intel_pm.c 205.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 63 64 65

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);
66
}
67

68
static void skl_init_clock_gating(struct drm_device *dev)
69
{
70
	struct drm_i915_private *dev_priv = dev->dev_private;
71

72 73
	gen9_init_clock_gating(dev);

74
	if (INTEL_REVID(dev) <= SKL_REVID_B0) {
75 76
		/*
		 * WaDisableSDEUnitClockGating:skl
77
		 * WaSetGAPSunitClckGateDisable:skl
78 79
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
80
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
81
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
82 83 84 85

		/* WaDisableVFUnitClockGating:skl */
		I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
			   GEN6_VFUNIT_CLOCK_GATE_DISABLE);
86
	}
87

88
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
89 90 91 92
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

93 94
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
95
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
96
	}
97

98 99 100 101
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
102 103
}

104 105
static void bxt_init_clock_gating(struct drm_device *dev)
{
106 107
	struct drm_i915_private *dev_priv = dev->dev_private;

108
	gen9_init_clock_gating(dev);
109 110 111 112

	/*
	 * FIXME:
	 * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
113
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
114 115 116
	 */
	 /* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
117 118
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
119

120 121
	/* FIXME: apply on A0 only */
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
122 123
}

124 125
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
126
	struct drm_i915_private *dev_priv = dev->dev_private;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
165
	struct drm_i915_private *dev_priv = dev->dev_private;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

191
	dev_priv->ips.r_t = dev_priv->mem_freq;
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
223
		dev_priv->ips.c_m = 0;
224
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
225
		dev_priv->ips.c_m = 1;
226
	} else {
227
		dev_priv->ips.c_m = 2;
228 229 230
	}
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

269
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

331 332 333
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

334
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
335
{
336 337
	struct drm_device *dev = dev_priv->dev;
	u32 val;
338

339 340
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
341
		POSTING_READ(FW_BLC_SELF_VLV);
342
		dev_priv->wm.vlv.cxsr = enable;
343 344
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
345
		POSTING_READ(FW_BLC_SELF);
346 347 348 349
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
350
		POSTING_READ(DSPFW3);
351 352 353 354
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
355
		POSTING_READ(FW_BLC_SELF);
356 357 358 359
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
360
		POSTING_READ(INSTPM);
361 362 363
	} else {
		return;
	}
364

365 366
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
367 368
}

369

370 371 372 373 374 375 376 377 378 379 380 381 382 383
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
384
static const int pessimal_latency_ns = 5000;
385

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

441
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

457
static int i830_get_fifo_size(struct drm_device *dev, int plane)
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

474
static int i845_get_fifo_size(struct drm_device *dev, int plane)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
492 493 494 495 496
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 498
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
499 500 501 502 503
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 505
};
static const struct intel_watermark_params pineview_cursor_wm = {
506 507 508 509 510
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
511 512
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
513 514 515 516 517
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
518 519
};
static const struct intel_watermark_params g4x_wm_info = {
520 521 522 523 524
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
525 526
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
527 528 529 530 531
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
532 533
};
static const struct intel_watermark_params valleyview_wm_info = {
534 535 536 537 538
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
539 540
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
541 542 543 544 545
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
546 547
};
static const struct intel_watermark_params i965_cursor_wm_info = {
548 549 550 551 552
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
553 554
};
static const struct intel_watermark_params i945_wm_info = {
555 556 557 558 559
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
560 561
};
static const struct intel_watermark_params i915_wm_info = {
562 563 564 565 566
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
567
};
568
static const struct intel_watermark_params i830_a_wm_info = {
569 570 571 572 573
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
574
};
575 576 577 578 579 580 581
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
582
static const struct intel_watermark_params i845_wm_info = {
583 584 585 586 587
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
637 638 639 640 641 642 643 644 645 646 647

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

648 649 650 651 652 653 654
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

655
	for_each_crtc(dev, crtc) {
656
		if (intel_crtc_active(crtc)) {
657 658 659 660 661 662 663 664 665
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

666
static void pineview_update_wm(struct drm_crtc *unused_crtc)
667
{
668
	struct drm_device *dev = unused_crtc->dev;
669 670 671 672 673 674 675 676 677 678
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
679
		intel_set_memory_cxsr(dev_priv, false);
680 681 682 683 684
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
685
		const struct drm_display_mode *adjusted_mode;
686
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
687 688
		int clock;

689
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
690
		clock = adjusted_mode->crtc_clock;
691 692 693 694 695 696 697

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
698
		reg |= FW_WM(wm, SR);
699 700 701 702 703 704 705 706 707
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
708
		reg |= FW_WM(wm, CURSOR_SR);
709 710 711 712 713 714 715 716
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
717
		reg |= FW_WM(wm, HPLL_SR);
718 719 720 721 722 723 724 725
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
726
		reg |= FW_WM(wm, HPLL_CURSOR);
727 728 729
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

730
		intel_set_memory_cxsr(dev_priv, true);
731
	} else {
732
		intel_set_memory_cxsr(dev_priv, false);
733 734 735 736 737 738 739 740 741 742 743 744 745
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
746
	const struct drm_display_mode *adjusted_mode;
747 748 749 750 751
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
752
	if (!intel_crtc_active(crtc)) {
753 754 755 756 757
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

758
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
759
	clock = adjusted_mode->crtc_clock;
760
	htotal = adjusted_mode->crtc_htotal;
761
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
762
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
763 764 765 766 767 768 769 770 771 772 773 774

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
775
	line_time_us = max(htotal * 1000 / clock, 1);
776
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
777
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
832
	const struct drm_display_mode *adjusted_mode;
833 834 835 836 837 838 839 840 841 842 843 844
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
845
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
846
	clock = adjusted_mode->crtc_clock;
847
	htotal = adjusted_mode->crtc_htotal;
848
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
849
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
850

851
	line_time_us = max(htotal * 1000 / clock, 1);
852 853 854 855 856 857 858 859 860 861 862
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
863
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
864 865 866 867 868 869 870 871
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

872 873 874
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

875 876 877 878 879 880 881 882 883 884 885 886
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

887
	I915_WRITE(DSPFW1,
888 889 890 891
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
892
	I915_WRITE(DSPFW2,
893 894 895
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
896
	I915_WRITE(DSPFW3,
897
		   FW_WM(wm->sr.cursor, CURSOR_SR));
898 899 900

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
901 902
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
903
		I915_WRITE(DSPFW8_CHV,
904 905
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
906
		I915_WRITE(DSPFW9_CHV,
907 908
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
909
		I915_WRITE(DSPHOWM,
910 911 912 913 914 915 916 917 918 919
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
920 921
	} else {
		I915_WRITE(DSPFW7,
922 923
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
924
		I915_WRITE(DSPHOWM,
925 926 927 928 929 930 931
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
932 933
	}

934 935 936 937 938 939
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

940
	POSTING_READ(DSPFW1);
941 942
}

943 944
#undef FW_WM_VLV

945 946 947 948 949 950 951 952
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
	CHV_WM_NUM_LEVELS,
	VLV_WM_NUM_LEVELS = 1,
};

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1120
static void vlv_compute_wm(struct intel_crtc *crtc)
1121 1122 1123 1124 1125 1126 1127 1128 1129
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1130
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1131 1132 1133 1134 1135 1136 1137
	if (IS_CHERRYVIEW(dev))
		wm_state->num_levels = CHV_WM_NUM_LEVELS;
	else
		wm_state->num_levels = VLV_WM_NUM_LEVELS;

	wm_state->num_active_planes = 0;

1138
	vlv_compute_fifo(crtc);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
					wm_state->sr[level].cursor;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
	for (level = wm_state->num_levels; level < CHV_WM_NUM_LEVELS; level++) {
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	if (IS_CHERRYVIEW(dev))
		wm->level = VLV_WM_LEVEL_DDR_DVFS;
	else
		wm->level = VLV_WM_LEVEL_PM2;
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1340 1341 1342
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1369
	vlv_compute_wm(intel_crtc);
1370 1371
	vlv_merge_wm(dev, &wm);

1372 1373 1374
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1375
		return;
1376
	}
1377 1378 1379 1380 1381 1382 1383 1384 1385

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1386
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1387 1388
		intel_set_memory_cxsr(dev_priv, false);

1389 1390 1391
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1392 1393 1394 1395 1396 1397 1398 1399
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1400
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1412 1413
}

1414 1415
#define single_plane_enabled(mask) is_power_of_2(mask)

1416
static void g4x_update_wm(struct drm_crtc *crtc)
1417
{
1418
	struct drm_device *dev = crtc->dev;
1419 1420 1421 1422 1423
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1424
	bool cxsr_enabled;
1425

1426
	if (g4x_compute_wm0(dev, PIPE_A,
1427 1428
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1429
			    &planea_wm, &cursora_wm))
1430
		enabled |= 1 << PIPE_A;
1431

1432
	if (g4x_compute_wm0(dev, PIPE_B,
1433 1434
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1435
			    &planeb_wm, &cursorb_wm))
1436
		enabled |= 1 << PIPE_B;
1437 1438 1439 1440 1441 1442

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1443
			     &plane_sr, &cursor_sr)) {
1444
		cxsr_enabled = true;
1445
	} else {
1446
		cxsr_enabled = false;
1447
		intel_set_memory_cxsr(dev_priv, false);
1448 1449
		plane_sr = cursor_sr = 0;
	}
1450

1451 1452
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1453 1454 1455 1456 1457
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1458 1459 1460 1461
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1462
	I915_WRITE(DSPFW2,
1463
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1464
		   FW_WM(cursora_wm, CURSORA));
1465 1466
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1467
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1468
		   FW_WM(cursor_sr, CURSOR_SR));
1469 1470 1471

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1472 1473
}

1474
static void i965_update_wm(struct drm_crtc *unused_crtc)
1475
{
1476
	struct drm_device *dev = unused_crtc->dev;
1477 1478 1479 1480
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1481
	bool cxsr_enabled;
1482 1483 1484 1485 1486 1487

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1488
		const struct drm_display_mode *adjusted_mode =
1489
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1490
		int clock = adjusted_mode->crtc_clock;
1491
		int htotal = adjusted_mode->crtc_htotal;
1492
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1493
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1494 1495 1496
		unsigned long line_time_us;
		int entries;

1497
		line_time_us = max(htotal * 1000 / clock, 1);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1511
			pixel_size * crtc->cursor->state->crtc_w;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1523
		cxsr_enabled = true;
1524
	} else {
1525
		cxsr_enabled = false;
1526
		/* Turn off self refresh if both pipes are enabled */
1527
		intel_set_memory_cxsr(dev_priv, false);
1528 1529 1530 1531 1532 1533
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1534 1535 1536 1537 1538 1539
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1540
	/* update cursor SR watermark */
1541
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1542 1543 1544

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1545 1546
}

1547 1548
#undef FW_WM

1549
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1550
{
1551
	struct drm_device *dev = unused_crtc->dev;
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1566
		wm_info = &i830_a_wm_info;
1567 1568 1569

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1570
	if (intel_crtc_active(crtc)) {
1571
		const struct drm_display_mode *adjusted_mode;
1572
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1573 1574 1575
		if (IS_GEN2(dev))
			cpp = 4;

1576
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1577
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1578
					       wm_info, fifo_size, cpp,
1579
					       pessimal_latency_ns);
1580
		enabled = crtc;
1581
	} else {
1582
		planea_wm = fifo_size - wm_info->guard_size;
1583 1584 1585 1586 1587 1588
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1589 1590 1591

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1592
	if (intel_crtc_active(crtc)) {
1593
		const struct drm_display_mode *adjusted_mode;
1594
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1595 1596 1597
		if (IS_GEN2(dev))
			cpp = 4;

1598
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1599
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1600
					       wm_info, fifo_size, cpp,
1601
					       pessimal_latency_ns);
1602 1603 1604 1605
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1606
	} else {
1607
		planeb_wm = fifo_size - wm_info->guard_size;
1608 1609 1610
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1611 1612 1613

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1614
	if (IS_I915GM(dev) && enabled) {
1615
		struct drm_i915_gem_object *obj;
1616

1617
		obj = intel_fb_obj(enabled->primary->state->fb);
1618 1619

		/* self-refresh seems busted with untiled */
1620
		if (obj->tiling_mode == I915_TILING_NONE)
1621 1622 1623
			enabled = NULL;
	}

1624 1625 1626 1627 1628 1629
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1630
	intel_set_memory_cxsr(dev_priv, false);
1631 1632 1633 1634 1635

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1636
		const struct drm_display_mode *adjusted_mode =
1637
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1638
		int clock = adjusted_mode->crtc_clock;
1639
		int htotal = adjusted_mode->crtc_htotal;
1640
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1641
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1642 1643 1644
		unsigned long line_time_us;
		int entries;

1645
		line_time_us = max(htotal * 1000 / clock, 1);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1676 1677
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1678 1679
}

1680
static void i845_update_wm(struct drm_crtc *unused_crtc)
1681
{
1682
	struct drm_device *dev = unused_crtc->dev;
1683 1684
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1685
	const struct drm_display_mode *adjusted_mode;
1686 1687 1688 1689 1690 1691 1692
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1693
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1694
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1695
				       &i845_wm_info,
1696
				       dev_priv->display.get_fifo_size(dev, 0),
1697
				       4, pessimal_latency_ns);
1698 1699 1700 1701 1702 1703 1704 1705
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1706
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1707
{
1708
	uint32_t pixel_rate;
1709

1710
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1711 1712 1713 1714

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1715
	if (pipe_config->pch_pfit.enabled) {
1716
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1717 1718 1719 1720
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1736
/* latency must be in 0.1us units. */
1737
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1738 1739 1740 1741
			       uint32_t latency)
{
	uint64_t ret;

1742 1743 1744
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1745 1746 1747 1748 1749 1750
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1751
/* latency must be in 0.1us units. */
1752
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1753 1754 1755 1756 1757
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1758 1759 1760
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1761 1762 1763 1764 1765 1766
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1767
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1768 1769 1770 1771 1772
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1773 1774 1775 1776 1777 1778 1779 1780
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1781
struct ilk_pipe_wm_parameters {
1782 1783 1784
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1785 1786 1787
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1788 1789
};

1790
struct ilk_wm_maximums {
1791 1792 1793 1794 1795 1796
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1797 1798 1799 1800 1801 1802 1803
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1804 1805 1806 1807
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1808
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1809 1810
				   uint32_t mem_value,
				   bool is_lp)
1811
{
1812 1813
	uint32_t method1, method2;

1814
	if (!params->active || !params->pri.enabled)
1815 1816
		return 0;

1817
	method1 = ilk_wm_method1(params->pixel_rate,
1818
				 params->pri.bytes_per_pixel,
1819 1820 1821 1822 1823
				 mem_value);

	if (!is_lp)
		return method1;

1824
	method2 = ilk_wm_method2(params->pixel_rate,
1825
				 params->pipe_htotal,
1826 1827
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1828 1829 1830
				 mem_value);

	return min(method1, method2);
1831 1832
}

1833 1834 1835 1836
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1837
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1838 1839 1840 1841
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1842
	if (!params->active || !params->spr.enabled)
1843 1844
		return 0;

1845
	method1 = ilk_wm_method1(params->pixel_rate,
1846
				 params->spr.bytes_per_pixel,
1847
				 mem_value);
1848
	method2 = ilk_wm_method2(params->pixel_rate,
1849
				 params->pipe_htotal,
1850 1851
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1852 1853 1854 1855
				 mem_value);
	return min(method1, method2);
}

1856 1857 1858 1859
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1860
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1861 1862
				   uint32_t mem_value)
{
1863
	if (!params->active || !params->cur.enabled)
1864 1865
		return 0;

1866
	return ilk_wm_method2(params->pixel_rate,
1867
			      params->pipe_htotal,
1868 1869
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1870 1871 1872
			      mem_value);
}

1873
/* Only for WM_LP. */
1874
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1875
				   uint32_t pri_val)
1876
{
1877
	if (!params->active || !params->pri.enabled)
1878 1879
		return 0;

1880
	return ilk_wm_fbc(pri_val,
1881 1882
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1883 1884
}

1885 1886
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1887 1888 1889
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1890 1891 1892 1893 1894
		return 768;
	else
		return 512;
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1929 1930 1931
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1932
				     const struct intel_wm_config *config,
1933 1934 1935 1936 1937 1938
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1939
	if (is_sprite && !config->sprites_enabled)
1940 1941 1942
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1943
	if (level == 0 || config->num_pipes_active > 1) {
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1955
	if (config->sprites_enabled) {
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1967
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1968 1969 1970 1971
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1972 1973
				      int level,
				      const struct intel_wm_config *config)
1974 1975
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1976
	if (level > 0 && config->num_pipes_active > 1)
1977 1978 1979
		return 64;

	/* otherwise just report max that registers can hold */
1980
	return ilk_cursor_wm_reg_max(dev, level);
1981 1982
}

1983
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1984 1985 1986
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1987
				    struct ilk_wm_maximums *max)
1988
{
1989 1990 1991
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1992
	max->fbc = ilk_fbc_wm_reg_max(dev);
1993 1994
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2005
static bool ilk_validate_wm_level(int level,
2006
				  const struct ilk_wm_maximums *max,
2007
				  struct intel_wm_level *result)
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2046
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2047
				 int level,
2048
				 const struct ilk_pipe_wm_parameters *p,
2049
				 struct intel_wm_level *result)
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2069 2070
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2071 2072
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2073
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2074
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
2075
	u32 linetime, ips_linetime;
2076

2077
	if (!intel_crtc->active)
2078
		return 0;
2079

2080 2081 2082
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2083 2084 2085
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2086
					 dev_priv->cdclk_freq);
2087

2088 2089
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2090 2091
}

2092
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2093 2094 2095
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2096 2097
	if (IS_GEN9(dev)) {
		uint32_t val;
2098
		int ret, i;
2099
		int level, max_level = ilk_wm_max_level(dev);
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2142
		/*
2143 2144
		 * WaWmMemoryReadLatency:skl
		 *
2145 2146 2147 2148 2149 2150 2151 2152
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2153 2154 2155 2156 2157
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2158 2159 2160 2161 2162
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2163 2164 2165
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2166

2167 2168
				break;
			}
2169
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2170 2171 2172 2173 2174
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2175 2176 2177 2178
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2179 2180 2181 2182 2183 2184 2185
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2186 2187 2188 2189 2190 2191 2192
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2193 2194 2195
	}
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2214
int ilk_wm_max_level(const struct drm_device *dev)
2215 2216
{
	/* how many WM levels are we expecting */
2217
	if (INTEL_INFO(dev)->gen >= 9)
2218 2219
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2220
		return 4;
2221
	else if (INTEL_INFO(dev)->gen >= 6)
2222
		return 3;
2223
	else
2224 2225
		return 2;
}
2226

2227 2228
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2229
				   const uint16_t wm[8])
2230 2231
{
	int level, max_level = ilk_wm_max_level(dev);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2242 2243 2244 2245 2246 2247 2248
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2249 2250 2251 2252 2253 2254 2255 2256
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2294
static void ilk_setup_wm_latency(struct drm_device *dev)
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2307 2308 2309 2310

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2311 2312 2313

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2314 2315
}

2316 2317 2318 2319 2320 2321 2322 2323
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2324
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2325
				      struct ilk_pipe_wm_parameters *p)
2326
{
2327 2328 2329 2330
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2331

2332
	if (!intel_crtc->active)
2333
		return;
2334

2335
	p->active = true;
2336
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2337
	p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2338

2339
	if (crtc->primary->state->fb)
2340 2341
		p->pri.bytes_per_pixel =
			crtc->primary->state->fb->bits_per_pixel / 8;
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	else
		p->pri.bytes_per_pixel = 4;

	p->cur.bytes_per_pixel = 4;
	/*
	 * TODO: for now, assume primary and cursor planes are always enabled.
	 * Setting them to false makes the screen flicker.
	 */
	p->pri.enabled = true;
	p->cur.enabled = true;
2352

2353
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2354
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2355

2356
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2357 2358
		struct intel_plane *intel_plane = to_intel_plane(plane);

2359
		if (intel_plane->pipe == pipe) {
2360
			p->spr = intel_plane->wm;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2372
	for_each_intel_crtc(dev, intel_crtc) {
2373
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2374

2375 2376
		if (!wm->pipe_enabled)
			continue;
2377

2378 2379 2380
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2381
	}
2382 2383
}

2384 2385
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2386
				  const struct ilk_pipe_wm_parameters *params,
2387 2388 2389
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2390
	const struct drm_i915_private *dev_priv = dev->dev_private;
2391 2392 2393 2394 2395 2396 2397
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2398
	struct ilk_wm_maximums max;
2399

2400 2401 2402 2403
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2404 2405 2406 2407 2408 2409 2410 2411
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2412
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2413

2414
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2415
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2416

2417 2418 2419
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2420
	/* At least LP0 must be valid */
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2454 2455
	ret_wm->enable = true;

2456
	for_each_intel_crtc(dev, intel_crtc) {
2457 2458 2459 2460 2461
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2462

2463 2464 2465 2466 2467
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2468
		if (!wm->enable)
2469
			ret_wm->enable = false;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2482
			 const struct intel_wm_config *config,
2483
			 const struct ilk_wm_maximums *max,
2484 2485
			 struct intel_pipe_wm *merged)
{
2486
	struct drm_i915_private *dev_priv = dev->dev_private;
2487
	int level, max_level = ilk_wm_max_level(dev);
2488
	int last_enabled_level = max_level;
2489

2490 2491 2492 2493 2494
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2495 2496
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2497 2498 2499 2500 2501 2502 2503

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2504 2505 2506 2507 2508
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2509 2510 2511 2512 2513 2514

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2515 2516
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2517 2518 2519
			wm->fbc_val = 0;
		}
	}
2520 2521 2522 2523 2524 2525 2526

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2527 2528
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
	    intel_fbc_enabled(dev_priv)) {
2529 2530 2531 2532 2533 2534
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2535 2536
}

2537 2538 2539 2540 2541 2542
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2543 2544 2545 2546 2547
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2548
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2549 2550 2551 2552 2553
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2554
static void ilk_compute_wm_results(struct drm_device *dev,
2555
				   const struct intel_pipe_wm *merged,
2556
				   enum intel_ddb_partitioning partitioning,
2557
				   struct ilk_wm_values *results)
2558
{
2559 2560
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2561

2562
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2563
	results->partitioning = partitioning;
2564

2565
	/* LP1+ register values */
2566
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2567
		const struct intel_wm_level *r;
2568

2569
		level = ilk_wm_lp_to_level(wm_lp, merged);
2570

2571
		r = &merged->wm[level];
2572

2573 2574 2575 2576 2577
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2578
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2579 2580 2581
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2582 2583 2584
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2585 2586 2587 2588 2589 2590 2591
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2592 2593 2594 2595
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2596 2597 2598 2599 2600
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2601
	}
2602

2603
	/* LP0 register values */
2604
	for_each_intel_crtc(dev, intel_crtc) {
2605 2606 2607 2608 2609 2610 2611 2612
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2613

2614 2615 2616 2617
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2618 2619 2620
	}
}

2621 2622
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2623
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2624 2625
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2626
{
2627 2628
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2629

2630 2631 2632 2633 2634
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2635 2636
	}

2637 2638
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2639 2640 2641
			return r2;
		else
			return r1;
2642
	} else if (level1 > level2) {
2643 2644 2645 2646 2647 2648
		return r1;
	} else {
		return r2;
	}
}

2649 2650 2651 2652 2653 2654 2655 2656
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2657
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2658 2659
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2660 2661 2662 2663 2664
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2665
	for_each_pipe(dev_priv, pipe) {
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2709 2710
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2711
{
2712
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2713
	bool changed = false;
2714

2715 2716 2717
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2718
		changed = true;
2719 2720 2721 2722
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2723
		changed = true;
2724 2725 2726 2727
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2728
		changed = true;
2729
	}
2730

2731 2732 2733 2734
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2735

2736 2737 2738 2739 2740 2741 2742
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2743 2744
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2745 2746
{
	struct drm_device *dev = dev_priv->dev;
2747
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2748 2749 2750
	unsigned int dirty;
	uint32_t val;

2751
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2752 2753 2754 2755 2756
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2757
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2758
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2759
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2760
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2761
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2762 2763
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2764
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2765
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2766
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2767
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2768
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2769 2770
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2771
	if (dirty & WM_DIRTY_DDB) {
2772
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2787 2788
	}

2789
	if (dirty & WM_DIRTY_FBC) {
2790 2791 2792 2793 2794 2795 2796 2797
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2798 2799 2800 2801 2802
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2803 2804 2805 2806 2807
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2808

2809
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2810
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2811
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2812
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2813
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2814
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2815 2816

	dev_priv->wm.hw = *results;
2817 2818
}

2819 2820 2821 2822 2823 2824 2825
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2826 2827 2828 2829 2830 2831
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2832
#define BXT_DDB_SIZE		512
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2851 2852 2853 2854
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2855 2856 2857 2858 2859

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2860
		if (!to_intel_crtc(crtc)->active)
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2871
	alloc->end = alloc->start + pipe_size;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2882 2883 2884 2885
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2886 2887
	if (entry->end)
		entry->end += 1;
2888 2889
}

2890 2891
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2892 2893 2894 2895 2896 2897
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2898
		for_each_plane(dev_priv, pipe, plane) {
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2909
static unsigned int
2910
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2911
{
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

	/* for planar format */
	if (p->y_bytes_per_pixel) {
		if (y)  /* y-plane data rate */
			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
		else    /* uv-plane data rate */
			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
	}

	/* for packed formats */
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

2944 2945 2946 2947
		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
		if (p->y_bytes_per_pixel) {
			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
		}
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2960
	struct drm_i915_private *dev_priv = dev->dev_private;
2961 2962
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2963
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2964
	uint16_t alloc_size, start, cursor_blocks;
2965
	uint16_t minimum[I915_MAX_PLANES];
2966
	uint16_t y_minimum[I915_MAX_PLANES];
2967 2968 2969
	unsigned int total_data_rate;
	int plane;

2970 2971
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2972 2973 2974 2975 2976 2977 2978
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2979 2980
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2981 2982

	alloc_size -= cursor_blocks;
2983
	alloc->end -= cursor_blocks;
2984

2985
	/* 1. Allocate the mininum required blocks for each active plane */
2986
	for_each_plane(dev_priv, pipe, plane) {
2987 2988 2989 2990 2991 2992 2993 2994
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
2995 2996
		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
		alloc_size -= y_minimum[plane];
2997 2998
	}

2999
	/*
3000 3001
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3002 3003 3004 3005 3006
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

3007
	start = alloc->start;
3008 3009
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
3010 3011
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3012 3013 3014 3015 3016

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

3017
		data_rate = skl_plane_relative_data_rate(p, 0);
3018 3019

		/*
3020
		 * allocation for (packed formats) or (uv-plane part of planar format):
3021 3022 3023
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3024 3025 3026
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3027 3028

		ddb->plane[pipe][plane].start = start;
3029
		ddb->plane[pipe][plane].end = start + plane_blocks;
3030 3031

		start += plane_blocks;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047

		/*
		 * allocation for y_plane part of planar format:
		 */
		if (p->y_bytes_per_pixel) {
			y_data_rate = skl_plane_relative_data_rate(p, 1);
			y_plane_blocks = y_minimum[plane];
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

			ddb->y_plane[pipe][plane].start = start;
			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;

			start += y_plane_blocks;
		}

3048 3049 3050 3051
	}

}

3052
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3053 3054
{
	/* TODO: Take into account the scalers once we support them */
3055
	return config->base.adjusted_mode.crtc_clock;
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3072
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3073 3074 3075 3076 3077 3078 3079
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3080
			       uint64_t tiling, uint32_t latency)
3081
{
3082 3083 3084
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3085 3086 3087 3088 3089

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3100 3101
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3102
				plane_blocks_per_line;
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3133
		config->num_pipes_active += to_intel_crtc(crtc)->active;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
3151
	struct drm_framebuffer *fb;
3152 3153
	int i = 1; /* Index for sprite planes start */

3154
	p->active = intel_crtc->active;
3155
	if (p->active) {
3156 3157
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3158

3159
		fb = crtc->primary->state->fb;
3160
		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3161 3162
		if (fb) {
			p->plane[0].enabled = true;
3163 3164 3165 3166
			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 1) : fb->bits_per_pixel / 8;
			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3167
			p->plane[0].tiling = fb->modifier[0];
3168 3169 3170
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
3171
			p->plane[0].y_bytes_per_pixel = 0;
3172 3173 3174 3175
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3176
		p->plane[0].rotation = crtc->primary->state->rotation;
3177

3178
		fb = crtc->cursor->state->fb;
3179
		p->cursor.y_bytes_per_pixel = 0;
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
		if (fb) {
			p->cursor.enabled = true;
			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->cursor.enabled = false;
			p->cursor.bytes_per_pixel = 0;
			p->cursor.horiz_pixels = 64;
			p->cursor.vert_pixels = 64;
		}
3191 3192 3193 3194 3195
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

3196 3197
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
3198 3199 3200 3201
			p->plane[i++] = intel_plane->wm;
	}
}

3202 3203
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
3204 3205
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
3206
				 int level,
3207 3208
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3209
{
3210 3211 3212 3213 3214
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3215
	uint8_t bytes_per_pixel;
3216

3217
	if (latency == 0 || !p->active || !p_params->enabled)
3218 3219
		return false;

3220 3221 3222
	bytes_per_pixel = p_params->y_bytes_per_pixel ?
		p_params->y_bytes_per_pixel :
		p_params->bytes_per_pixel;
3223
	method1 = skl_wm_method1(p->pixel_rate,
3224
				 bytes_per_pixel,
3225
				 latency);
3226 3227 3228
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
3229
				 bytes_per_pixel,
3230
				 p_params->tiling,
3231
				 latency);
3232

3233
	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3234
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3235

3236 3237
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
		if (intel_rotation_90_or_270(p_params->rotation)) {
			switch (p_params->bytes_per_pixel) {
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3250
			}
3251 3252
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3253 3254 3255 3256 3257 3258 3259
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3260

3261 3262
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3263

3264 3265 3266 3267 3268 3269 3270
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
3271

3272
	if (res_blocks >= ddb_allocation || res_lines > 31)
3273 3274 3275 3276
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3295 3296
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
3297
						ddb_blocks,
3298
						level,
3299 3300 3301 3302 3303
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3304 3305 3306
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
3307 3308 3309
						 &result->cursor_res_l);
}

3310 3311 3312
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
3313
	if (!to_intel_crtc(crtc)->active)
3314 3315 3316 3317 3318 3319 3320 3321
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
3322
				      struct skl_wm_level *trans_wm /* out */)
3323
{
3324 3325 3326
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

3327 3328
	if (!params->active)
		return;
3329 3330 3331 3332 3333

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
3334 3335
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

3353
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3364 3365
	uint32_t temp;
	int i;
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

3411 3412 3413
	r->wm_linetime[pipe] = p_wm->linetime;
}

3414 3415 3416 3417 3418 3419 3420 3421 3422
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3433 3434
		if (!new->dirty[pipe])
			continue;
3435

3436
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3437

3438 3439 3440 3441 3442 3443
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
3444
		}
3445 3446 3447 3448 3449
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

3450
		for (i = 0; i < intel_num_planes(crtc); i++) {
3451 3452 3453
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3454 3455 3456 3457
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3458 3459 3460

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3461 3462 3463
	}
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3488 3489
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3490 3491 3492
{
	int plane;

3493 3494
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3495
	for_each_plane(dev_priv, pipe, plane) {
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3522
	bool reallocated[I915_MAX_PIPES] = {};
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3545
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3570
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3571
			intel_wait_for_vblank(dev, pipe);
3572
			reallocated[pipe] = true;
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3595
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3596 3597 3598
	}
}

3599 3600 3601 3602 3603 3604 3605 3606 3607
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3608
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3609 3610 3611 3612 3613 3614
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
3615

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3691
	skl_flush_wm_values(dev_priv, results);
3692 3693 3694

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3695 3696 3697 3698 3699 3700 3701 3702
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3703
	struct drm_framebuffer *fb = plane->state->fb;
3704 3705 3706 3707 3708

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
3709
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3710 3711 3712 3713 3714 3715 3716 3717 3718

	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
	intel_plane->wm.bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
	intel_plane->wm.y_bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;

3719 3720 3721 3722 3723 3724
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3725
	intel_plane->wm.rotation = plane->state->rotation;
3726 3727 3728 3729

	skl_update_wm(crtc);
}

3730
static void ilk_update_wm(struct drm_crtc *crtc)
3731
{
3732
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3733
	struct drm_device *dev = crtc->dev;
3734
	struct drm_i915_private *dev_priv = dev->dev_private;
3735 3736 3737
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3738
	enum intel_ddb_partitioning partitioning;
3739
	struct intel_pipe_wm pipe_wm = {};
3740
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3741
	struct intel_wm_config config = {};
3742

3743
	ilk_compute_wm_parameters(crtc, &params);
3744 3745 3746 3747 3748

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3749

3750
	intel_crtc->wm.active = pipe_wm;
3751

3752 3753
	ilk_compute_wm_config(dev, &config);

3754
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3755
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3756 3757

	/* 5/6 split only in single pipe config on IVB+ */
3758 3759
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3760
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3761
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3762

3763
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3764
	} else {
3765
		best_lp_wm = &lp_wm_1_2;
3766 3767
	}

3768
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3769
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3770

3771
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3772

3773
	ilk_write_wm_values(dev_priv, &results);
3774 3775
}

3776 3777 3778 3779 3780
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3781
{
3782
	struct drm_device *dev = plane->dev;
3783
	struct intel_plane *intel_plane = to_intel_plane(plane);
3784

3785 3786 3787
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3788
	intel_plane->wm.vert_pixels = sprite_width;
3789
	intel_plane->wm.bytes_per_pixel = pixel_size;
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3801
	ilk_update_wm(crtc);
3802 3803
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3874
	if (!intel_crtc->active)
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3902 3903
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3904 3905
	struct drm_crtc *crtc;

3906
	skl_ddb_get_hw_state(dev_priv, ddb);
3907 3908 3909 3910
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3911 3912 3913 3914
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3915
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3926
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3927
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3928

3929
	active->pipe_enabled = intel_crtc->active;
3930 3931

	if (active->pipe_enabled) {
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
		if ((val & FORCE_DDR_HIGH_FREQ) == 0)
			wm->level = VLV_WM_LEVEL_DDR_DVFS;

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4091 4092 4093
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4094
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4095 4096
	struct drm_crtc *crtc;

4097
	for_each_crtc(dev, crtc)
4098 4099 4100 4101 4102 4103 4104
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4105 4106 4107 4108
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4109

4110
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4111 4112 4113 4114 4115
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4116 4117 4118 4119 4120

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4153
void intel_update_watermarks(struct drm_crtc *crtc)
4154
{
4155
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4156 4157

	if (dev_priv->display.update_wm)
4158
		dev_priv->display.update_wm(crtc);
4159 4160
}

4161 4162
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
4163 4164 4165
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
4166
				    bool enabled, bool scaled)
4167
{
4168
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
4169 4170

	if (dev_priv->display.update_sprite_wm)
4171 4172
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
4173
						   pixel_size, enabled, scaled);
4174 4175
}

4176 4177 4178 4179 4180 4181 4182 4183 4184
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4185 4186 4187 4188 4189
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4190 4191
	assert_spin_locked(&mchdev_lock);

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4209
static void ironlake_enable_drps(struct drm_device *dev)
4210 4211 4212 4213 4214
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4215 4216
	spin_lock_irq(&mchdev_lock);

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

4240 4241
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4242

4243 4244 4245
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4262
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4263
		DRM_ERROR("stuck trying to change perf mode\n");
D
Daniel Vetter 已提交
4264
	msleep(1);
4265 4266 4267

	ironlake_set_drps(dev, fstart);

4268
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4269
		I915_READ(0x112e0);
4270 4271
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
4272
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4273 4274

	spin_unlock_irq(&mchdev_lock);
4275 4276
}

4277
static void ironlake_disable_drps(struct drm_device *dev)
4278 4279
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4280 4281 4282 4283 4284
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4285 4286 4287 4288 4289 4290 4291 4292 4293

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4294
	ironlake_set_drps(dev, dev_priv->ips.fstart);
D
Daniel Vetter 已提交
4295
	msleep(1);
4296 4297
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
D
Daniel Vetter 已提交
4298
	msleep(1);
4299

4300
	spin_unlock_irq(&mchdev_lock);
4301 4302
}

4303 4304 4305 4306 4307
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4308
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4309
{
4310
	u32 limits;
4311

4312 4313 4314 4315 4316 4317
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4318 4319 4320 4321 4322 4323 4324 4325 4326
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4327 4328 4329 4330

	return limits;
}

4331 4332 4333
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4334 4335
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4336 4337 4338 4339

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4340
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4341 4342 4343 4344
			new_power = BETWEEN;
		break;

	case BETWEEN:
4345
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4346
			new_power = LOW_POWER;
4347
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4348 4349 4350 4351
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4352
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4353 4354 4355 4356
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4357
	if (val <= dev_priv->rps.min_freq_softlimit)
4358
		new_power = LOW_POWER;
4359
	if (val >= dev_priv->rps.max_freq_softlimit)
4360 4361 4362 4363 4364 4365 4366 4367
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4368 4369
		ei_up = 16000;
		threshold_up = 95;
4370 4371

		/* Downclock if less than 85% busy over 32ms */
4372 4373
		ei_down = 32000;
		threshold_down = 85;
4374 4375 4376 4377
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4378 4379
		ei_up = 13000;
		threshold_up = 90;
4380 4381

		/* Downclock if less than 75% busy over 32ms */
4382 4383
		ei_down = 32000;
		threshold_down = 75;
4384 4385 4386 4387
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4388 4389
		ei_up = 10000;
		threshold_up = 85;
4390 4391

		/* Downclock if less than 60% busy over 32ms */
4392 4393
		ei_down = 32000;
		threshold_down = 60;
4394 4395 4396
		break;
	}

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4415
	dev_priv->rps.power = new_power;
4416 4417
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4418 4419 4420
	dev_priv->rps.last_adj = 0;
}

4421 4422 4423 4424 4425
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4426
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4427
	if (val < dev_priv->rps.max_freq_softlimit)
4428
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4429

4430 4431
	mask &= dev_priv->pm_rps_events;

4432
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4433 4434
}

4435 4436 4437
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4438
static void gen6_set_rps(struct drm_device *dev, u8 val)
4439 4440
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4441

4442
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4443 4444
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4445

C
Chris Wilson 已提交
4446 4447 4448 4449 4450
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4451

4452 4453 4454 4455
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4456 4457 4458 4459 4460 4461 4462
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4463
	}
4464 4465 4466 4467

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4468
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4469
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4470

4471 4472
	POSTING_READ(GEN6_RPNSWREQ);

4473
	dev_priv->rps.cur_freq = val;
4474
	trace_intel_gpu_freq_change(val * 50);
4475 4476
}

4477 4478 4479 4480 4481
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4482 4483
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4484 4485 4486 4487 4488

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4489 4490
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4491
	if (val != dev_priv->rps.cur_freq) {
4492
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4493 4494 4495
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4496 4497 4498 4499 4500

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4501
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4502 4503
 *
 * * If Gfx is Idle, then
4504 4505 4506
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4507 4508 4509
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4510
	u32 val = dev_priv->rps.idle_freq;
4511

4512
	if (dev_priv->rps.cur_freq <= val)
4513 4514
		return;

4515 4516 4517 4518 4519
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4520 4521
}

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4534 4535
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4536 4537
	struct drm_device *dev = dev_priv->dev;

4538
	mutex_lock(&dev_priv->rps.hw_lock);
4539
	if (dev_priv->rps.enabled) {
4540
		if (IS_VALLEYVIEW(dev))
4541
			vlv_set_rps_idle(dev_priv);
4542
		else
4543
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4544
		dev_priv->rps.last_adj = 0;
4545
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4546
	}
4547
	mutex_unlock(&dev_priv->rps.hw_lock);
4548

4549
	spin_lock(&dev_priv->rps.client_lock);
4550 4551
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4552
	spin_unlock(&dev_priv->rps.client_lock);
4553 4554
}

4555
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4556 4557
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4558
{
4559 4560 4561 4562 4563 4564 4565
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4566

4567 4568 4569
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4570
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4571 4572
		rps = NULL;

4573 4574 4575 4576 4577 4578 4579 4580
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4581

4582 4583 4584
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4585 4586
		} else
			dev_priv->rps.boosts++;
4587
	}
4588
	spin_unlock(&dev_priv->rps.client_lock);
4589 4590
}

4591
void intel_set_rps(struct drm_device *dev, u8 val)
4592
{
4593 4594 4595 4596
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4597 4598
}

Z
Zhe Wang 已提交
4599 4600 4601 4602 4603
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4604
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4605 4606
}

4607
static void gen6_disable_rps(struct drm_device *dev)
4608 4609 4610 4611
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4612 4613 4614
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4615 4616 4617 4618 4619 4620 4621
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4622 4623 4624 4625
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4626 4627
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4628
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4629

4630
	I915_WRITE(GEN6_RC_CONTROL, 0);
4631

4632
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4633 4634
}

B
Ben Widawsky 已提交
4635 4636
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4637 4638 4639 4640 4641 4642
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4643 4644 4645 4646 4647 4648 4649 4650 4651
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4652 4653
}

I
Imre Deak 已提交
4654
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4655
{
4656 4657
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4658 4659
		return 0;

4660
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4661 4662 4663
	if (enable_rc6 >= 0) {
		int mask;

4664
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4665 4666 4667 4668 4669 4670
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4671 4672
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4673 4674 4675

		return enable_rc6 & mask;
	}
4676

4677
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4678
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4679 4680

	return INTEL_RC6_ENABLE;
4681 4682
}

I
Imre Deak 已提交
4683 4684 4685 4686 4687
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4688
static void gen6_init_rps_frequencies(struct drm_device *dev)
4689
{
4690 4691 4692 4693 4694
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4695 4696
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4697
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4710 4711 4712
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4713
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4714
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4715 4716 4717 4718 4719
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4720 4721 4722 4723
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4724 4725
	}

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4736 4737
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4738 4739 4740 4741
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4742 4743 4744
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4745 4746
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4747 4748 4749 4750
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4751 4752
}

J
Jesse Barnes 已提交
4753
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4754
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4755 4756 4757 4758 4759
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4760 4761
	gen6_init_rps_frequencies(dev);

4762 4763 4764 4765 4766 4767 4768 4769
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4770 4771
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4772 4773 4774 4775 4776
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4777 4778 4779 4780 4781

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4793
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4807 4808 4809 4810
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4811 4812 4813 4814 4815 4816 4817 4818 4819
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4820 4821 4822 4823
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
	 * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
	 */
4824
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4825
			GEN9_MEDIA_PG_ENABLE : 0);
4826

4827

4828
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4829 4830 4831

}

4832 4833 4834
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4835
	struct intel_engine_cs *ring;
4836
	uint32_t rc6_mask = 0;
4837 4838 4839 4840 4841 4842 4843
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4844
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4845 4846 4847 4848

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4849 4850
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4851 4852 4853 4854 4855 4856 4857 4858

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4859 4860 4861 4862
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4863 4864 4865 4866

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4867
	intel_print_rc6_info(dev, rc6_mask);
4868 4869 4870 4871 4872 4873 4874 4875
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4876 4877

	/* 4 Program defaults and thresholds for RPS*/
4878 4879 4880 4881
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4896 4897

	/* 5: Enable RPS */
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4908
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4909
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4910

4911
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4912 4913
}

4914
static void gen6_enable_rps(struct drm_device *dev)
4915
{
4916
	struct drm_i915_private *dev_priv = dev->dev_private;
4917
	struct intel_engine_cs *ring;
4918
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4919 4920
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4921
	int i, ret;
4922

4923
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4924

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4939
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4940

4941 4942
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4943

4944 4945 4946 4947 4948 4949 4950 4951 4952
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4953 4954
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4955 4956 4957

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4958
	if (IS_IVYBRIDGE(dev))
4959 4960 4961
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4962
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4963 4964
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4965
	/* Check if we are enabling RC6 */
4966 4967 4968 4969
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4970 4971 4972 4973
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4974

4975 4976 4977
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4978

B
Ben Widawsky 已提交
4979
	intel_print_rc6_info(dev, rc6_mask);
4980 4981 4982 4983 4984 4985

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4986 4987
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4988 4989
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4990
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4991
	if (ret)
B
Ben Widawsky 已提交
4992
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4993 4994 4995 4996

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4997
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4998
				 (pcu_mbox & 0xff) * 50);
4999
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5000 5001
	}

5002
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5003
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5004

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5019
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5020 5021
}

5022
static void __gen6_update_ring_freq(struct drm_device *dev)
5023
{
5024
	struct drm_i915_private *dev_priv = dev->dev_private;
5025
	int min_freq = 15;
5026 5027
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5028
	unsigned int max_gpu_freq, min_gpu_freq;
5029
	int scaling_factor = 180;
5030
	struct cpufreq_policy *policy;
5031

5032
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5033

5034 5035 5036 5037 5038 5039 5040 5041 5042
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5043
		max_ia_freq = tsc_khz;
5044
	}
5045 5046 5047 5048

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5049
	min_ring_freq = I915_READ(DCLK) & 0xf;
5050 5051
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5052

5053 5054 5055 5056 5057 5058 5059 5060 5061
	if (IS_SKYLAKE(dev)) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5062 5063 5064 5065 5066
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5067 5068
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5069 5070
		unsigned int ia_freq = 0, ring_freq = 0;

5071 5072 5073 5074 5075 5076 5077
		if (IS_SKYLAKE(dev)) {
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5078 5079 5080
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5081
			ring_freq = mult_frac(gpu_freq, 5, 4);
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5098

B
Ben Widawsky 已提交
5099 5100
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5101 5102 5103
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5104 5105 5106
	}
}

5107 5108 5109 5110
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5111
	if (!HAS_CORE_RING_FREQ(dev))
5112 5113 5114 5115 5116 5117 5118
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5119
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5120
{
5121
	struct drm_device *dev = dev_priv->dev;
5122 5123
	u32 val, rp0;

5124 5125
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5126

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5163 5164
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
5165
	struct drm_device *dev = dev_priv->dev;
5166 5167
	u32 val, rp1;

5168 5169 5170 5171 5172 5173 5174 5175 5176
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
5177 5178 5179
	return rp1;
}

5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5191
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5192 5193 5194
{
	u32 val, rp0;

5195
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5208
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5209
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5210
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5211 5212 5213 5214 5215
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5216
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5217
{
5218
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5219 5220
}

5221 5222 5223 5224 5225 5226 5227 5228 5229
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5251
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5252 5253 5254 5255 5256 5257
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5258 5259

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5260 5261
}

5262 5263 5264 5265 5266 5267 5268 5269
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5270 5271
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5272 5273 5274 5275 5276 5277 5278 5279
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5280
								      I915_GTT_OFFSET_NONE,
5281 5282 5283 5284
								      pctx_size);
		goto out;
	}

5285 5286
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5305
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5306 5307 5308
	dev_priv->vlv_pctx = pctx;
}

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5320 5321 5322
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5323
	u32 val;
5324 5325 5326 5327 5328

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5342
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5343

5344 5345 5346
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5347
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5348 5349 5350 5351
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5352
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5353 5354
			 dev_priv->rps.efficient_freq);

5355 5356
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5357
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5358 5359
			 dev_priv->rps.rp1_freq);

5360 5361
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5362
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5363 5364
			 dev_priv->rps.min_freq);

5365 5366
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5377 5378
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5379
	struct drm_i915_private *dev_priv = dev->dev_private;
5380
	u32 val;
5381

5382
	cherryview_setup_pctx(dev);
5383 5384 5385

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5386
	mutex_lock(&dev_priv->sb_lock);
5387
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5388
	mutex_unlock(&dev_priv->sb_lock);
5389

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
5413
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5414

5415 5416 5417
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5418
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5419 5420 5421 5422
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5423
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5424 5425
			 dev_priv->rps.efficient_freq);

5426 5427
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5428
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5429 5430
			 dev_priv->rps.rp1_freq);

5431 5432
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5433
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5434
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5435 5436
			 dev_priv->rps.min_freq);

5437 5438 5439 5440 5441 5442
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5443 5444
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5445 5446 5447 5448 5449 5450 5451 5452
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5453 5454
}

5455 5456 5457 5458 5459
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5460 5461 5462 5463
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5464
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5480
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5481

5482 5483 5484
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5485 5486 5487 5488 5489 5490 5491 5492 5493
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5494 5495
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5509
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5510 5511 5512

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5513
	/* 4 Program defaults and thresholds for RPS*/
5514
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5525
		   GEN6_RP_MEDIA_IS_GFX |
5526 5527 5528 5529
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5530 5531 5532 5533 5534 5535
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5536 5537
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5538 5539 5540
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5541
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5542 5543 5544 5545
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5546
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5547 5548 5549
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5550
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5551 5552 5553 5554
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5555
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5556 5557
}

5558 5559 5560
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5561
	struct intel_engine_cs *ring;
5562
	u32 gtfifodbg, val, rc6_mode = 0;
5563 5564 5565 5566
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5567 5568
	valleyview_check_pctx(dev_priv);

5569
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5570 5571
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5572 5573 5574
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5575
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5576
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5577

5578 5579 5580
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5581
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5604
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5605 5606

	/* allows RC6 residency counter to work */
5607
	I915_WRITE(VLV_COUNTER_CONTROL,
5608 5609
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5610 5611
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5612

5613
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5614
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5615 5616 5617

	intel_print_rc6_info(dev, rc6_mode);

5618
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5619

D
Deepak S 已提交
5620 5621 5622 5623 5624 5625
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5626
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5627

5628 5629 5630
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5631
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5632 5633
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5634
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5635
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5636
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5637
			 dev_priv->rps.cur_freq);
5638

5639
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5640
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5641
			 dev_priv->rps.efficient_freq);
5642

5643
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5644

5645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5646 5647
}

5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5677
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5678 5679 5680 5681 5682 5683
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5684 5685
	assert_spin_locked(&mchdev_lock);

5686
	diff1 = now - dev_priv->ips.last_time1;
5687 5688 5689 5690 5691 5692 5693

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5694
		return dev_priv->ips.chipset_power;
5695 5696 5697 5698 5699 5700 5701 5702

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5703 5704
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5705 5706
		diff += total_count;
	} else {
5707
		diff = total_count - dev_priv->ips.last_count1;
5708 5709 5710
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5711 5712
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5723 5724
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5725

5726
	dev_priv->ips.chipset_power = ret;
5727 5728 5729 5730

	return ret;
}

5731 5732
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5733
	struct drm_device *dev = dev_priv->dev;
5734 5735
	unsigned long val;

5736
	if (INTEL_INFO(dev)->gen != 5)
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5775
{
5776
	struct drm_device *dev = dev_priv->dev;
5777 5778 5779
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5780
	if (INTEL_INFO(dev)->is_mobile)
5781 5782 5783
		return vm > 0 ? vm : 0;

	return vd;
5784 5785
}

5786
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5787
{
5788
	u64 now, diff, diffms;
5789 5790
	u32 count;

5791
	assert_spin_locked(&mchdev_lock);
5792

5793 5794 5795
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5796 5797 5798 5799 5800 5801 5802

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5803 5804
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5805 5806
		diff += count;
	} else {
5807
		diff = count - dev_priv->ips.last_count2;
5808 5809
	}

5810 5811
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5812 5813 5814 5815

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5816
	dev_priv->ips.gfx_power = diff;
5817 5818
}

5819 5820
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5821 5822 5823
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5824 5825
		return;

5826
	spin_lock_irq(&mchdev_lock);
5827 5828 5829

	__i915_update_gfx_val(dev_priv);

5830
	spin_unlock_irq(&mchdev_lock);
5831 5832
}

5833
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5834 5835 5836 5837
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5838 5839
	assert_spin_locked(&mchdev_lock);

5840
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5860
	corr2 = (corr * dev_priv->ips.corr);
5861 5862 5863 5864

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5865
	__i915_update_gfx_val(dev_priv);
5866

5867
	return dev_priv->ips.gfx_power + state2;
5868 5869
}

5870 5871
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5872
	struct drm_device *dev = dev_priv->dev;
5873 5874
	unsigned long val;

5875
	if (INTEL_INFO(dev)->gen != 5)
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5898
	spin_lock_irq(&mchdev_lock);
5899 5900 5901 5902
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5903 5904
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5905 5906 5907 5908

	ret = chipset_val + graphics_val;

out_unlock:
5909
	spin_unlock_irq(&mchdev_lock);
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5925
	spin_lock_irq(&mchdev_lock);
5926 5927 5928 5929 5930 5931
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5932 5933
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5934 5935

out_unlock:
5936
	spin_unlock_irq(&mchdev_lock);
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5953
	spin_lock_irq(&mchdev_lock);
5954 5955 5956 5957 5958 5959
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5960 5961
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5962 5963

out_unlock:
5964
	spin_unlock_irq(&mchdev_lock);
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5978
	struct intel_engine_cs *ring;
5979
	bool ret = false;
5980
	int i;
5981

5982
	spin_lock_irq(&mchdev_lock);
5983 5984 5985 5986
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5987 5988
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5989 5990

out_unlock:
5991
	spin_unlock_irq(&mchdev_lock);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6008
	spin_lock_irq(&mchdev_lock);
6009 6010 6011 6012 6013 6014
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6015
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6016

6017
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6018 6019 6020
		ret = false;

out_unlock:
6021
	spin_unlock_irq(&mchdev_lock);
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6049 6050
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6051
	spin_lock_irq(&mchdev_lock);
6052
	i915_mch_dev = dev_priv;
6053
	spin_unlock_irq(&mchdev_lock);
6054 6055 6056 6057 6058 6059

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6060
	spin_lock_irq(&mchdev_lock);
6061
	i915_mch_dev = NULL;
6062
	spin_unlock_irq(&mchdev_lock);
6063
}
6064

6065
static void intel_init_emon(struct drm_device *dev)
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6133
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6134 6135
}

6136 6137
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6138 6139
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6140 6141 6142
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6143
		valleyview_init_gt_powersave(dev);
6144 6145 6146 6147
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6148 6149 6150
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6151
		valleyview_cleanup_gt_powersave(dev);
6152 6153
}

6154 6155 6156 6157 6158 6159
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6160
	gen6_disable_rps_interrupts(dev);
6161 6162
}

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6175 6176 6177
	if (INTEL_INFO(dev)->gen < 6)
		return;

6178
	gen6_suspend_rps(dev);
6179 6180 6181

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6182 6183
}

6184 6185
void intel_disable_gt_powersave(struct drm_device *dev)
{
6186 6187
	struct drm_i915_private *dev_priv = dev->dev_private;

6188
	if (IS_IRONLAKE_M(dev)) {
6189
		ironlake_disable_drps(dev);
6190
	} else if (INTEL_INFO(dev)->gen >= 6) {
6191
		intel_suspend_gt_powersave(dev);
6192

6193
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6194 6195 6196
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6197 6198
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6199 6200 6201
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6202

6203
		dev_priv->rps.enabled = false;
6204
		mutex_unlock(&dev_priv->rps.hw_lock);
6205
	}
6206 6207
}

6208 6209 6210 6211 6212 6213 6214
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6215
	mutex_lock(&dev_priv->rps.hw_lock);
6216

6217
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6218

6219 6220 6221
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6222
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6223
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6224
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6225
		gen9_enable_rps(dev);
6226 6227
		if (IS_SKYLAKE(dev))
			__gen6_update_ring_freq(dev);
6228 6229
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6230
		__gen6_update_ring_freq(dev);
6231 6232
	} else {
		gen6_enable_rps(dev);
6233
		__gen6_update_ring_freq(dev);
6234
	}
6235 6236 6237 6238 6239 6240 6241

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6242
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6243

6244
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6245

6246
	mutex_unlock(&dev_priv->rps.hw_lock);
6247 6248

	intel_runtime_pm_put(dev_priv);
6249 6250
}

6251 6252
void intel_enable_gt_powersave(struct drm_device *dev)
{
6253 6254
	struct drm_i915_private *dev_priv = dev->dev_private;

6255 6256 6257 6258
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6259
	if (IS_IRONLAKE_M(dev)) {
6260
		mutex_lock(&dev->struct_mutex);
6261 6262
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6263
		mutex_unlock(&dev->struct_mutex);
6264
	} else if (INTEL_INFO(dev)->gen >= 6) {
6265 6266 6267 6268
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6269 6270 6271 6272 6273 6274 6275
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6276
		 */
6277 6278 6279
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6280 6281 6282
	}
}

6283 6284 6285 6286
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6287 6288 6289 6290
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6291 6292 6293
	dev_priv->rps.enabled = false;
}

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6306 6307 6308
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6309
	enum pipe pipe;
6310

6311
	for_each_pipe(dev_priv, pipe) {
6312 6313 6314
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6315 6316 6317

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6318 6319 6320
	}
}

6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6335
static void ironlake_init_clock_gating(struct drm_device *dev)
6336 6337
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6338
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6339

6340 6341 6342 6343
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6344 6345 6346
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6364
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6365 6366 6367
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6368 6369

	ilk_init_lp_watermarks(dev);
6370 6371 6372 6373 6374 6375 6376 6377 6378

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6379
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6380 6381 6382 6383 6384 6385 6386 6387
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6388 6389
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6390 6391 6392 6393 6394 6395
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6396

6397
	/* WaDisableRenderCachePipelinedFlush:ilk */
6398 6399
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6400

6401 6402 6403
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6404
	g4x_disable_trickle_feed(dev);
6405

6406 6407 6408 6409 6410 6411 6412
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6413
	uint32_t val;
6414 6415 6416 6417 6418 6419

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6420 6421 6422
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6423 6424
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6425 6426 6427
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6428
	for_each_pipe(dev_priv, pipe) {
6429 6430 6431
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6432
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6433
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6434 6435 6436
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6437 6438
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6439
	/* WADP0ClockGatingDisable */
6440
	for_each_pipe(dev_priv, pipe) {
6441 6442 6443
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6444 6445
}

6446 6447 6448 6449 6450 6451
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6452 6453 6454
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6455 6456
}

6457
static void gen6_init_clock_gating(struct drm_device *dev)
6458 6459
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6460
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6461

6462
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6463 6464 6465 6466 6467

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6468
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6469 6470 6471
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6472 6473 6474
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6475 6476 6477
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6478 6479 6480 6481
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6482 6483
	 */
	I915_WRITE(GEN6_GT_MODE,
6484
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6485

6486
	ilk_init_lp_watermarks(dev);
6487 6488

	I915_WRITE(CACHE_MODE_0,
6489
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6505
	 *
6506 6507
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6508 6509 6510 6511 6512
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6513
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6514 6515
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6516

6517 6518 6519 6520 6521 6522 6523 6524
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6525 6526 6527 6528 6529 6530 6531 6532
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6533 6534
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6535 6536 6537 6538 6539 6540 6541
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6542 6543 6544 6545
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6546

6547
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6548

6549
	cpt_init_clock_gating(dev);
6550 6551

	gen6_check_mch_setup(dev);
6552 6553 6554 6555 6556 6557
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6558
	/*
6559
	 * WaVSThreadDispatchOverride:ivb,vlv
6560 6561 6562 6563
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6564 6565 6566 6567 6568 6569 6570 6571
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6584 6585 6586 6587 6588

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6589 6590
}

6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6603
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6604 6605
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6606
	enum pipe pipe;
6607
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6608

6609
	ilk_init_lp_watermarks(dev);
6610

6611
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6612
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6613

6614
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6615 6616 6617
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6618
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6619
	for_each_pipe(dev_priv, pipe) {
6620
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6621
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6622
			   BDW_DPRS_MASK_VBLANK_SRD);
6623
	}
6624

6625 6626 6627 6628 6629
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6630

6631 6632
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6633 6634 6635 6636

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6637

6638 6639 6640 6641 6642 6643 6644 6645 6646
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6647 6648 6649 6650 6651 6652 6653
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6654
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6655 6656
}

6657 6658 6659 6660
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6661
	ilk_init_lp_watermarks(dev);
6662

6663 6664 6665 6666 6667
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6668
	/* This is required by WaCatErrorRejectionIssue:hsw */
6669 6670 6671 6672
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6673 6674 6675
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6676

6677 6678 6679
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6680 6681 6682 6683
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6684
	/* WaDisable4x2SubspanOptimization:hsw */
6685 6686
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6687

6688 6689 6690
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6691 6692 6693 6694
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6695 6696
	 */
	I915_WRITE(GEN7_GT_MODE,
6697
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6698

6699 6700 6701 6702
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6703
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6704 6705
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6706 6707 6708
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6709

6710
	lpt_init_clock_gating(dev);
6711 6712
}

6713
static void ivybridge_init_clock_gating(struct drm_device *dev)
6714 6715
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6716
	uint32_t snpcr;
6717

6718
	ilk_init_lp_watermarks(dev);
6719

6720
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6721

6722
	/* WaDisableEarlyCull:ivb */
6723 6724 6725
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6726
	/* WaDisableBackToBackFlipFix:ivb */
6727 6728 6729 6730
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6731
	/* WaDisablePSDDualDispatchEnable:ivb */
6732 6733 6734 6735
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6736 6737 6738
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6739
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6740 6741 6742
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6743
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6744 6745 6746
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6747 6748 6749 6750
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6751 6752 6753 6754
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6755 6756
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6757
	}
6758

6759
	/* WaForceL3Serialization:ivb */
6760 6761 6762
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6763
	/*
6764
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6765
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6766 6767
	 */
	I915_WRITE(GEN6_UCGCTL2,
6768
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6769

6770
	/* This is required by WaCatErrorRejectionIssue:ivb */
6771 6772 6773 6774
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6775
	g4x_disable_trickle_feed(dev);
6776 6777

	gen7_setup_fixed_func_scheduler(dev_priv);
6778

6779 6780 6781 6782 6783
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6784

6785
	/* WaDisable4x2SubspanOptimization:ivb */
6786 6787
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6788

6789 6790 6791
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6792 6793 6794 6795
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6796 6797
	 */
	I915_WRITE(GEN7_GT_MODE,
6798
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6799

6800 6801 6802 6803
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6804

6805 6806
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6807 6808

	gen6_check_mch_setup(dev);
6809 6810
}

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6822
static void valleyview_init_clock_gating(struct drm_device *dev)
6823 6824 6825
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6826
	vlv_init_display_clock_gating(dev_priv);
6827

6828
	/* WaDisableEarlyCull:vlv */
6829 6830 6831
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6832
	/* WaDisableBackToBackFlipFix:vlv */
6833 6834 6835 6836
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6837
	/* WaPsdDispatchEnable:vlv */
6838
	/* WaDisablePSDDualDispatchEnable:vlv */
6839
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6840 6841
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6842

6843 6844 6845
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6846
	/* WaForceL3Serialization:vlv */
6847 6848 6849
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6850
	/* WaDisableDopClockGating:vlv */
6851 6852 6853
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6854
	/* This is required by WaCatErrorRejectionIssue:vlv */
6855 6856 6857 6858
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6859 6860
	gen7_setup_fixed_func_scheduler(dev_priv);

6861
	/*
6862
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6863
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6864 6865
	 */
	I915_WRITE(GEN6_UCGCTL2,
6866
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6867

6868 6869 6870 6871 6872
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6873

6874 6875 6876 6877
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6878 6879
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6880

6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6892 6893 6894 6895 6896 6897
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6898
	/*
6899
	 * WaDisableVLVClockGating_VBIIssue:vlv
6900 6901 6902
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6903
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6904 6905
}

6906 6907 6908 6909
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6910
	vlv_init_display_clock_gating(dev_priv);
6911

6912 6913 6914 6915 6916
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6917 6918 6919 6920

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6921 6922 6923 6924

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6925 6926 6927 6928

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6929 6930 6931 6932 6933 6934

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6935 6936
}

6937
static void g4x_init_clock_gating(struct drm_device *dev)
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6953 6954 6955 6956

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6957

6958 6959 6960
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6961
	g4x_disable_trickle_feed(dev);
6962 6963
}

6964
static void crestline_init_clock_gating(struct drm_device *dev)
6965 6966 6967 6968 6969 6970 6971 6972
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6973 6974
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6975 6976 6977

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6978 6979
}

6980
static void broadwater_init_clock_gating(struct drm_device *dev)
6981 6982 6983 6984 6985 6986 6987 6988 6989
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6990 6991
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6992 6993 6994

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6995 6996
}

6997
static void gen3_init_clock_gating(struct drm_device *dev)
6998 6999 7000 7001 7002 7003 7004
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7005 7006 7007

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7008 7009 7010

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7011 7012

	/* interrupts should cause a wake up from C3 */
7013
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7014 7015 7016

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7017 7018 7019

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7020 7021
}

7022
static void i85x_init_clock_gating(struct drm_device *dev)
7023 7024 7025 7026
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7027 7028 7029 7030

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7031 7032 7033

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7034 7035
}

7036
static void i830_init_clock_gating(struct drm_device *dev)
7037 7038 7039 7040
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7041 7042 7043 7044

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7045 7046 7047 7048 7049 7050
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7051 7052
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
7053 7054
}

7055 7056 7057 7058 7059 7060
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7061 7062 7063 7064 7065
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7066
	intel_fbc_init(dev_priv);
7067

7068 7069 7070 7071 7072 7073
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7074
	/* For FIFO watermark updates */
7075
	if (INTEL_INFO(dev)->gen >= 9) {
7076 7077
		skl_setup_wm_latency(dev);

7078 7079 7080 7081 7082 7083
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
		else if (IS_SKYLAKE(dev))
			dev_priv->display.init_clock_gating =
				skl_init_clock_gating;
7084 7085
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7086
	} else if (HAS_PCH_SPLIT(dev)) {
7087
		ilk_setup_wm_latency(dev);
7088

7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7101
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7102
		else if (IS_GEN6(dev))
7103
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7104
		else if (IS_IVYBRIDGE(dev))
7105
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7106
		else if (IS_HASWELL(dev))
7107
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7108
		else if (INTEL_INFO(dev)->gen == 8)
7109
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7110
	} else if (IS_CHERRYVIEW(dev)) {
7111 7112 7113
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7114 7115
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7116
	} else if (IS_VALLEYVIEW(dev)) {
7117 7118 7119
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7133
			intel_set_memory_cxsr(dev_priv, false);
7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7151 7152 7153
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7154
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7155 7156
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7157
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7158 7159 7160 7161 7162 7163 7164 7165
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7166 7167 7168
	}
}

7169
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7170
{
7171
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7172 7173 7174 7175 7176 7177 7178

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7179
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7194
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7195
{
7196
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7216

7217
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7218
{
7219 7220 7221 7222 7223 7224 7225 7226
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7227 7228
	case 400:
		return 20;
7229 7230 7231
	default:
		return -1;
	}
7232
}
7233

7234 7235 7236 7237 7238 7239 7240 7241 7242
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7243 7244
}

7245
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7246
{
7247
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7248

7249 7250 7251
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7252

7253
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7254 7255
}

7256
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7257
{
7258
	int div, czclk_freq = dev_priv->rps.cz_freq;
7259

7260 7261 7262
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7263

7264
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7265 7266
}

7267
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7268
{
7269
	int mul, czclk_freq = dev_priv->rps.cz_freq;
7270

7271 7272 7273
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7274

7275
	/* CHV needs even values */
7276
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7277 7278
}

7279
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7280
{
7281 7282 7283
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7284
		return chv_gpu_freq(dev_priv, val);
7285
	else if (IS_VALLEYVIEW(dev_priv->dev))
7286 7287 7288
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7289 7290
}

7291 7292
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7293 7294 7295
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7296
		return chv_freq_opcode(dev_priv, val);
7297
	else if (IS_VALLEYVIEW(dev_priv->dev))
7298 7299 7300 7301
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
7302

7303 7304
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7305
	struct drm_i915_gem_request *req;
7306 7307 7308 7309 7310
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7311
	struct drm_i915_gem_request *req = boost->req;
7312

7313 7314 7315
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7316

7317
	i915_gem_request_unreference__unlocked(req);
7318 7319 7320 7321
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7322
				       struct drm_i915_gem_request *req)
7323 7324 7325
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7326
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7327 7328
		return;

7329 7330 7331
	if (i915_gem_request_completed(req, true))
		return;

7332 7333 7334 7335
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7336 7337
	i915_gem_request_reference(req);
	boost->req = req;
7338 7339 7340 7341 7342

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7343
void intel_pm_setup(struct drm_device *dev)
7344 7345 7346
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7347
	mutex_init(&dev_priv->rps.hw_lock);
7348
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7349

7350 7351
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7352
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7353 7354
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7355

7356
	dev_priv->pm.suspended = false;
7357
}