intel_pm.c 212.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <linux/vgaarb.h>
34
#include <drm/i915_powerwell.h>
35
#include <linux/pm_runtime.h>
36

B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59 60
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
61
 *
62 63
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
64
 *
65 66
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
67 68
 */

69 70 71 72
static void gen9_init_clock_gating(struct drm_device *dev)
{
}

73
static void i8xx_disable_fbc(struct drm_device *dev)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

95
static void i8xx_enable_fbc(struct drm_crtc *crtc)
96 97 98
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
99
	struct drm_framebuffer *fb = crtc->primary->fb;
100
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
101 102
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
103
	int i;
104
	u32 fbc_ctl;
105

106
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
107 108 109
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

110 111 112 113 114
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
115 116 117 118 119

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

120 121 122 123 124
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
125
		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
126 127 128
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
129 130

	/* enable it... */
131 132 133
	fbc_ctl = I915_READ(FBC_CONTROL);
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
134 135 136 137 138 139
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

140
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
141
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
142 143
}

144
static bool i8xx_fbc_enabled(struct drm_device *dev)
145 146 147 148 149 150
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

151
static void g4x_enable_fbc(struct drm_crtc *crtc)
152 153 154
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
155
	struct drm_framebuffer *fb = crtc->primary->fb;
156
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
157 158 159
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

160 161 162 163 164
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
	else
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
165 166 167 168 169
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;

	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
170
	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
171

172
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
173 174
}

175
static void g4x_disable_fbc(struct drm_device *dev)
176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

190
static bool g4x_fbc_enabled(struct drm_device *dev)
191 192 193 194 195 196 197 198 199 200 201 202
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
203 204 205 206

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
207

208 209 210 211 212 213 214 215 216 217
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
218

219
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
220 221
}

222
static void ironlake_enable_fbc(struct drm_crtc *crtc)
223 224 225
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
226
	struct drm_framebuffer *fb = crtc->primary->fb;
227
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
228 229 230
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

231
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
232
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
233 234 235 236 237 238 239 240
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
241
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
242 243
		break;
	case 1:
244
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
245 246
		break;
	}
247 248 249
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
250 251

	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
252
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
253 254 255 256 257 258 259 260 261 262
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

263
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
264 265
}

266
static void ironlake_disable_fbc(struct drm_device *dev)
267 268 269 270 271 272 273 274 275 276 277 278 279 280
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

281
static bool ironlake_fbc_enabled(struct drm_device *dev)
282 283 284 285 286 287
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

288
static void gen7_enable_fbc(struct drm_crtc *crtc)
289 290 291
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
292
	struct drm_framebuffer *fb = crtc->primary->fb;
293
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
294
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
295
	u32 dpfc_ctl;
296

297 298
	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
299 300 301 302 303 304 305 306
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
307
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
308 309
		break;
	case 1:
310
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
311 312 313
		break;
	}

314 315
	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;

316 317 318
	if (dev_priv->fbc.false_color)
		dpfc_ctl |= FBC_CTL_FALSE_COLOR;

319
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
320

R
Rodrigo Vivi 已提交
321
	if (IS_IVYBRIDGE(dev)) {
322
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
323 324 325
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
326
	} else {
327
		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
328 329 330
		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
			   HSW_FBCQ_DIS);
R
Rodrigo Vivi 已提交
331
	}
332

333 334 335 336 337 338
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

339
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
340 341
}

342 343 344 345 346 347 348 349 350 351
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

R
Rodrigo Vivi 已提交
352 353 354 355 356 357 358 359 360 361
void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_GEN8(dev))
		return;

	I915_WRITE(MSG_FBC_REND_STATE, value);
}

362 363 364 365 366 367 368 369 370
static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
371
	if (work == dev_priv->fbc.fbc_work) {
372 373 374
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
375
		if (work->crtc->primary->fb == work->fb) {
376
			dev_priv->display.enable_fbc(work->crtc);
377

378
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
379
			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
380
			dev_priv->fbc.y = work->crtc->y;
381 382
		}

383
		dev_priv->fbc.fbc_work = NULL;
384 385 386 387 388 389 390 391
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
392
	if (dev_priv->fbc.fbc_work == NULL)
393 394 395 396 397
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
398
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
399 400
	 * entirely asynchronously.
	 */
401
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
402
		/* tasklet was killed before being run, clean up */
403
		kfree(dev_priv->fbc.fbc_work);
404 405 406 407 408 409

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
410
	dev_priv->fbc.fbc_work = NULL;
411 412
}

413
static void intel_enable_fbc(struct drm_crtc *crtc)
414 415 416 417 418 419 420 421 422 423
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

424
	work = kzalloc(sizeof(*work), GFP_KERNEL);
425
	if (work == NULL) {
426
		DRM_ERROR("Failed to allocate FBC work structure\n");
427
		dev_priv->display.enable_fbc(crtc);
428 429 430 431
		return;
	}

	work->crtc = crtc;
432
	work->fb = crtc->primary->fb;
433 434
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

435
	dev_priv->fbc.fbc_work = work;
436 437 438 439 440 441 442 443 444 445 446

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
447 448
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
449 450 451 452 453 454 455 456 457 458 459 460 461 462
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
463
	dev_priv->fbc.plane = -1;
464 465
}

466 467 468 469 470 471 472 473 474 475
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

476 477 478 479 480 481 482 483 484 485
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
486
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct drm_i915_gem_object *obj;
502
	const struct drm_display_mode *adjusted_mode;
503
	unsigned int max_width, max_height;
504

505
	if (!HAS_FBC(dev)) {
506
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
507
		return;
508
	}
509

510
	if (!i915.powersave) {
511 512
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
513
		return;
514
	}
515 516 517 518 519 520 521 522 523 524

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
525
	for_each_crtc(dev, tmp_crtc) {
526
		if (intel_crtc_active(tmp_crtc) &&
527
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
528
			if (crtc) {
529 530
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
531 532 533 534 535 536
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

537
	if (!crtc || crtc->primary->fb == NULL) {
538 539
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
540 541 542 543
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
544
	fb = crtc->primary->fb;
545
	obj = intel_fb_obj(fb);
546
	adjusted_mode = &intel_crtc->config.adjusted_mode;
547

548
	if (i915.enable_fbc < 0) {
549 550
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
551
		goto out_disable;
552
	}
553
	if (!i915.enable_fbc) {
554 555
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
556 557
		goto out_disable;
	}
558 559
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
560 561 562
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
563 564
		goto out_disable;
	}
565

566 567 568 569
	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
		max_width = 4096;
		max_height = 4096;
	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
570 571
		max_width = 4096;
		max_height = 2048;
572
	} else {
573 574
		max_width = 2048;
		max_height = 1536;
575
	}
576 577
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
578 579
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
580 581
		goto out_disable;
	}
B
Ben Widawsky 已提交
582
	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
583
	    intel_crtc->plane != PLANE_A) {
584
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
585
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
586 587 588 589 590 591 592 593
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
594 595
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
596 597
		goto out_disable;
	}
598 599 600 601 602 603
	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
		goto out_disable;
	}
604 605 606 607 608

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

609
	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
B
Ben Widawsky 已提交
610
					      drm_format_plane_cpp(fb->pixel_format, 0))) {
611 612
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
613 614 615
		goto out_disable;
	}

616 617 618 619 620
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
621 622 623
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

654
	intel_enable_fbc(crtc);
655
	dev_priv->fbc.no_fbc_reason = FBC_OK;
656 657 658 659 660 661 662 663
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
664
	i915_gem_stolen_cleanup_compression(dev);
665 666
}

667 668
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
669
	struct drm_i915_private *dev_priv = dev->dev_private;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
708
	struct drm_i915_private *dev_priv = dev->dev_private;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

734
	dev_priv->ips.r_t = dev_priv->mem_freq;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
766
		dev_priv->ips.c_m = 0;
767
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
768
		dev_priv->ips.c_m = 1;
769
	} else {
770
		dev_priv->ips.c_m = 2;
771 772 773
	}
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

812
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

836
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
837
{
838 839
	struct drm_device *dev = dev_priv->dev;
	u32 val;
840

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
860

861 862
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
879
static const int pessimal_latency_ns = 5000;
880

881
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

897
static int i830_get_fifo_size(struct drm_device *dev, int plane)
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

914
static int i845_get_fifo_size(struct drm_device *dev, int plane)
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
932 933 934 935 936
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
937 938
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
939 940 941 942 943
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
944 945
};
static const struct intel_watermark_params pineview_cursor_wm = {
946 947 948 949 950
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
951 952
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
953 954 955 956 957
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
958 959
};
static const struct intel_watermark_params g4x_wm_info = {
960 961 962 963 964
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
965 966
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
967 968 969 970 971
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
972 973
};
static const struct intel_watermark_params valleyview_wm_info = {
974 975 976 977 978
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
979 980
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
981 982 983 984 985
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
986 987
};
static const struct intel_watermark_params i965_cursor_wm_info = {
988 989 990 991 992
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
993 994
};
static const struct intel_watermark_params i945_wm_info = {
995 996 997 998 999
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1000 1001
};
static const struct intel_watermark_params i915_wm_info = {
1002 1003 1004 1005 1006
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1007
};
1008
static const struct intel_watermark_params i830_a_wm_info = {
1009 1010 1011 1012 1013
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1014
};
1015 1016 1017 1018 1019 1020 1021
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
1022
static const struct intel_watermark_params i845_wm_info = {
1023 1024 1025 1026 1027
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

1084
	for_each_crtc(dev, crtc) {
1085
		if (intel_crtc_active(crtc)) {
1086 1087 1088 1089 1090 1091 1092 1093 1094
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1095
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1096
{
1097
	struct drm_device *dev = unused_crtc->dev;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1108
		intel_set_memory_cxsr(dev_priv, false);
1109 1110 1111 1112 1113
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1114
		const struct drm_display_mode *adjusted_mode;
1115
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1116 1117 1118 1119
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

1159
		intel_set_memory_cxsr(dev_priv, true);
1160
	} else {
1161
		intel_set_memory_cxsr(dev_priv, false);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1175
	const struct drm_display_mode *adjusted_mode;
1176 1177 1178 1179 1180
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1181
	if (!intel_crtc_active(crtc)) {
1182 1183 1184 1185 1186
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1187
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1188
	clock = adjusted_mode->crtc_clock;
1189
	htotal = adjusted_mode->crtc_htotal;
1190
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1191
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
1204
	line_time_us = max(htotal * 1000 / clock, 1);
1205
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1206
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1261
	const struct drm_display_mode *adjusted_mode;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1274
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1275
	clock = adjusted_mode->crtc_clock;
1276
	htotal = adjusted_mode->crtc_htotal;
1277
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1278
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1279

1280
	line_time_us = max(htotal * 1000 / clock, 1);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
1292
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1293 1294 1295 1296 1297 1298 1299 1300
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

1301 1302 1303 1304
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
1305 1306
{
	int entries;
1307
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1308

1309
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1310 1311
		return false;

1312 1313
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
1314

1315
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1316 1317 1318
	*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
				       DRAIN_LATENCY_PRECISION_32;
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1319

1320 1321
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

1334
static void vlv_update_drain_latency(struct drm_crtc *crtc)
1335
{
1336 1337 1338 1339 1340 1341
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
1342

1343 1344 1345 1346 1347 1348 1349 1350
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
1351

1352 1353 1354 1355 1356 1357 1358
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_PLANE_PRECISION_64 :
					   DDL_PLANE_PRECISION_32;
		plane_dl |= plane_prec | drain_latency;
1359 1360
	}

1361 1362 1363 1364
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
1365

1366 1367 1368 1369 1370 1371 1372
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_CURSOR_PRECISION_64 :
					   DDL_CURSOR_PRECISION_32;
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1373
	}
1374 1375

	I915_WRITE(VLV_DDL(pipe), plane_dl);
1376 1377 1378 1379
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1380
static void valleyview_update_wm(struct drm_crtc *crtc)
1381
{
1382
	struct drm_device *dev = crtc->dev;
1383 1384 1385 1386
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1387
	int ignore_plane_sr, ignore_cursor_sr;
1388
	unsigned int enabled = 0;
1389
	bool cxsr_enabled;
1390

1391
	vlv_update_drain_latency(crtc);
1392

1393
	if (g4x_compute_wm0(dev, PIPE_A,
1394 1395
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1396
			    &planea_wm, &cursora_wm))
1397
		enabled |= 1 << PIPE_A;
1398

1399
	if (g4x_compute_wm0(dev, PIPE_B,
1400 1401
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1402
			    &planeb_wm, &cursorb_wm))
1403
		enabled |= 1 << PIPE_B;
1404 1405 1406 1407 1408 1409

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1410 1411 1412 1413 1414
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1415
			     &ignore_plane_sr, &cursor_sr)) {
1416
		cxsr_enabled = true;
1417
	} else {
1418
		cxsr_enabled = false;
1419
		intel_set_memory_cxsr(dev_priv, false);
1420 1421
		plane_sr = cursor_sr = 0;
	}
1422

1423 1424
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1425 1426 1427 1428 1429 1430 1431 1432
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1433
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1434
	I915_WRITE(DSPFW2,
1435
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1436 1437
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1438 1439
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1440 1441 1442

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
1460 1461
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1462 1463 1464 1465
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
1466 1467
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1468 1469 1470 1471
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
1472 1473
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;

	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_SPRITE_PRECISION_64(sprite) :
					   DDL_SPRITE_PRECISION_32(sprite);
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

1555
static void g4x_update_wm(struct drm_crtc *crtc)
1556
{
1557
	struct drm_device *dev = crtc->dev;
1558 1559 1560 1561 1562
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1563
	bool cxsr_enabled;
1564

1565
	if (g4x_compute_wm0(dev, PIPE_A,
1566 1567
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1568
			    &planea_wm, &cursora_wm))
1569
		enabled |= 1 << PIPE_A;
1570

1571
	if (g4x_compute_wm0(dev, PIPE_B,
1572 1573
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1574
			    &planeb_wm, &cursorb_wm))
1575
		enabled |= 1 << PIPE_B;
1576 1577 1578 1579 1580 1581

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1582
			     &plane_sr, &cursor_sr)) {
1583
		cxsr_enabled = true;
1584
	} else {
1585
		cxsr_enabled = false;
1586
		intel_set_memory_cxsr(dev_priv, false);
1587 1588
		plane_sr = cursor_sr = 0;
	}
1589

1590 1591
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1592 1593 1594 1595 1596 1597 1598 1599
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1600
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1601
	I915_WRITE(DSPFW2,
1602
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1603 1604 1605
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1606
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1607
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1608 1609 1610

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1611 1612
}

1613
static void i965_update_wm(struct drm_crtc *unused_crtc)
1614
{
1615
	struct drm_device *dev = unused_crtc->dev;
1616 1617 1618 1619
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1620
	bool cxsr_enabled;
1621 1622 1623 1624 1625 1626

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1627 1628
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1629
		int clock = adjusted_mode->crtc_clock;
1630
		int htotal = adjusted_mode->crtc_htotal;
1631
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1632
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1633 1634 1635
		unsigned long line_time_us;
		int entries;

1636
		line_time_us = max(htotal * 1000 / clock, 1);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1650
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1662
		cxsr_enabled = true;
1663
	} else {
1664
		cxsr_enabled = false;
1665
		/* Turn off self refresh if both pipes are enabled */
1666
		intel_set_memory_cxsr(dev_priv, false);
1667 1668 1669 1670 1671 1672 1673
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1674 1675 1676 1677 1678
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1679 1680
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1681 1682 1683

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1684 1685
}

1686
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1687
{
1688
	struct drm_device *dev = unused_crtc->dev;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1703
		wm_info = &i830_a_wm_info;
1704 1705 1706

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1707
	if (intel_crtc_active(crtc)) {
1708
		const struct drm_display_mode *adjusted_mode;
1709
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1710 1711 1712
		if (IS_GEN2(dev))
			cpp = 4;

1713 1714
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1715
					       wm_info, fifo_size, cpp,
1716
					       pessimal_latency_ns);
1717
		enabled = crtc;
1718
	} else {
1719
		planea_wm = fifo_size - wm_info->guard_size;
1720 1721 1722 1723 1724 1725
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1726 1727 1728

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1729
	if (intel_crtc_active(crtc)) {
1730
		const struct drm_display_mode *adjusted_mode;
1731
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1732 1733 1734
		if (IS_GEN2(dev))
			cpp = 4;

1735 1736
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1737
					       wm_info, fifo_size, cpp,
1738
					       pessimal_latency_ns);
1739 1740 1741 1742
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1743
	} else {
1744
		planeb_wm = fifo_size - wm_info->guard_size;
1745 1746 1747
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1748 1749 1750

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1751
	if (IS_I915GM(dev) && enabled) {
1752
		struct drm_i915_gem_object *obj;
1753

1754
		obj = intel_fb_obj(enabled->primary->fb);
1755 1756

		/* self-refresh seems busted with untiled */
1757
		if (obj->tiling_mode == I915_TILING_NONE)
1758 1759 1760
			enabled = NULL;
	}

1761 1762 1763 1764 1765 1766
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1767
	intel_set_memory_cxsr(dev_priv, false);
1768 1769 1770 1771 1772

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1773 1774
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1775
		int clock = adjusted_mode->crtc_clock;
1776
		int htotal = adjusted_mode->crtc_htotal;
1777
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1778
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1779 1780 1781
		unsigned long line_time_us;
		int entries;

1782
		line_time_us = max(htotal * 1000 / clock, 1);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1813 1814
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1815 1816
}

1817
static void i845_update_wm(struct drm_crtc *unused_crtc)
1818
{
1819
	struct drm_device *dev = unused_crtc->dev;
1820 1821
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1822
	const struct drm_display_mode *adjusted_mode;
1823 1824 1825 1826 1827 1828 1829
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1830 1831
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1832
				       &i845_wm_info,
1833
				       dev_priv->display.get_fifo_size(dev, 0),
1834
				       4, pessimal_latency_ns);
1835 1836 1837 1838 1839 1840 1841 1842
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1843 1844
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1845 1846
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1847
	uint32_t pixel_rate;
1848

1849
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1850 1851 1852 1853

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1854
	if (intel_crtc->config.pch_pfit.enabled) {
1855
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1856
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1857

1858 1859
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1874
/* latency must be in 0.1us units. */
1875
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1876 1877 1878 1879
			       uint32_t latency)
{
	uint64_t ret;

1880 1881 1882
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1883 1884 1885 1886 1887 1888
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1889
/* latency must be in 0.1us units. */
1890
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1891 1892 1893 1894 1895
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1896 1897 1898
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1899 1900 1901 1902 1903 1904
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1905
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1906 1907 1908 1909 1910
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1911
struct ilk_pipe_wm_parameters {
1912 1913 1914
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1915 1916 1917
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1918 1919
};

1920
struct ilk_wm_maximums {
1921 1922 1923 1924 1925 1926
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1927 1928 1929 1930 1931 1932 1933
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1934 1935 1936 1937
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1938
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1939 1940
				   uint32_t mem_value,
				   bool is_lp)
1941
{
1942 1943
	uint32_t method1, method2;

1944
	if (!params->active || !params->pri.enabled)
1945 1946
		return 0;

1947
	method1 = ilk_wm_method1(params->pixel_rate,
1948
				 params->pri.bytes_per_pixel,
1949 1950 1951 1952 1953
				 mem_value);

	if (!is_lp)
		return method1;

1954
	method2 = ilk_wm_method2(params->pixel_rate,
1955
				 params->pipe_htotal,
1956 1957
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1958 1959 1960
				 mem_value);

	return min(method1, method2);
1961 1962
}

1963 1964 1965 1966
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1967
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1968 1969 1970 1971
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1972
	if (!params->active || !params->spr.enabled)
1973 1974
		return 0;

1975
	method1 = ilk_wm_method1(params->pixel_rate,
1976
				 params->spr.bytes_per_pixel,
1977
				 mem_value);
1978
	method2 = ilk_wm_method2(params->pixel_rate,
1979
				 params->pipe_htotal,
1980 1981
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1982 1983 1984 1985
				 mem_value);
	return min(method1, method2);
}

1986 1987 1988 1989
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1990
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1991 1992
				   uint32_t mem_value)
{
1993
	if (!params->active || !params->cur.enabled)
1994 1995
		return 0;

1996
	return ilk_wm_method2(params->pixel_rate,
1997
			      params->pipe_htotal,
1998 1999
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2000 2001 2002
			      mem_value);
}

2003
/* Only for WM_LP. */
2004
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2005
				   uint32_t pri_val)
2006
{
2007
	if (!params->active || !params->pri.enabled)
2008 2009
		return 0;

2010
	return ilk_wm_fbc(pri_val,
2011 2012
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2013 2014
}

2015 2016
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2017 2018 2019
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2020 2021 2022 2023 2024
		return 768;
	else
		return 512;
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

2059 2060 2061
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2062
				     const struct intel_wm_config *config,
2063 2064 2065 2066 2067 2068
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
2069
	if (is_sprite && !config->sprites_enabled)
2070 2071 2072
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2073
	if (level == 0 || config->num_pipes_active > 1) {
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2085
	if (config->sprites_enabled) {
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2097
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2098 2099 2100 2101
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2102 2103
				      int level,
				      const struct intel_wm_config *config)
2104 2105
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2106
	if (level > 0 && config->num_pipes_active > 1)
2107 2108 2109
		return 64;

	/* otherwise just report max that registers can hold */
2110
	return ilk_cursor_wm_reg_max(dev, level);
2111 2112
}

2113
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2114 2115 2116
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2117
				    struct ilk_wm_maximums *max)
2118
{
2119 2120 2121
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2122
	max->fbc = ilk_fbc_wm_reg_max(dev);
2123 2124
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2135
static bool ilk_validate_wm_level(int level,
2136
				  const struct ilk_wm_maximums *max,
2137
				  struct intel_wm_level *result)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2176
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2177
				 int level,
2178
				 const struct ilk_pipe_wm_parameters *p,
2179
				 struct intel_wm_level *result)
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2199 2200
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2201 2202
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2203 2204
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2205
	u32 linetime, ips_linetime;
2206

2207 2208
	if (!intel_crtc_active(crtc))
		return 0;
2209

2210 2211 2212
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2213 2214 2215
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2216
					 intel_ddi_get_cdclk_freq(dev_priv));
2217

2218 2219
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2220 2221
}

2222 2223 2224 2225
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2226
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2227 2228 2229 2230 2231
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2232 2233 2234 2235
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2236 2237 2238 2239 2240 2241 2242
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2243 2244 2245 2246 2247 2248 2249
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2250 2251 2252
	}
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2271
int ilk_wm_max_level(const struct drm_device *dev)
2272 2273
{
	/* how many WM levels are we expecting */
2274
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2275
		return 4;
2276
	else if (INTEL_INFO(dev)->gen >= 6)
2277
		return 3;
2278
	else
2279 2280 2281 2282 2283 2284 2285
		return 2;
}
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2343
static void ilk_setup_wm_latency(struct drm_device *dev)
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2356 2357 2358 2359

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2360 2361 2362

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2363 2364
}

2365
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2366
				      struct ilk_pipe_wm_parameters *p)
2367
{
2368 2369 2370 2371
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2372

2373 2374
	if (!intel_crtc_active(crtc))
		return;
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	p->active = true;
	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
2386

2387
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2388 2389
		struct intel_plane *intel_plane = to_intel_plane(plane);

2390
		if (intel_plane->pipe == pipe) {
2391
			p->spr = intel_plane->wm;
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2403
	for_each_intel_crtc(dev, intel_crtc) {
2404
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2405

2406 2407
		if (!wm->pipe_enabled)
			continue;
2408

2409 2410 2411
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2412
	}
2413 2414
}

2415 2416
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2417
				  const struct ilk_pipe_wm_parameters *params,
2418 2419 2420
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2421
	const struct drm_i915_private *dev_priv = dev->dev_private;
2422 2423 2424 2425 2426 2427 2428
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2429
	struct ilk_wm_maximums max;
2430

2431 2432 2433 2434
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2435 2436 2437 2438 2439 2440 2441 2442
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2443
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2444

2445
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2446
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2447

2448 2449 2450
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2451
	/* At least LP0 must be valid */
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2485 2486
	ret_wm->enable = true;

2487
	for_each_intel_crtc(dev, intel_crtc) {
2488 2489 2490 2491 2492
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2493

2494 2495 2496 2497 2498
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2499
		if (!wm->enable)
2500
			ret_wm->enable = false;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2513
			 const struct intel_wm_config *config,
2514
			 const struct ilk_wm_maximums *max,
2515 2516 2517
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2518
	int last_enabled_level = max_level;
2519

2520 2521 2522 2523 2524
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2525 2526
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2527 2528 2529 2530 2531 2532 2533

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2534 2535 2536 2537 2538
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2539 2540 2541 2542 2543 2544

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2545 2546
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2547 2548 2549
			wm->fbc_val = 0;
		}
	}
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2564 2565
}

2566 2567 2568 2569 2570 2571
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2572 2573 2574 2575 2576
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2577
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2578 2579 2580 2581 2582
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2583
static void ilk_compute_wm_results(struct drm_device *dev,
2584
				   const struct intel_pipe_wm *merged,
2585
				   enum intel_ddb_partitioning partitioning,
2586
				   struct ilk_wm_values *results)
2587
{
2588 2589
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2590

2591
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2592
	results->partitioning = partitioning;
2593

2594
	/* LP1+ register values */
2595
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2596
		const struct intel_wm_level *r;
2597

2598
		level = ilk_wm_lp_to_level(wm_lp, merged);
2599

2600
		r = &merged->wm[level];
2601

2602 2603 2604 2605 2606
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2607
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2608 2609 2610
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2611 2612 2613
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2614 2615 2616 2617 2618 2619 2620
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2621 2622 2623 2624
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2625 2626 2627 2628 2629
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2630
	}
2631

2632
	/* LP0 register values */
2633
	for_each_intel_crtc(dev, intel_crtc) {
2634 2635 2636 2637 2638 2639 2640 2641
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2642

2643 2644 2645 2646
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2647 2648 2649
	}
}

2650 2651
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2652
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2653 2654
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2655
{
2656 2657
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2658

2659 2660 2661 2662 2663
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2664 2665
	}

2666 2667
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2668 2669 2670
			return r2;
		else
			return r1;
2671
	} else if (level1 > level2) {
2672 2673 2674 2675 2676 2677
		return r1;
	} else {
		return r2;
	}
}

2678 2679 2680 2681 2682 2683 2684 2685
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2686
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2687 2688
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2689 2690 2691 2692 2693
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2694
	for_each_pipe(dev_priv, pipe) {
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2738 2739
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2740
{
2741
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2742
	bool changed = false;
2743

2744 2745 2746
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2747
		changed = true;
2748 2749 2750 2751
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2752
		changed = true;
2753 2754 2755 2756
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2757
		changed = true;
2758
	}
2759

2760 2761 2762 2763
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2764

2765 2766 2767 2768 2769 2770 2771
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2772 2773
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2774 2775
{
	struct drm_device *dev = dev_priv->dev;
2776
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2777 2778 2779
	unsigned int dirty;
	uint32_t val;

2780
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2781 2782 2783 2784 2785
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2786
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2787
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2788
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2789
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2790
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2791 2792
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2793
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2794
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2795
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2796
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2797
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2798 2799
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2800
	if (dirty & WM_DIRTY_DDB) {
2801
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2816 2817
	}

2818
	if (dirty & WM_DIRTY_FBC) {
2819 2820 2821 2822 2823 2824 2825 2826
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2827 2828 2829 2830 2831
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2832 2833 2834 2835 2836
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2837

2838
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2839
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2840
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2841
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2842
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2843
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2844 2845

	dev_priv->wm.hw = *results;
2846 2847
}

2848 2849 2850 2851 2852 2853 2854
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2855
static void ilk_update_wm(struct drm_crtc *crtc)
2856
{
2857
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2858
	struct drm_device *dev = crtc->dev;
2859
	struct drm_i915_private *dev_priv = dev->dev_private;
2860 2861 2862
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
2863
	enum intel_ddb_partitioning partitioning;
2864
	struct intel_pipe_wm pipe_wm = {};
2865
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2866
	struct intel_wm_config config = {};
2867

2868
	ilk_compute_wm_parameters(crtc, &params);
2869 2870 2871 2872 2873

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2874

2875
	intel_crtc->wm.active = pipe_wm;
2876

2877 2878
	ilk_compute_wm_config(dev, &config);

2879
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2880
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2881 2882

	/* 5/6 split only in single pipe config on IVB+ */
2883 2884
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2885
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2886
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2887

2888
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2889
	} else {
2890
		best_lp_wm = &lp_wm_1_2;
2891 2892
	}

2893
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2894
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2895

2896
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2897

2898
	ilk_write_wm_values(dev_priv, &results);
2899 2900
}

2901 2902 2903 2904 2905
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
2906
{
2907
	struct drm_device *dev = plane->dev;
2908
	struct intel_plane *intel_plane = to_intel_plane(plane);
2909

2910 2911 2912
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
2913
	intel_plane->wm.vert_pixels = sprite_width;
2914
	intel_plane->wm.bytes_per_pixel = pixel_size;
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

2926
	ilk_update_wm(crtc);
2927 2928
}

2929 2930 2931 2932
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2933
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2944
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2945
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2946

2947 2948 2949
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2979
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2980 2981
	struct drm_crtc *crtc;

2982
	for_each_crtc(dev, crtc)
2983 2984 2985 2986 2987 2988 2989
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2990 2991 2992 2993
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
2994

2995
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2996 2997 2998 2999 3000
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3001 3002 3003 3004 3005

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3038
void intel_update_watermarks(struct drm_crtc *crtc)
3039
{
3040
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3041 3042

	if (dev_priv->display.update_wm)
3043
		dev_priv->display.update_wm(crtc);
3044 3045
}

3046 3047
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3048 3049 3050
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3051
				    bool enabled, bool scaled)
3052
{
3053
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3054 3055

	if (dev_priv->display.update_sprite_wm)
3056 3057
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3058
						   pixel_size, enabled, scaled);
3059 3060
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3075
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3090
	i915_gem_object_ggtt_unpin(ctx);
3091 3092 3093 3094 3095
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3096 3097 3098 3099 3100 3101 3102 3103 3104
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3105 3106 3107 3108 3109
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3110 3111
	assert_spin_locked(&mchdev_lock);

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3129
static void ironlake_enable_drps(struct drm_device *dev)
3130 3131 3132 3133 3134
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3135 3136
	spin_lock_irq(&mchdev_lock);

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3160 3161
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3162

3163 3164 3165
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3182
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3183
		DRM_ERROR("stuck trying to change perf mode\n");
3184
	mdelay(1);
3185 3186 3187

	ironlake_set_drps(dev, fstart);

3188
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3189
		I915_READ(0x112e0);
3190 3191
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3192
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3193 3194

	spin_unlock_irq(&mchdev_lock);
3195 3196
}

3197
static void ironlake_disable_drps(struct drm_device *dev)
3198 3199
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3200 3201 3202 3203 3204
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3205 3206 3207 3208 3209 3210 3211 3212 3213

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3214
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3215
	mdelay(1);
3216 3217
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3218
	mdelay(1);
3219

3220
	spin_unlock_irq(&mchdev_lock);
3221 3222
}

3223 3224 3225 3226 3227
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3228
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3229
{
3230
	u32 limits;
3231

3232 3233 3234 3235 3236 3237
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3238 3239 3240
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3241 3242 3243 3244

	return limits;
}

3245 3246 3247 3248
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

D
Daisy Sun 已提交
3249 3250 3251
	if (dev_priv->rps.is_bdw_sw_turbo)
		return;

3252 3253 3254
	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3255
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3256 3257 3258 3259
			new_power = BETWEEN;
		break;

	case BETWEEN:
3260
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3261
			new_power = LOW_POWER;
3262
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3263 3264 3265 3266
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3267
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3268 3269 3270 3271
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3272
	if (val == dev_priv->rps.min_freq_softlimit)
3273
		new_power = LOW_POWER;
3274
	if (val == dev_priv->rps.max_freq_softlimit)
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3340 3341 3342 3343 3344 3345 3346 3347 3348
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3349 3350 3351
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3352 3353 3354 3355 3356 3357
	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
		mask |= GEN6_PM_RP_UP_EI_EXPIRED;

3358 3359 3360
	if (IS_GEN8(dev_priv->dev))
		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;

3361 3362 3363
	return ~mask;
}

3364 3365 3366
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3367 3368 3369
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3370

3371
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3372 3373
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3374

C
Chris Wilson 已提交
3375 3376 3377 3378 3379
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3380

3381
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3382 3383 3384 3385 3386 3387 3388
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3389
	}
3390 3391 3392 3393

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3394
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3395
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3396

3397 3398
	POSTING_READ(GEN6_RPNSWREQ);

3399
	dev_priv->rps.cur_freq = val;
3400
	trace_intel_gpu_freq_change(val * 50);
3401 3402
}

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3414 3415 3416 3417 3418 3419 3420 3421
	struct drm_device *dev = dev_priv->dev;

	/* Latest VLV doesn't need to force the gfx clock */
	if (dev->pdev->revision >= 0xd) {
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3422 3423 3424 3425
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3426
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3427 3428 3429 3430 3431
		return;

	/* Mask turbo interrupt so that they will not come in between */
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);

3432
	vlv_force_gfx_clock(dev_priv, true);
3433

3434
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3435 3436

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3437
					dev_priv->rps.min_freq_softlimit);
3438 3439 3440 3441 3442

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
				& GENFREQSTATUS) == 0, 5))
		DRM_ERROR("timed out waiting for Punit\n");

3443
	vlv_force_gfx_clock(dev_priv, false);
3444

3445 3446
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3447 3448
}

3449 3450
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3451 3452
	struct drm_device *dev = dev_priv->dev;

3453
	mutex_lock(&dev_priv->rps.hw_lock);
3454
	if (dev_priv->rps.enabled) {
3455 3456 3457
		if (IS_CHERRYVIEW(dev))
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		else if (IS_VALLEYVIEW(dev))
3458
			vlv_set_rps_idle(dev_priv);
D
Daisy Sun 已提交
3459 3460
		else if (!dev_priv->rps.is_bdw_sw_turbo
					|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3461
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
D
Daisy Sun 已提交
3462 3463
		}

3464 3465
		dev_priv->rps.last_adj = 0;
	}
3466 3467 3468 3469 3470
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
3471 3472
	struct drm_device *dev = dev_priv->dev;

3473
	mutex_lock(&dev_priv->rps.hw_lock);
3474
	if (dev_priv->rps.enabled) {
3475
		if (IS_VALLEYVIEW(dev))
3476
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
D
Daisy Sun 已提交
3477 3478
		else if (!dev_priv->rps.is_bdw_sw_turbo
					|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3479
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
D
Daisy Sun 已提交
3480 3481
		}

3482 3483
		dev_priv->rps.last_adj = 0;
	}
3484 3485 3486
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3487 3488 3489
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3490

3491
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3492 3493
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3494

3495
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3496 3497
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq,
3498
			 vlv_gpu_freq(dev_priv, val), val);
3499

3500 3501 3502 3503
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

3504 3505
	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3506

3507
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3508

3509
	dev_priv->rps.cur_freq = val;
3510
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3511 3512
}

3513 3514 3515
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daisy Sun 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
		if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
			del_timer(&dev_priv->rps.sw_turbo.flip_timer);
		dev_priv-> rps.is_bdw_sw_turbo = false;
	} else {
		I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
		I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
					   ~dev_priv->pm_rps_events);
		/* Complete PM interrupt masking here doesn't race with the rps work
		 * item again unmasking PM interrupts because that is using a different
		 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
		 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
		 * gen8_enable_rps will clean up. */

		spin_lock_irq(&dev_priv->irq_lock);
		dev_priv->rps.pm_iir = 0;
		spin_unlock_irq(&dev_priv->irq_lock);

		I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	}
3536 3537
}

3538
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3539 3540 3541 3542
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3543 3544
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
				~dev_priv->pm_rps_events);
3545 3546 3547 3548 3549
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3550
	spin_lock_irq(&dev_priv->irq_lock);
3551
	dev_priv->rps.pm_iir = 0;
3552
	spin_unlock_irq(&dev_priv->irq_lock);
3553

3554
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3555 3556
}

3557
static void gen6_disable_rps(struct drm_device *dev)
3558 3559 3560 3561
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3562
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3563

3564 3565 3566 3567
	if (IS_BROADWELL(dev))
		gen8_disable_rps_interrupts(dev);
	else
		gen6_disable_rps_interrupts(dev);
3568 3569
}

3570 3571 3572 3573 3574
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3575 3576

	gen8_disable_rps_interrupts(dev);
3577 3578
}

3579 3580 3581 3582
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3583 3584 3585 3586
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

3587
	I915_WRITE(GEN6_RC_CONTROL, 0);
3588

3589 3590
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);

3591
	gen6_disable_rps_interrupts(dev);
3592 3593
}

B
Ben Widawsky 已提交
3594 3595
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3596 3597 3598 3599 3600 3601
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3602 3603 3604 3605
	DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
		      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3606 3607
}

I
Imre Deak 已提交
3608
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3609
{
3610 3611 3612 3613
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3614 3615 3616 3617
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3618
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	if (enable_rc6 >= 0) {
		int mask;

		if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3629 3630
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3631 3632 3633

		return enable_rc6 & mask;
	}
3634

3635 3636 3637
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3638

3639
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3640
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3641 3642

	return INTEL_RC6_ENABLE;
3643 3644
}

I
Imre Deak 已提交
3645 3646 3647 3648 3649
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3650 3651 3652 3653 3654 3655
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
	WARN_ON(dev_priv->rps.pm_iir);
3656
	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3657 3658 3659 3660
	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	spin_unlock_irq(&dev_priv->irq_lock);
}

3661 3662 3663 3664 3665
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
3666
	WARN_ON(dev_priv->rps.pm_iir);
3667
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3668
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3669 3670 3671
	spin_unlock_irq(&dev_priv->irq_lock);
}

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* XXX: only BYT has a special efficient freq */
	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}

D
Daisy Sun 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
static void bdw_sw_calculate_freq(struct drm_device *dev,
		struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u64 busy = 0;
	u32 busyness_pct = 0;
	u32 elapsed_time = 0;
	u16 new_freq = 0;

	if (!c || !cur_time || !c0)
		return;

	if (0 == c->last_c0)
		goto out;

	/* Check Evaluation interval */
	elapsed_time = *cur_time - c->last_ts;
	if (elapsed_time < c->eval_interval)
		return;

	mutex_lock(&dev_priv->rps.hw_lock);

	/*
	 * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
	 * Whole busyness_pct calculation should be
	 *     busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
	 *     busyness_pct = (u32)(busy * 100 / elapsed_time);
	 * The final formula is to simplify CPU calculation
	 */
	busy = (u64)(*c0 - c->last_c0) << 12;
	do_div(busy, elapsed_time);
	busyness_pct = (u32)busy;

	if (c->is_up && busyness_pct >= c->it_threshold_pct)
		new_freq = (u16)dev_priv->rps.cur_freq + 3;
	if (!c->is_up && busyness_pct <= c->it_threshold_pct)
		new_freq = (u16)dev_priv->rps.cur_freq - 1;

	/* Adjust to new frequency busyness and compare with threshold */
	if (0 != new_freq) {
		if (new_freq > dev_priv->rps.max_freq_softlimit)
			new_freq = dev_priv->rps.max_freq_softlimit;
		else if (new_freq < dev_priv->rps.min_freq_softlimit)
			new_freq = dev_priv->rps.min_freq_softlimit;

		gen6_set_rps(dev, new_freq);
	}

	mutex_unlock(&dev_priv->rps.hw_lock);

out:
	c->last_c0 = *c0;
	c->last_ts = *cur_time;
}

static void gen8_set_frequency_RP0(struct work_struct *work)
{
	struct intel_rps_bdw_turbo *p_bdw_turbo =
			container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
	struct intel_gen6_power_mgmt *p_power_mgmt =
			container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
	struct drm_i915_private *dev_priv =
			container_of(p_power_mgmt, struct drm_i915_private, rps);

	mutex_lock(&dev_priv->rps.hw_lock);
	gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void flip_active_timeout_handler(unsigned long var)
{
	struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;

	del_timer(&dev_priv->rps.sw_turbo.flip_timer);
	atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);

	queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
}

void bdw_software_turbo(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
	u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */

	bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
			&current_time, &current_c0);
	bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
			&current_time, &current_c0);
}

3785 3786 3787
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3788
	struct intel_engine_cs *ring;
3789
	uint32_t rc6_mask = 0, rp_state_cap;
D
Daisy Sun 已提交
3790 3791 3792
	uint32_t threshold_up_pct, threshold_down_pct;
	uint32_t ei_up, ei_down; /* up and down evaluation interval */
	u32 rp_ctl_flag;
3793 3794
	int unused;

D
Daisy Sun 已提交
3795 3796 3797
	/* Use software Turbo for BDW */
	dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);

3798 3799 3800 3801 3802
	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3803
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3804 3805 3806 3807 3808

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3809
	parse_rp_state_cap(dev_priv, rp_state_cap);
3810 3811 3812 3813 3814 3815 3816 3817

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
3818 3819 3820 3821
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3822 3823 3824 3825

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3826
	intel_print_rc6_info(dev, rc6_mask);
3827 3828 3829 3830 3831 3832 3833 3834
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
3835 3836

	/* 4 Program defaults and thresholds for RPS*/
3837 3838 3839 3840
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
D
Daisy Sun 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	ei_up = 84480; /* 84.48ms */
	ei_down = 448000;
	threshold_up_pct = 90; /* x percent busy */
	threshold_down_pct = 70;

	if (dev_priv->rps.is_bdw_sw_turbo) {
		dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
		dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
		dev_priv->rps.sw_turbo.up.is_up = true;
		dev_priv->rps.sw_turbo.up.last_ts = 0;
		dev_priv->rps.sw_turbo.up.last_c0 = 0;

		dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
		dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
		dev_priv->rps.sw_turbo.down.is_up = false;
		dev_priv->rps.sw_turbo.down.last_ts = 0;
		dev_priv->rps.sw_turbo.down.last_c0 = 0;

		/* Start the timer to track if flip comes*/
		dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */

		init_timer(&dev_priv->rps.sw_turbo.flip_timer);
		dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
		dev_priv->rps.sw_turbo.flip_timer.data  = (unsigned long) dev_priv;
		dev_priv->rps.sw_turbo.flip_timer.expires =
			usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
		add_timer(&dev_priv->rps.sw_turbo.flip_timer);
		INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);

		atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
	} else {
		/* NB: Docs say 1s, and 1000000 - which aren't equivalent
		 * 1 second timeout*/
		I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));

		/* Docs recommend 900MHz, and 300 MHz respectively */
		I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
			   dev_priv->rps.max_freq_softlimit << 24 |
			   dev_priv->rps.min_freq_softlimit << 16);

		I915_WRITE(GEN6_RP_UP_THRESHOLD,
			FREQ_1_28_US(ei_up * threshold_up_pct / 100));
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
			FREQ_1_28_US(ei_down * threshold_down_pct / 100));
		I915_WRITE(GEN6_RP_UP_EI,
			FREQ_1_28_US(ei_up));
		I915_WRITE(GEN6_RP_DOWN_EI,
			FREQ_1_28_US(ei_down));

		I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
	}
3892 3893

	/* 5: Enable RPS */
D
Daisy Sun 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
					GEN6_RP_MEDIA_HW_NORMAL_MODE |
					GEN6_RP_MEDIA_IS_GFX |
					GEN6_RP_UP_BUSY_AVG |
					GEN6_RP_DOWN_IDLE_AVG;
	if (!dev_priv->rps.is_bdw_sw_turbo)
		rp_ctl_flag |= GEN6_RP_ENABLE;

	I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);

	/* 6: Ring frequency + overclocking
	 * (our driver does this later */
3906
	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
D
Daisy Sun 已提交
3907 3908
	if (!dev_priv->rps.is_bdw_sw_turbo)
		gen8_enable_rps_interrupts(dev);
3909

3910
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3911 3912
}

3913
static void gen6_enable_rps(struct drm_device *dev)
3914
{
3915
	struct drm_i915_private *dev_priv = dev->dev_private;
3916
	struct intel_engine_cs *ring;
3917
	u32 rp_state_cap;
3918
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3919 3920
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3921
	int i, ret;
3922

3923
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3924

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3939
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3940

3941 3942
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

3943
	parse_rp_state_cap(dev_priv, rp_state_cap);
J
Jeff McGee 已提交
3944

3945 3946 3947 3948 3949 3950 3951 3952 3953
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3954 3955
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3956 3957 3958

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3959
	if (IS_IVYBRIDGE(dev))
3960 3961 3962
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3963
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3964 3965
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3966
	/* Check if we are enabling RC6 */
3967 3968 3969 3970
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3971 3972 3973 3974
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3975

3976 3977 3978
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3979

B
Ben Widawsky 已提交
3980
	intel_print_rc6_info(dev, rc6_mask);
3981 3982 3983 3984 3985 3986

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3987 3988
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3989 3990
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3991
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3992
	if (ret)
B
Ben Widawsky 已提交
3993
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3994 3995 3996 3997

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3998
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3999
				 (pcu_mbox & 0xff) * 50);
4000
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4001 4002
	}

4003
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4004
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4005

4006
	gen6_enable_rps_interrupts(dev);
4007

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4022
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4023 4024
}

4025
static void __gen6_update_ring_freq(struct drm_device *dev)
4026
{
4027
	struct drm_i915_private *dev_priv = dev->dev_private;
4028
	int min_freq = 15;
4029 4030
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4031
	int scaling_factor = 180;
4032
	struct cpufreq_policy *policy;
4033

4034
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4045
		max_ia_freq = tsc_khz;
4046
	}
4047 4048 4049 4050

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4051
	min_ring_freq = I915_READ(DCLK) & 0xf;
4052 4053
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4054

4055 4056 4057 4058 4059
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4060
	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4061
	     gpu_freq--) {
4062
		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4063 4064
		unsigned int ia_freq = 0, ring_freq = 0;

4065 4066 4067 4068
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4069
			ring_freq = mult_frac(gpu_freq, 5, 4);
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4086

B
Ben Widawsky 已提交
4087 4088
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4089 4090 4091
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4092 4093 4094
	}
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4107
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
{
	u32 val, rp0;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp1;
}

4137
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4138 4139 4140 4141 4142 4143 4144 4145
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
	return rpn;
}

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4157
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4158 4159 4160
{
	u32 val, rp0;

4161
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4174
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4175
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4176
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4177 4178 4179 4180 4181
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4182
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4183
{
4184
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4185 4186
}

4187 4188 4189 4190 4191 4192 4193 4194 4195
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
}

4225 4226 4227 4228 4229 4230 4231 4232
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4233 4234
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4235 4236 4237 4238 4239 4240 4241 4242
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4243
								      I915_GTT_OFFSET_NONE,
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4280 4281 4282
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4283
	u32 val;
4284 4285 4286 4287 4288

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4315 4316 4317 4318 4319
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4335 4336
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4337
	struct drm_i915_private *dev_priv = dev->dev_private;
4338
	u32 val;
4339

4340
	cherryview_setup_pctx(dev);
4341 4342 4343

	mutex_lock(&dev_priv->rps.hw_lock);

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4381 4382 4383 4384 4385
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4386 4387 4388 4389 4390
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

4391 4392 4393 4394 4395 4396
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4397 4398 4399 4400 4401 4402 4403 4404
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4405 4406
}

4407 4408 4409 4410 4411
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4412 4413 4414 4415
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4416
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4463 4464 4465 4466 4467 4468 4469 4470
	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

4471 4472 4473 4474
	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);

4475 4476 4477
	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4478
		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4499 4500
	gen8_enable_rps_interrupts(dev);

4501 4502 4503
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}

4504 4505 4506
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4507
	struct intel_engine_cs *ring;
4508
	u32 gtfifodbg, val, rc6_mode = 0;
4509 4510 4511 4512
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4513 4514
	valleyview_check_pctx(dev_priv);

4515
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4516 4517
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4518 4519 4520
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4521 4522
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4523 4524 4525 4526 4527 4528 4529

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4530
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4547
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4548 4549

	/* allows RC6 residency counter to work */
4550
	I915_WRITE(VLV_COUNTER_CONTROL,
4551 4552
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4553 4554
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4555

4556
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4557
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4558 4559 4560

	intel_print_rc6_info(dev, rc6_mode);

4561
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4562

4563
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4564 4565 4566 4567

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4568
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4569
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4570 4571
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);
4572

4573
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4574 4575
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);
4576

4577
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4578

4579
	gen6_enable_rps_interrupts(dev);
4580

4581
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4582 4583
}

4584
void ironlake_teardown_rc6(struct drm_device *dev)
4585 4586 4587
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4588
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4589
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4590 4591
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4592 4593
	}

4594
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4595
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4596 4597
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4598 4599 4600
	}
}

4601
static void ironlake_disable_rc6(struct drm_device *dev)
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4623 4624 4625
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4626 4627
		return -ENOMEM;

4628 4629 4630
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4631 4632 4633 4634 4635 4636 4637
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4638
static void ironlake_enable_rc6(struct drm_device *dev)
4639 4640
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4641
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4642
	bool was_interruptible;
4643 4644 4645 4646 4647 4648 4649 4650
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4651 4652
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4653
	ret = ironlake_setup_rc6(dev);
4654
	if (ret)
4655 4656
		return;

4657 4658 4659
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4660 4661 4662 4663
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4664
	ret = intel_ring_begin(ring, 6);
4665 4666
	if (ret) {
		ironlake_teardown_rc6(dev);
4667
		dev_priv->mm.interruptible = was_interruptible;
4668 4669 4670
		return;
	}

4671 4672
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4673
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4674 4675 4676 4677 4678 4679 4680 4681
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4682 4683 4684 4685 4686 4687

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4688 4689
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4690
	if (ret) {
4691
		DRM_ERROR("failed to enable ironlake power savings\n");
4692 4693 4694 4695
		ironlake_teardown_rc6(dev);
		return;
	}

4696
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4697
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4698

4699
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4700 4701
}

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4731
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4732 4733 4734 4735 4736 4737
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4738 4739
	assert_spin_locked(&mchdev_lock);

4740
	diff1 = now - dev_priv->ips.last_time1;
4741 4742 4743 4744 4745 4746 4747

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4748
		return dev_priv->ips.chipset_power;
4749 4750 4751 4752 4753 4754 4755 4756

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4757 4758
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4759 4760
		diff += total_count;
	} else {
4761
		diff = total_count - dev_priv->ips.last_count1;
4762 4763 4764
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4765 4766
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4777 4778
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4779

4780
	dev_priv->ips.chipset_power = ret;
4781 4782 4783 4784

	return ret;
}

4785 4786
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
4787
	struct drm_device *dev = dev_priv->dev;
4788 4789
	unsigned long val;

4790
	if (INTEL_INFO(dev)->gen != 5)
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
4819
	struct drm_device *dev = dev_priv->dev;
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
4953
	if (INTEL_INFO(dev)->is_mobile)
4954 4955 4956 4957 4958
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4959
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4960
{
4961
	u64 now, diff, diffms;
4962 4963
	u32 count;

4964
	assert_spin_locked(&mchdev_lock);
4965

4966 4967 4968
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
4969 4970 4971 4972 4973 4974 4975

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4976 4977
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4978 4979
		diff += count;
	} else {
4980
		diff = count - dev_priv->ips.last_count2;
4981 4982
	}

4983 4984
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4985 4986 4987 4988

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4989
	dev_priv->ips.gfx_power = diff;
4990 4991
}

4992 4993
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
4994 4995 4996
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
4997 4998
		return;

4999
	spin_lock_irq(&mchdev_lock);
5000 5001 5002

	__i915_update_gfx_val(dev_priv);

5003
	spin_unlock_irq(&mchdev_lock);
5004 5005
}

5006
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5007 5008 5009 5010
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5011 5012
	assert_spin_locked(&mchdev_lock);

5013
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5033
	corr2 = (corr * dev_priv->ips.corr);
5034 5035 5036 5037

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5038
	__i915_update_gfx_val(dev_priv);
5039

5040
	return dev_priv->ips.gfx_power + state2;
5041 5042
}

5043 5044
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5045
	struct drm_device *dev = dev_priv->dev;
5046 5047
	unsigned long val;

5048
	if (INTEL_INFO(dev)->gen != 5)
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5071
	spin_lock_irq(&mchdev_lock);
5072 5073 5074 5075
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5076 5077
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5078 5079 5080 5081

	ret = chipset_val + graphics_val;

out_unlock:
5082
	spin_unlock_irq(&mchdev_lock);
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5098
	spin_lock_irq(&mchdev_lock);
5099 5100 5101 5102 5103 5104
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5105 5106
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5107 5108

out_unlock:
5109
	spin_unlock_irq(&mchdev_lock);
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5126
	spin_lock_irq(&mchdev_lock);
5127 5128 5129 5130 5131 5132
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5133 5134
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5135 5136

out_unlock:
5137
	spin_unlock_irq(&mchdev_lock);
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5151
	struct intel_engine_cs *ring;
5152
	bool ret = false;
5153
	int i;
5154

5155
	spin_lock_irq(&mchdev_lock);
5156 5157 5158 5159
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5160 5161
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5162 5163

out_unlock:
5164
	spin_unlock_irq(&mchdev_lock);
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5181
	spin_lock_irq(&mchdev_lock);
5182 5183 5184 5185 5186 5187
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5188
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5189

5190
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5191 5192 5193
		ret = false;

out_unlock:
5194
	spin_unlock_irq(&mchdev_lock);
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5222 5223
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5224
	spin_lock_irq(&mchdev_lock);
5225
	i915_mch_dev = dev_priv;
5226
	spin_unlock_irq(&mchdev_lock);
5227 5228 5229 5230 5231 5232

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5233
	spin_lock_irq(&mchdev_lock);
5234
	i915_mch_dev = NULL;
5235
	spin_unlock_irq(&mchdev_lock);
5236
}
5237

5238
static void intel_init_emon(struct drm_device *dev)
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5306
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5307 5308
}

5309 5310
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5311 5312
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5313 5314 5315
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5316
		valleyview_init_gt_powersave(dev);
5317 5318 5319 5320
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5321 5322 5323
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5324
		valleyview_cleanup_gt_powersave(dev);
5325 5326
}

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Interrupts should be disabled already to avoid re-arming. */
5340
	WARN_ON(intel_irqs_enabled(dev_priv));
5341 5342 5343 5344

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	cancel_work_sync(&dev_priv->rps.work);
5345 5346 5347

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5348 5349
}

5350 5351
void intel_disable_gt_powersave(struct drm_device *dev)
{
5352 5353
	struct drm_i915_private *dev_priv = dev->dev_private;

5354
	/* Interrupts should be disabled already to avoid re-arming. */
5355
	WARN_ON(intel_irqs_enabled(dev_priv));
5356

5357
	if (IS_IRONLAKE_M(dev)) {
5358
		ironlake_disable_drps(dev);
5359
		ironlake_disable_rc6(dev);
5360
	} else if (INTEL_INFO(dev)->gen >= 6) {
5361
		intel_suspend_gt_powersave(dev);
5362

5363
		mutex_lock(&dev_priv->rps.hw_lock);
5364 5365 5366
		if (IS_CHERRYVIEW(dev))
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5367 5368 5369
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5370
		dev_priv->rps.enabled = false;
5371
		mutex_unlock(&dev_priv->rps.hw_lock);
5372
	}
5373 5374
}

5375 5376 5377 5378 5379 5380 5381
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

D
Daisy Sun 已提交
5382 5383
	dev_priv->rps.is_bdw_sw_turbo = false;

5384
	mutex_lock(&dev_priv->rps.hw_lock);
5385

5386 5387 5388
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5389
		valleyview_enable_rps(dev);
5390 5391
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5392
		__gen6_update_ring_freq(dev);
5393 5394
	} else {
		gen6_enable_rps(dev);
5395
		__gen6_update_ring_freq(dev);
5396
	}
5397
	dev_priv->rps.enabled = true;
5398
	mutex_unlock(&dev_priv->rps.hw_lock);
5399 5400

	intel_runtime_pm_put(dev_priv);
5401 5402
}

5403 5404
void intel_enable_gt_powersave(struct drm_device *dev)
{
5405 5406
	struct drm_i915_private *dev_priv = dev->dev_private;

5407
	if (IS_IRONLAKE_M(dev)) {
5408
		mutex_lock(&dev->struct_mutex);
5409 5410 5411
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5412
		mutex_unlock(&dev->struct_mutex);
5413
	} else if (INTEL_INFO(dev)->gen >= 6) {
5414 5415 5416 5417
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5418 5419 5420 5421 5422 5423 5424
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5425
		 */
5426 5427 5428
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5429 5430 5431
	}
}

5432 5433 5434 5435 5436 5437 5438 5439
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->rps.enabled = false;
	intel_enable_gt_powersave(dev);
}

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5452 5453 5454 5455 5456
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5457
	for_each_pipe(dev_priv, pipe) {
5458 5459 5460
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5461
		intel_flush_primary_plane(dev_priv, pipe);
5462 5463 5464
	}
}

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5479
static void ironlake_init_clock_gating(struct drm_device *dev)
5480 5481
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5482
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5483

5484 5485 5486 5487
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5488 5489 5490
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5508
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5509 5510 5511
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5512 5513

	ilk_init_lp_watermarks(dev);
5514 5515 5516 5517 5518 5519 5520 5521 5522

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5523
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5524 5525 5526 5527 5528 5529 5530 5531
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5532 5533
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5534 5535 5536 5537 5538 5539
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5540

5541
	/* WaDisableRenderCachePipelinedFlush:ilk */
5542 5543
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5544

5545 5546 5547
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5548
	g4x_disable_trickle_feed(dev);
5549

5550 5551 5552 5553 5554 5555 5556
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5557
	uint32_t val;
5558 5559 5560 5561 5562 5563

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5564 5565 5566
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5567 5568
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5569 5570 5571
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5572
	for_each_pipe(dev_priv, pipe) {
5573 5574 5575
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5576
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5577
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5578 5579 5580
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5581 5582
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5583
	/* WADP0ClockGatingDisable */
5584
	for_each_pipe(dev_priv, pipe) {
5585 5586 5587
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5588 5589
}

5590 5591 5592 5593 5594 5595
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5596 5597 5598
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5599 5600
}

5601
static void gen6_init_clock_gating(struct drm_device *dev)
5602 5603
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5604
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5605

5606
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5607 5608 5609 5610 5611

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5612
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5613 5614 5615
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5616
	/* WaSetupGtModeTdRowDispatch:snb */
5617 5618 5619 5620
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5621 5622 5623
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5624 5625 5626
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5627 5628 5629 5630
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5631 5632 5633 5634
	 */
	I915_WRITE(GEN6_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5635
	ilk_init_lp_watermarks(dev);
5636 5637

	I915_WRITE(CACHE_MODE_0,
5638
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5654
	 *
5655 5656
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5657 5658 5659 5660 5661
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5662
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5663 5664
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5665

5666 5667 5668 5669 5670 5671 5672 5673
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5674 5675 5676 5677 5678 5679 5680 5681
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5682 5683
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5684 5685 5686 5687 5688 5689 5690
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5691 5692 5693 5694
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5695

5696
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5697

5698
	cpt_init_clock_gating(dev);
5699 5700

	gen6_check_mch_setup(dev);
5701 5702 5703 5704 5705 5706
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5707
	/*
5708
	 * WaVSThreadDispatchOverride:ivb,vlv
5709 5710 5711 5712
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5713 5714 5715 5716 5717 5718 5719 5720
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5733 5734 5735 5736 5737

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5738 5739
}

5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5752
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5753 5754
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5755
	enum pipe pipe;
B
Ben Widawsky 已提交
5756 5757 5758 5759

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5760 5761 5762 5763

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5764

5765 5766
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5767
	I915_WRITE(_3D_CHICKEN3,
5768
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5769

5770

5771
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5772
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5773

5774
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5775 5776 5777
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5778
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5779
	for_each_pipe(dev_priv, pipe) {
5780
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5781
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5782
			   BDW_DPRS_MASK_VBLANK_SRD);
5783
	}
5784

5785 5786 5787 5788 5789
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5790

5791 5792
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5793 5794 5795 5796

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5797

5798
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
5799 5800
}

5801 5802 5803 5804
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5805
	ilk_init_lp_watermarks(dev);
5806

5807 5808 5809 5810 5811
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5812
	/* This is required by WaCatErrorRejectionIssue:hsw */
5813 5814 5815 5816
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5817 5818 5819
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5820

5821 5822 5823
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5824 5825 5826 5827
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

5828
	/* WaDisable4x2SubspanOptimization:hsw */
5829 5830
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5831

5832 5833 5834
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5835 5836 5837 5838
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5839 5840 5841 5842
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5843
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5844 5845
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5846 5847 5848
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5849

5850
	lpt_init_clock_gating(dev);
5851 5852
}

5853
static void ivybridge_init_clock_gating(struct drm_device *dev)
5854 5855
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5856
	uint32_t snpcr;
5857

5858
	ilk_init_lp_watermarks(dev);
5859

5860
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5861

5862
	/* WaDisableEarlyCull:ivb */
5863 5864 5865
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5866
	/* WaDisableBackToBackFlipFix:ivb */
5867 5868 5869 5870
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5871
	/* WaDisablePSDDualDispatchEnable:ivb */
5872 5873 5874 5875
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5876 5877 5878
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5879
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5880 5881 5882
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5883
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5884 5885 5886
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5887 5888 5889 5890
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5891 5892 5893 5894
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5895 5896
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5897
	}
5898

5899
	/* WaForceL3Serialization:ivb */
5900 5901 5902
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5903
	/*
5904
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5905
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5906 5907
	 */
	I915_WRITE(GEN6_UCGCTL2,
5908
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5909

5910
	/* This is required by WaCatErrorRejectionIssue:ivb */
5911 5912 5913 5914
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5915
	g4x_disable_trickle_feed(dev);
5916 5917

	gen7_setup_fixed_func_scheduler(dev_priv);
5918

5919 5920 5921 5922 5923
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
5924

5925
	/* WaDisable4x2SubspanOptimization:ivb */
5926 5927
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5928

5929 5930 5931
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5932 5933 5934 5935
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5936 5937 5938 5939
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5940 5941 5942 5943
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5944

5945 5946
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5947 5948

	gen6_check_mch_setup(dev);
5949 5950
}

5951
static void valleyview_init_clock_gating(struct drm_device *dev)
5952 5953 5954
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5955
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5956

5957
	/* WaDisableEarlyCull:vlv */
5958 5959 5960
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5961
	/* WaDisableBackToBackFlipFix:vlv */
5962 5963 5964 5965
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5966
	/* WaPsdDispatchEnable:vlv */
5967
	/* WaDisablePSDDualDispatchEnable:vlv */
5968
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5969 5970
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5971

5972 5973 5974
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5975
	/* WaForceL3Serialization:vlv */
5976 5977 5978
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5979
	/* WaDisableDopClockGating:vlv */
5980 5981 5982
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5983
	/* This is required by WaCatErrorRejectionIssue:vlv */
5984 5985 5986 5987
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5988 5989
	gen7_setup_fixed_func_scheduler(dev_priv);

5990
	/*
5991
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5992
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5993 5994
	 */
	I915_WRITE(GEN6_UCGCTL2,
5995
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5996

5997 5998 5999 6000 6001
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6002

6003
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6004

6005 6006 6007 6008
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6009 6010
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6011

6012 6013 6014 6015 6016 6017
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6018
	/*
6019
	 * WaDisableVLVClockGating_VBIIssue:vlv
6020 6021 6022
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6023
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6024 6025
}

6026 6027 6028 6029 6030 6031 6032
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6033

6034 6035 6036 6037 6038
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6039 6040 6041 6042

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6043 6044 6045 6046

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6047 6048 6049 6050

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6051

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
	/* WaDisableGunitClockGating:chv (pre-production hw) */
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
		   GINT_DIS);

	/* WaDisableFfDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));

	/* WaDisableDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6063 6064
}

6065
static void g4x_init_clock_gating(struct drm_device *dev)
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6081 6082 6083 6084

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6085

6086 6087 6088
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6089
	g4x_disable_trickle_feed(dev);
6090 6091
}

6092
static void crestline_init_clock_gating(struct drm_device *dev)
6093 6094 6095 6096 6097 6098 6099 6100
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6101 6102
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6103 6104 6105

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6106 6107
}

6108
static void broadwater_init_clock_gating(struct drm_device *dev)
6109 6110 6111 6112 6113 6114 6115 6116 6117
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6118 6119
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6120 6121 6122

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6123 6124
}

6125
static void gen3_init_clock_gating(struct drm_device *dev)
6126 6127 6128 6129 6130 6131 6132
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6133 6134 6135

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6136 6137 6138

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6139 6140

	/* interrupts should cause a wake up from C3 */
6141
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6142 6143 6144

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6145 6146 6147

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6148 6149
}

6150
static void i85x_init_clock_gating(struct drm_device *dev)
6151 6152 6153 6154
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6155 6156 6157 6158

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6159 6160 6161

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6162 6163
}

6164
static void i830_init_clock_gating(struct drm_device *dev)
6165 6166 6167 6168
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6169 6170 6171 6172

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6173 6174 6175 6176 6177 6178 6179 6180 6181
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

6182 6183 6184 6185 6186 6187
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

6201 6202 6203 6204 6205
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
6206
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6207 6208 6209 6210 6211 6212
				   struct i915_power_well *power_well)
{
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

6213 6214
bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
					  enum intel_display_power_domain domain)
6215 6216
{
	struct i915_power_domains *power_domains;
6217 6218 6219 6220 6221 6222
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;

	if (dev_priv->pm.suspended)
		return false;
6223 6224

	power_domains = &dev_priv->power_domains;
6225

6226
	is_enabled = true;
6227

6228 6229 6230
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		if (power_well->always_on)
			continue;
6231

6232
		if (!power_well->hw_enabled) {
6233 6234 6235 6236
			is_enabled = false;
			break;
		}
	}
6237

6238
	return is_enabled;
6239 6240
}

6241
bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6242
				 enum intel_display_power_domain domain)
6243
{
6244
	struct i915_power_domains *power_domains;
6245
	bool ret;
6246

6247 6248 6249
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6250
	ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6251 6252
	mutex_unlock(&power_domains->lock);

6253
	return ret;
6254 6255
}

6256 6257 6258 6259 6260 6261
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
 */
6262 6263 6264 6265
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

6280
	if (IS_BROADWELL(dev) || (INTEL_INFO(dev)->gen >= 9))
6281
		gen8_irq_power_well_post_enable(dev_priv);
6282 6283
}

6284
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6285
			       struct i915_power_well *power_well, bool enable)
6286
{
6287 6288
	bool is_enabled, enable_requested;
	uint32_t tmp;
6289

6290
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6291 6292
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6293

6294 6295
	if (enable) {
		if (!enable_requested)
6296 6297
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
6298

6299 6300 6301
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6302
				      HSW_PWR_WELL_STATE_ENABLED), 20))
6303 6304
				DRM_ERROR("Timeout enabling power well\n");
		}
6305

6306
		hsw_power_well_post_enable(dev_priv);
6307 6308 6309
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6310
			POSTING_READ(HSW_PWR_WELL_DRIVER);
6311
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
6312 6313
		}
	}
6314
}
6315

6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);

	/*
	 * We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now.
	 */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, true);
}

static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, false);
}

6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
}

static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
					     struct i915_power_well *power_well)
{
	return true;
}

6352 6353
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
6354
{
6355
	enum punit_power_well power_well_id = power_well->data;
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
			 PUNIT_PWRGT_PWR_GATE(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
	ctrl &= ~mask;
	ctrl |= state;
	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}

static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, true);
}

static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, false);
}

static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	int power_well_id = power_well->data;
	bool enabled = false;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
	if (state == ctrl)
		enabled = true;

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
	WARN_ON(ctrl != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	vlv_set_power_well(dev_priv, power_well, true);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_enable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	/*
6454 6455
	 * During driver initialization/resume we can avoid restoring the
	 * part of the HW/SW state that will be inited anyway explicitly.
6456
	 */
6457 6458 6459 6460
	if (dev_priv->power_domains.initializing)
		return;

	intel_hpd_init(dev_priv->dev);
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474

	i915_redisable_vga_power_on(dev_priv->dev);
}

static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_disable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	vlv_set_power_well(dev_priv, power_well, false);
6475 6476

	vlv_power_sequencer_reset(dev_priv);
6477 6478
}

6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */

	vlv_set_power_well(dev_priv, power_well, true);

	/*
	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
	 *   b.	The other bits such as sfr settings / modesel may all
	 *	be set to 0.
	 *
	 * This should only be done on init and resume from S3 with
	 * both PLLs disabled, or we risk losing DPIO and PLL
	 * synchronization.
	 */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}

static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum pipe pipe;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

6516
	for_each_pipe(dev_priv, pipe)
6517 6518 6519 6520 6521 6522 6523 6524
		assert_pll_disabled(dev_priv, pipe);

	/* Assert common reset */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);

	vlv_set_power_well(dev_priv, power_well, false);
}

6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV);
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	} else {
		phy = DPIO_PHY1;
		I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	}
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
	vlv_set_power_well(dev_priv, power_well, true);

	/* Poll for phypwrgood signal */
	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
		DRM_ERROR("Display PHY %d is not power up\n", phy);

6556 6557
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
		   PHY_COM_LANE_RESET_DEASSERT(phy));
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
}

static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		assert_pll_disabled(dev_priv, PIPE_A);
		assert_pll_disabled(dev_priv, PIPE_B);
	} else {
		phy = DPIO_PHY1;
		assert_pll_disabled(dev_priv, PIPE_C);
	}

6577 6578
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
		   ~PHY_COM_LANE_RESET_DEASSERT(phy));
6579 6580 6581 6582

	vlv_set_power_well(dev_priv, power_well, false);
}

6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	enum pipe pipe = power_well->data;
	bool enabled;
	u32 state, ctrl;

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
	enabled = state == DP_SSS_PWR_ON(pipe);

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
	WARN_ON(ctrl << 16 != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well,
				    bool enable)
{
	enum pipe pipe = power_well->data;
	u32 state;
	u32 ctrl;

	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	ctrl &= ~DP_SSC_MASK(pipe);
	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}

static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, true);
}

static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, false);
}

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
static void check_power_well_state(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);

	if (power_well->always_on || !i915.disable_power_well) {
		if (!enabled)
			goto mismatch;

		return;
	}

	if (enabled != (power_well->count > 0))
		goto mismatch;

	return;

mismatch:
	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
		  power_well->name, power_well->always_on, enabled,
		  power_well->count, i915.disable_power_well);
}

6695
void intel_display_power_get(struct drm_i915_private *dev_priv,
6696 6697
			     enum intel_display_power_domain domain)
{
6698
	struct i915_power_domains *power_domains;
6699 6700
	struct i915_power_well *power_well;
	int i;
6701

6702 6703
	intel_runtime_pm_get(dev_priv);

6704 6705 6706
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6707

6708 6709 6710
	for_each_power_well(i, power_well, BIT(domain), power_domains) {
		if (!power_well->count++) {
			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6711
			power_well->ops->enable(dev_priv, power_well);
6712
			power_well->hw_enabled = true;
6713 6714 6715 6716
		}

		check_power_well_state(dev_priv, power_well);
	}
6717

6718 6719
	power_domains->domain_use_count[domain]++;

6720
	mutex_unlock(&power_domains->lock);
6721 6722
}

6723
void intel_display_power_put(struct drm_i915_private *dev_priv,
6724 6725
			     enum intel_display_power_domain domain)
{
6726
	struct i915_power_domains *power_domains;
6727 6728
	struct i915_power_well *power_well;
	int i;
6729

6730 6731 6732
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6733 6734 6735

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
6736

6737 6738 6739
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		WARN_ON(!power_well->count);

6740 6741
		if (!--power_well->count && i915.disable_power_well) {
			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6742
			power_well->hw_enabled = false;
6743
			power_well->ops->disable(dev_priv, power_well);
6744 6745 6746
		}

		check_power_well_state(dev_priv, power_well);
6747
	}
6748

6749
	mutex_unlock(&power_domains->lock);
6750 6751

	intel_runtime_pm_put(dev_priv);
6752 6753
}

6754
static struct i915_power_domains *hsw_pwr;
6755 6756

/* Display audio driver power well request */
6757
int i915_request_power_well(void)
6758
{
6759 6760
	struct drm_i915_private *dev_priv;

6761 6762
	if (!hsw_pwr)
		return -ENODEV;
6763

6764 6765
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6766
	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6767
	return 0;
6768 6769 6770 6771
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
6772
int i915_release_power_well(void)
6773
{
6774 6775
	struct drm_i915_private *dev_priv;

6776 6777
	if (!hsw_pwr)
		return -ENODEV;
6778

6779 6780
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6781
	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6782
	return 0;
6783 6784 6785
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
/*
 * Private interface for the audio driver to get CDCLK in kHz.
 *
 * Caller must request power well using i915_request_power_well() prior to
 * making the call.
 */
int i915_get_cdclk_freq(void)
{
	struct drm_i915_private *dev_priv;

	if (!hsw_pwr)
		return -ENODEV;

	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);

	return intel_ddi_get_cdclk_freq(dev_priv);
}
EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);


6807 6808 6809 6810
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)

#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
	BIT(POWER_DOMAIN_PIPE_A) |			\
6811
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
I
Imre Deak 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820
	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_CRT) |			\
P
Paulo Zanoni 已提交
6821
	BIT(POWER_DOMAIN_PLLS) |			\
6822
	BIT(POWER_DOMAIN_INIT))
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
#define HSW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
	HSW_ALWAYS_ON_POWER_DOMAINS |			\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK

#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_CRT) |		\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
#define CHV_PIPE_A_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_A) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_B_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_B) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_C_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_C) |	\
	BIT(POWER_DOMAIN_INIT))

6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6887 6888 6889 6890 6891 6892 6893 6894 6895
#define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6896 6897 6898 6899 6900 6901
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
	.sync_hw = i9xx_always_on_power_well_noop,
	.enable = i9xx_always_on_power_well_noop,
	.disable = i9xx_always_on_power_well_noop,
	.is_enabled = i9xx_always_on_power_well_enabled,
};
6902

6903 6904 6905 6906 6907 6908 6909
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
	.sync_hw = chv_pipe_power_well_sync_hw,
	.enable = chv_pipe_power_well_enable,
	.disable = chv_pipe_power_well_disable,
	.is_enabled = chv_pipe_power_well_enabled,
};

6910 6911 6912 6913 6914 6915 6916
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = chv_dpio_cmn_power_well_enable,
	.disable = chv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6917 6918 6919 6920 6921
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
6922
		.ops = &i9xx_always_on_power_well_ops,
6923 6924 6925
	},
};

6926 6927 6928 6929 6930 6931 6932
static const struct i915_power_well_ops hsw_power_well_ops = {
	.sync_hw = hsw_power_well_sync_hw,
	.enable = hsw_power_well_enable,
	.disable = hsw_power_well_disable,
	.is_enabled = hsw_power_well_enabled,
};

6933
static struct i915_power_well hsw_power_wells[] = {
6934 6935 6936 6937
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6938
		.ops = &i9xx_always_on_power_well_ops,
6939
	},
6940 6941
	{
		.name = "display",
6942
		.domains = HSW_DISPLAY_POWER_DOMAINS,
6943
		.ops = &hsw_power_well_ops,
6944 6945 6946 6947
	},
};

static struct i915_power_well bdw_power_wells[] = {
6948 6949 6950 6951
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6952
		.ops = &i9xx_always_on_power_well_ops,
6953
	},
6954 6955
	{
		.name = "display",
6956
		.domains = BDW_DISPLAY_POWER_DOMAINS,
6957
		.ops = &hsw_power_well_ops,
6958 6959 6960
	},
};

6961 6962 6963 6964 6965 6966 6967
static const struct i915_power_well_ops vlv_display_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_display_power_well_enable,
	.disable = vlv_display_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6968 6969 6970 6971 6972 6973 6974
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_dpio_cmn_power_well_enable,
	.disable = vlv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_power_well_enable,
	.disable = vlv_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well vlv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
7031 7032 7033 7034
	{
		.name = "dpio-common",
		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7035
		.ops = &vlv_dpio_cmn_power_well_ops,
7036
	},
7037 7038
};

7039 7040 7041 7042 7043 7044 7045
static struct i915_power_well chv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
7046 7047 7048 7049 7050 7051 7052
#if 0
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
	{
		.name = "pipe-a",
		.domains = CHV_PIPE_A_POWER_DOMAINS,
		.data = PIPE_A,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-b",
		.domains = CHV_PIPE_B_POWER_DOMAINS,
		.data = PIPE_B,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-c",
		.domains = CHV_PIPE_C_POWER_DOMAINS,
		.data = PIPE_C,
		.ops = &chv_pipe_power_well_ops,
	},
7071
#endif
7072 7073
	{
		.name = "dpio-common-bc",
7074 7075 7076 7077 7078 7079
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7080 7081 7082 7083 7084
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
	{
		.name = "dpio-common-d",
7085 7086 7087 7088 7089 7090
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7091 7092 7093
		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
#if 0
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
	{
		.name = "dpio-tx-d-01",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
	},
	{
		.name = "dpio-tx-d-23",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
	},
7137
#endif
7138 7139
};

7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
						 enum punit_power_well power_well_id)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->data == power_well_id)
			return power_well;
	}

	return NULL;
}

7155 7156 7157 7158 7159
#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

7160
int intel_power_domains_init(struct drm_i915_private *dev_priv)
7161
{
7162
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
7163

7164
	mutex_init(&power_domains->lock);
7165

7166 7167 7168 7169
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
7170
	if (IS_HASWELL(dev_priv->dev)) {
7171 7172
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
7173
	} else if (IS_BROADWELL(dev_priv->dev)) {
7174 7175
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
7176 7177
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, chv_power_wells);
7178 7179
	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, vlv_power_wells);
7180
	} else {
7181
		set_power_wells(power_domains, i9xx_always_on_power_well);
7182
	}
7183 7184 7185 7186

	return 0;
}

7187
void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7188 7189 7190 7191
{
	hsw_pwr = NULL;
}

7192
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7193
{
7194 7195
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
7196
	int i;
7197

7198
	mutex_lock(&power_domains->lock);
7199
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7200
		power_well->ops->sync_hw(dev_priv, power_well);
7201 7202 7203
		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
								     power_well);
	}
7204
	mutex_unlock(&power_domains->lock);
7205 7206
}

7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *disp2d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);

	/* nothing to do if common lane is already off */
	if (!cmn->ops->is_enabled(dev_priv, cmn))
		return;

	/* If the display might be already active skip this */
	if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
		return;

	DRM_DEBUG_KMS("toggling display PHY side reset\n");

	/* cmnlane needs DPLL registers */
	disp2d->ops->enable(dev_priv, disp2d);

	/*
	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
	 * Need to assert and de-assert PHY SB reset by gating the
	 * common lane power, then un-gating it.
	 * Simply ungating isn't enough to reset the PHY enough to get
	 * ports and lanes running.
	 */
	cmn->ops->disable(dev_priv, cmn);
}

7238
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7239
{
7240
	struct drm_device *dev = dev_priv->dev;
7241 7242 7243
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

	power_domains->initializing = true;
7244 7245 7246 7247 7248 7249 7250

	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
		mutex_lock(&power_domains->lock);
		vlv_cmnlane_wa(dev_priv);
		mutex_unlock(&power_domains->lock);
	}

7251
	/* For now, we need the power well to be always enabled. */
7252 7253
	intel_display_set_init_power(dev_priv, true);
	intel_power_domains_resume(dev_priv);
7254
	power_domains->initializing = false;
7255 7256
}

7257 7258
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
7259
	intel_runtime_pm_get(dev_priv);
7260 7261 7262 7263
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
7264
	intel_runtime_pm_put(dev_priv);
7265 7266
}

7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
	pm_runtime_get_noresume(device);
}

7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_set_active(device);

7313 7314 7315 7316 7317 7318 7319 7320 7321
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!intel_enable_rc6(dev)) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		return;
	}

7322 7323 7324
	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);
7325 7326

	pm_runtime_put_autosuspend(device);
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
}

void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

7337 7338 7339
	if (!intel_enable_rc6(dev))
		return;

7340 7341 7342 7343 7344
	/* Make sure we're not suspended first. */
	pm_runtime_get_sync(device);
	pm_runtime_disable(device);
}

7345 7346 7347 7348 7349
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7350
	if (HAS_FBC(dev)) {
7351
		if (INTEL_INFO(dev)->gen >= 7) {
7352
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7353 7354 7355 7356 7357
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
7358 7359 7360 7361 7362
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
7363
		} else {
7364 7365 7366
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
7367 7368 7369

			/* This value was pulled out of someone's hat */
			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7370 7371 7372
		}
	}

7373 7374 7375 7376 7377 7378
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7379 7380
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
7381
		ilk_setup_wm_latency(dev);
7382

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7395
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7396
		else if (IS_GEN6(dev))
7397
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7398
		else if (IS_IVYBRIDGE(dev))
7399
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7400
		else if (IS_HASWELL(dev))
7401
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7402
		else if (INTEL_INFO(dev)->gen == 8)
7403
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7404 7405
		else if (INTEL_INFO(dev)->gen == 9)
			dev_priv->display.init_clock_gating = gen9_init_clock_gating;
7406
	} else if (IS_CHERRYVIEW(dev)) {
7407
		dev_priv->display.update_wm = cherryview_update_wm;
7408
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7409 7410
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7411 7412
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
7413
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7427
			intel_set_memory_cxsr(dev_priv, false);
7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7445 7446 7447
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7448
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7449 7450
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7451
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7452 7453 7454 7455 7456 7457 7458 7459
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7460 7461 7462
	}
}

B
Ben Widawsky 已提交
7463 7464
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
7465
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
7489
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7509

7510
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7511
{
7512
	int div;
7513

7514
	/* 4 x czclk */
7515
	switch (dev_priv->mem_freq) {
7516
	case 800:
7517
		div = 10;
7518 7519
		break;
	case 1066:
7520
		div = 12;
7521 7522
		break;
	case 1333:
7523
		div = 16;
7524 7525 7526 7527 7528
		break;
	default:
		return -1;
	}

7529
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7530 7531
}

7532
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7533
{
7534
	int mul;
7535

7536
	/* 4 x czclk */
7537
	switch (dev_priv->mem_freq) {
7538
	case 800:
7539
		mul = 10;
7540 7541
		break;
	case 1066:
7542
		mul = 12;
7543 7544
		break;
	case 1333:
7545
		mul = 16;
7546 7547 7548 7549 7550
		break;
	default:
		return -1;
	}

7551
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7552 7553
}

7554
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578
{
	int div, freq;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		div = 5;
		break;
	case 267:
		div = 6;
		break;
	case 320:
	case 333:
	case 400:
		div = 8;
		break;
	default:
		return -1;
	}

	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);

	return freq;
}

7579
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
{
	int mul, opcode;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		mul = 5;
		break;
	case 267:
		mul = 6;
		break;
	case 320:
	case 333:
	case 400:
		mul = 8;
		break;
	default:
		return -1;
	}

7599
	/* CHV needs even values */
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);

	return opcode;
}

int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_gpu_freq(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_gpu_freq(dev_priv, val);

	return ret;
}

int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_freq_opcode(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_freq_opcode(dev_priv, val);

	return ret;
}

D
Daniel Vetter 已提交
7629
void intel_pm_setup(struct drm_device *dev)
7630 7631 7632
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7633 7634
	mutex_init(&dev_priv->rps.hw_lock);

7635 7636
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7637

7638
	dev_priv->pm.suspended = false;
7639
	dev_priv->pm._irqs_disabled = false;
7640
}