts(dev);
6166 6167
}

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6180 6181 6182
	if (INTEL_INFO(dev)->gen < 6)
		return;

6183
	gen6_suspend_rps(dev);
6184 6185 6186

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6187 6188
}

6189 6190
void intel_disable_gt_powersave(struct drm_device *dev)
{
6191 6192
	struct drm_i915_private *dev_priv = dev->dev_private;

6193
	if (IS_IRONLAKE_M(dev)) {
6194
		ironlake_disable_drps(dev);
6195
	} else if (INTEL_INFO(dev)->gen >= 6) {
6196
		intel_suspend_gt_powersave(dev);
6197

6198
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6199 6200 6201
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6202 6203
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6204 6205 6206
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6207

6208
		dev_priv->rps.enabled = false;
6209
		mutex_unlock(&dev_priv->rps.hw_lock);
6210
	}
6211 6212
}

6213 6214 6215 6216 6217 6218 6219
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6220
	mutex_lock(&dev_priv->rps.hw_lock);
6221

6222
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6223

6224 6225 6226
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6227
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6228
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6229
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6230
		gen9_enable_rps(dev);
6231 6232
		if (IS_SKYLAKE(dev))
			__gen6_update_ring_freq(dev);
6233 6234
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6235
		__gen6_update_ring_freq(dev);
6236 6237
	} else {
		gen6_enable_rps(dev);
6238
		__gen6_update_ring_freq(dev);
6239
	}
6240 6241 6242 6243 6244 6245 6246

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6247
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6248

6249
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6250

6251
	mutex_unlock(&dev_priv->rps.hw_lock);
6252 6253

	intel_runtime_pm_put(dev_priv);
6254 6255
}

6256 6257
void intel_enable_gt_powersave(struct drm_device *dev)
{
6258 6259
	struct drm_i915_private *dev_priv = dev->dev_private;

6260 6261 6262 6263
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6264
	if (IS_IRONLAKE_M(dev)) {
6265
		mutex_lock(&dev->struct_mutex);
6266 6267
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6268
		mutex_unlock(&dev->struct_mutex);
6269
	} else if (INTEL_INFO(dev)->gen >= 6) {
6270 6271 6272 6273
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6274 6275 6276 6277 6278 6279 6280
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6281
		 */
6282 6283 6284
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6285 6286 6287
	}
}

6288 6289 6290 6291
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6292 6293 6294 6295
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6296 6297 6298
	dev_priv->rps.enabled = false;
}

6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6311 6312 6313
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6314
	enum pipe pipe;
6315

6316
	for_each_pipe(dev_priv, pipe) {
6317 6318 6319
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6320 6321 6322

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6323 6324 6325
	}
}

6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6340
static void ironlake_init_clock_gating(struct drm_device *dev)
6341 6342
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6343
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6344

6345 6346 6347 6348
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6349 6350 6351
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6369
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6370 6371 6372
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6373 6374

	ilk_init_lp_watermarks(dev);
6375 6376 6377 6378 6379 6380 6381 6382 6383

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6384
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6385 6386 6387 6388 6389 6390 6391 6392
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6393 6394
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6395 6396 6397 6398 6399 6400
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6401

6402
	/* WaDisableRenderCachePipelinedFlush:ilk */
6403 6404
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6405

6406 6407 6408
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6409
	g4x_disable_trickle_feed(dev);
6410

6411 6412 6413 6414 6415 6416 6417
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6418
	uint32_t val;
6419 6420 6421 6422 6423 6424

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6425 6426 6427
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6428 6429
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6430 6431 6432
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6433
	for_each_pipe(dev_priv, pipe) {
6434 6435 6436
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6437
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6438
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6439 6440 6441
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6442 6443
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6444
	/* WADP0ClockGatingDisable */
6445
	for_each_pipe(dev_priv, pipe) {
6446 6447 6448
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6449 6450
}

6451 6452 6453 6454 6455 6456
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6457 6458 6459
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6460 6461
}

6462
static void gen6_init_clock_gating(struct drm_device *dev)
6463 6464
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6465
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6466

6467
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6468 6469 6470 6471 6472

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6473
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6474 6475 6476
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6477 6478 6479
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6480 6481 6482
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6483 6484 6485 6486
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6487 6488
	 */
	I915_WRITE(GEN6_GT_MODE,
6489
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6490

6491
	ilk_init_lp_watermarks(dev);
6492 6493

	I915_WRITE(CACHE_MODE_0,
6494
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6510
	 *
6511 6512
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6513 6514 6515 6516 6517
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6518
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6519 6520
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6521

6522 6523 6524 6525 6526 6527 6528 6529
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6530 6531 6532 6533 6534 6535 6536 6537
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6538 6539
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6540 6541 6542 6543 6544 6545 6546
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6547 6548 6549 6550
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6551

6552
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6553

6554
	cpt_init_clock_gating(dev);
6555 6556

	gen6_check_mch_setup(dev);
6557 6558 6559 6560 6561 6562
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6563
	/*
6564
	 * WaVSThreadDispatchOverride:ivb,vlv
6565 6566 6567 6568
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6569 6570 6571 6572 6573 6574 6575 6576
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6589 6590 6591 6592 6593

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6594 6595
}

6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6608
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6609 6610
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6611
	enum pipe pipe;
6612
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6613

6614
	ilk_init_lp_watermarks(dev);
6615

6616
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6617
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6618

6619
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6620 6621 6622
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6623
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6624
	for_each_pipe(dev_priv, pipe) {
6625
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6626
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6627
			   BDW_DPRS_MASK_VBLANK_SRD);
6628
	}
6629

6630 6631 6632 6633 6634
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6635

6636 6637
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6638 6639 6640 6641

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6642

6643 6644 6645 6646 6647 6648 6649 6650 6651
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6652 6653 6654 6655 6656 6657 6658
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6659
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6660 6661
}

6662 6663 6664 6665
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6666
	ilk_init_lp_watermarks(dev);
6667

6668 6669 6670 6671 6672
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6673
	/* This is required by WaCatErrorRejectionIssue:hsw */
6674 6675 6676 6677
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6678 6679 6680
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6681

6682 6683 6684
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6685 6686 6687 6688
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6689
	/* WaDisable4x2SubspanOptimization:hsw */
6690 6691
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6692

6693 6694 6695
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6696 6697 6698 6699
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6700 6701
	 */
	I915_WRITE(GEN7_GT_MODE,
6702
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6703

6704 6705 6706 6707
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6708
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6709 6710
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6711 6712 6713
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6714

6715
	lpt_init_clock_gating(dev);
6716 6717
}

6718
static void ivybridge_init_clock_gating(struct drm_device *dev)
6719 6720
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6721
	uint32_t snpcr;
6722

6723
	ilk_init_lp_watermarks(dev);
6724

6725
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6726

6727
	/* WaDisableEarlyCull:ivb */
6728 6729 6730
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6731
	/* WaDisableBackToBackFlipFix:ivb */
6732 6733 6734 6735
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6736
	/* WaDisablePSDDualDispatchEnable:ivb */
6737 6738 6739 6740
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6741 6742 6743
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6744
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6745 6746 6747
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6748
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6749 6750 6751
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6752 6753 6754 6755
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6756 6757 6758 6759
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6760 6761
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6762
	}
6763

6764
	/* WaForceL3Serialization:ivb */
6765 6766 6767
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6768
	/*
6769
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6770
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6771 6772
	 */
	I915_WRITE(GEN6_UCGCTL2,
6773
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6774

6775
	/* This is required by WaCatErrorRejectionIssue:ivb */
6776 6777 6778 6779
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6780
	g4x_disable_trickle_feed(dev);
6781 6782

	gen7_setup_fixed_func_scheduler(dev_priv);
6783

6784 6785 6786 6787 6788
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6789

6790
	/* WaDisable4x2SubspanOptimization:ivb */
6791 6792
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6793

6794 6795 6796
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6797 6798 6799 6800
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6801 6802
	 */
	I915_WRITE(GEN7_GT_MODE,
6803
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6804

6805 6806 6807 6808
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6809

6810 6811
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6812 6813

	gen6_check_mch_setup(dev);
6814 6815
}

6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6827
static void valleyview_init_clock_gating(struct drm_device *dev)
6828 6829 6830
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6831
	vlv_init_display_clock_gating(dev_priv);
6832

6833
	/* WaDisableEarlyCull:vlv */
6834 6835 6836
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6837
	/* WaDisableBackToBackFlipFix:vlv */
6838 6839 6840 6841
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6842
	/* WaPsdDispatchEnable:vlv */
6843
	/* WaDisablePSDDualDispatchEnable:vlv */
6844
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6845 6846
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6847

6848 6849 6850
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6851
	/* WaForceL3Serialization:vlv */
6852 6853 6854
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6855
	/* WaDisableDopClockGating:vlv */
6856 6857 6858
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6859
	/* This is required by WaCatErrorRejectionIssue:vlv */
6860 6861 6862 6863
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6864 6865
	gen7_setup_fixed_func_scheduler(dev_priv);

6866
	/*
6867
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6868
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6869 6870
	 */
	I915_WRITE(GEN6_UCGCTL2,
6871
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6872

6873 6874 6875 6876 6877
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6878

6879 6880 6881 6882
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6883 6884
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6885

6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6897 6898 6899 6900 6901 6902
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6903
	/*
6904
	 * WaDisableVLVClockGating_VBIIssue:vlv
6905 6906 6907
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6908
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6909 6910
}

6911 6912 6913 6914
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6915
	vlv_init_display_clock_gating(dev_priv);
6916

6917 6918 6919 6920 6921
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6922 6923 6924 6925

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6926 6927 6928 6929

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6930 6931 6932 6933

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6934 6935 6936 6937 6938 6939

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6940 6941
}

6942
static void g4x_init_clock_gating(struct drm_device *dev)
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6958 6959 6960 6961

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6962

6963 6964 6965
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6966
	g4x_disable_trickle_feed(dev);
6967 6968
}

6969
static void crestline_init_clock_gating(struct drm_device *dev)
6970 6971 6972 6973 6974 6975 6976 6977
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6978 6979
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6980 6981 6982

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6983 6984
}

6985
static void broadwater_init_clock_gating(struct drm_device *dev)
6986 6987 6988 6989 6990 6991 6992 6993 6994
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6995 6996
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6997 6998 6999

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7000 7001
}

7002
static void gen3_init_clock_gating(struct drm_device *dev)
7003 7004 7005 7006 7007 7008 7009
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7010 7011 7012

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7013 7014 7015

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7016 7017

	/* interrupts should cause a wake up from C3 */
7018
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7019 7020 7021

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7022 7023 7024

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7025 7026
}

7027
static void i85x_init_clock_gating(struct drm_device *dev)
7028 7029 7030 7031
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7032 7033 7034 7035

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7036 7037 7038

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7039 7040
}

7041
static void i830_init_clock_gating(struct drm_device *dev)
7042 7043 7044 7045
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7046 7047 7048 7049

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7050 7051 7052 7053 7054 7055
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7056 7057
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
7058 7059
}

7060 7061 7062 7063 7064 7065
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7066 7067 7068 7069 7070
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7071
	intel_fbc_init(dev_priv);
7072

7073 7074 7075 7076 7077 7078
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7079
	/* For FIFO watermark updates */
7080
	if (INTEL_INFO(dev)->gen >= 9) {
7081 7082
		skl_setup_wm_latency(dev);

7083 7084 7085 7086 7087 7088
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
		else if (IS_SKYLAKE(dev))
			dev_priv->display.init_clock_gating =
				skl_init_clock_gating;
7089 7090
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7091
	} else if (HAS_PCH_SPLIT(dev)) {
7092
		ilk_setup_wm_latency(dev);
7093

7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7106
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7107
		else if (IS_GEN6(dev))
7108
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7109
		else if (IS_IVYBRIDGE(dev))
7110
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7111
		else if (IS_HASWELL(dev))
7112
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7113
		else if (INTEL_INFO(dev)->gen == 8)
7114
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7115
	} else if (IS_CHERRYVIEW(dev)) {
7116 7117 7118
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7119 7120
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7121
	} else if (IS_VALLEYVIEW(dev)) {
7122 7123 7124
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7138
			intel_set_memory_cxsr(dev_priv, false);
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7156 7157 7158
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7159
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7160 7161
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7162
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7163 7164 7165 7166 7167 7168 7169 7170
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7171 7172 7173
	}
}

7174
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7175
{
7176
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7177 7178 7179 7180 7181 7182 7183

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7184
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7199
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7200
{
7201
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7221

7222
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7223
{
7224 7225 7226 7227 7228 7229 7230 7231
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7232 7233
	case 400:
		return 20;
7234 7235 7236
	default:
		return -1;
	}
7237
}
7238

7239 7240 7241 7242 7243 7244 7245 7246 7247
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7248 7249
}

7250
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7251
{
7252
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7253

7254 7255 7256
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7257

7258
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7259 7260
}

7261
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7262
{
7263
	int div, czclk_freq = dev_priv->rps.cz_freq;
7264

7265 7266 7267
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7268

7269
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7270 7271
}

7272
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7273
{
7274
	int mul, czclk_freq = dev_priv->rps.cz_freq;
7275

7276 7277 7278
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7279

7280
	/* CHV needs even values */
7281
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7282 7283
}

7284
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7285
{
7286 7287 7288
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7289
		return chv_gpu_freq(dev_priv, val);
7290
	else if (IS_VALLEYVIEW(dev_priv->dev))
7291 7292 7293
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7294 7295
}

7296 7297
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7298 7299 7300
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7301
		return chv_freq_opcode(dev_priv, val);
7302
	else if (IS_VALLEYVIEW(dev_priv->dev))
7303 7304 7305 7306
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
7307

7308 7309
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7310
	struct drm_i915_gem_request *req;
7311 7312 7313 7314 7315
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7316
	struct drm_i915_gem_request *req = boost->req;
7317

7318 7319 7320
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7321

7322
	i915_gem_request_unreference__unlocked(req);
7323 7324 7325 7326
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7327
				       struct drm_i915_gem_request *req)
7328 7329 7330
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7331
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7332 7333
		return;

7334 7335 7336
	if (i915_gem_request_completed(req, true))
		return;

7337 7338 7339 7340
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7341 7342
	i915_gem_request_reference(req);
	boost->req = req;
7343 7344 7345 7346 7347

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7348
void intel_pm_setup(struct drm_device *dev)
7349 7350 7351
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7352
	mutex_init(&dev_priv->rps.hw_lock);
7353
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7354

7355 7356
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7357
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7358 7359
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7360

7361
	dev_priv->pm.suspended = false;
7362
}