workqueue.c 140.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73

T
Tejun Heo 已提交
74 75 76
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100 101 102 103
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
104
	HIGHPRI_NICE_LEVEL	= -20,
105 106

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
107
};
L
Linus Torvalds 已提交
108 109

/*
T
Tejun Heo 已提交
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125
 * M: pool->manager_mutex protected.
126
 *
127
 * PL: wq_pool_mutex protected.
128
 *
129
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130
 *
131 132
 * WQ: wq->mutex protected.
 *
133
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
134 135
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
136 137
 */

138
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
139

140
struct worker_pool {
141
	spinlock_t		lock;		/* the pool lock */
142
	int			cpu;		/* I: the associated cpu */
143
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
144
	int			id;		/* I: pool ID */
145
	unsigned int		flags;		/* X: flags */
146 147 148

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
149 150

	/* nr_idle includes the ones off idle_list for rebinding */
151 152 153 154 155 156
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

157
	/* a workers is either on busy_hash or idle_list, or the manager */
158 159 160
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

161
	/* see manage_workers() for details on the two manager mutexes */
162
	struct mutex		manager_arb;	/* manager arbitration */
163
	struct mutex		manager_mutex;	/* manager exclusion */
164
	struct list_head	workers;	/* M: attached workers */
165
	struct completion	*detach_completion; /* all workers detached */
166

167 168
	struct ida		worker_ida;	/* worker IDs for task name */

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308 309 310
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

311
struct workqueue_struct *system_wq __read_mostly;
312
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_highpri_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_long_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_unbound_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_freezable_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_freezable_wq);
321 322 323 324
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325

326 327 328 329
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

330 331 332
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

333
#define assert_rcu_or_pool_mutex()					\
334
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 336
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
337

338
#define assert_rcu_or_wq_mutex(wq)					\
339
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340
			   lockdep_is_held(&wq->mutex),			\
341
			   "sched RCU or wq->mutex should be held")
342

343 344 345
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
346
	     (pool)++)
347

T
Tejun Heo 已提交
348 349 350
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
351
 * @pi: integer used for iteration
352
 *
353 354 355
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
356 357 358
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
359
 */
360 361
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
362
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
363
		else
T
Tejun Heo 已提交
364

365 366 367 368 369
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
370
 * This must be called with @pool->manager_mutex.
371 372 373 374
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
375 376
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
377
		if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
378 379
		else

380 381 382 383
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
384
 *
385
 * This must be called either with wq->mutex held or sched RCU read locked.
386 387
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
388 389 390
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
391 392
 */
#define for_each_pwq(pwq, wq)						\
393
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
394
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
395
		else
396

397 398 399 400
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

401 402 403 404 405
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
441
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
477
	.debug_hint	= work_debug_hint,
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

508 509 510 511 512 513 514
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

515 516 517 518 519
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

520 521 522 523 524 525 526
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
527 528 529 530
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

531
	lockdep_assert_held(&wq_pool_mutex);
532

533 534
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
535
	if (ret >= 0) {
T
Tejun Heo 已提交
536
		pool->id = ret;
537 538
		return 0;
	}
539
	return ret;
540 541
}

542 543 544 545 546 547 548 549
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
550 551
 *
 * Return: The unbound pool_workqueue for @node.
552 553 554 555 556 557 558 559
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
575

576
/*
577 578
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
579
 * is cleared and the high bits contain OFFQ flags and pool ID.
580
 *
581 582
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
583 584
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
585
 *
586
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
587
 * corresponding to a work.  Pool is available once the work has been
588
 * queued anywhere after initialization until it is sync canceled.  pwq is
589
 * available only while the work item is queued.
590
 *
591 592 593 594
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
595
 */
596 597
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
598
{
599
	WARN_ON_ONCE(!work_pending(work));
600 601
	atomic_long_set(&work->data, data | flags | work_static(work));
}
602

603
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
604 605
			 unsigned long extra_flags)
{
606 607
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
608 609
}

610 611 612 613 614 615 616
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

617 618
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
619
{
620 621 622 623 624 625 626
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
627
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
628
}
629

630
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
631
{
632 633
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
634 635
}

636
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
637
{
638
	unsigned long data = atomic_long_read(&work->data);
639

640
	if (data & WORK_STRUCT_PWQ)
641 642 643
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
644 645
}

646 647 648 649
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
650 651 652
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
653 654 655 656 657
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
658 659
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
660 661
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
662
{
663
	unsigned long data = atomic_long_read(&work->data);
664
	int pool_id;
665

666
	assert_rcu_or_pool_mutex();
667

668 669
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
670
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
671

672 673
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
674 675
		return NULL;

676
	return idr_find(&worker_pool_idr, pool_id);
677 678 679 680 681 682
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
683
 * Return: The worker_pool ID @work was last associated with.
684 685 686 687
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
688 689
	unsigned long data = atomic_long_read(&work->data);

690 691
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
692
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
693

694
	return data >> WORK_OFFQ_POOL_SHIFT;
695 696
}

697 698
static void mark_work_canceling(struct work_struct *work)
{
699
	unsigned long pool_id = get_work_pool_id(work);
700

701 702
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
703 704 705 706 707 708
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

709
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
710 711
}

712
/*
713 714
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
715
 * they're being called with pool->lock held.
716 717
 */

718
static bool __need_more_worker(struct worker_pool *pool)
719
{
720
	return !atomic_read(&pool->nr_running);
721 722
}

723
/*
724 725
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
726 727
 *
 * Note that, because unbound workers never contribute to nr_running, this
728
 * function will always return %true for unbound pools as long as the
729
 * worklist isn't empty.
730
 */
731
static bool need_more_worker(struct worker_pool *pool)
732
{
733
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
734
}
735

736
/* Can I start working?  Called from busy but !running workers. */
737
static bool may_start_working(struct worker_pool *pool)
738
{
739
	return pool->nr_idle;
740 741 742
}

/* Do I need to keep working?  Called from currently running workers. */
743
static bool keep_working(struct worker_pool *pool)
744
{
745 746
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
747 748 749
}

/* Do we need a new worker?  Called from manager. */
750
static bool need_to_create_worker(struct worker_pool *pool)
751
{
752
	return need_more_worker(pool) && !may_start_working(pool);
753
}
754

755
/* Do we have too many workers and should some go away? */
756
static bool too_many_workers(struct worker_pool *pool)
757
{
758
	bool managing = mutex_is_locked(&pool->manager_arb);
759 760
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
761

762 763 764 765 766 767 768
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

769
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
770 771
}

772
/*
773 774 775
 * Wake up functions.
 */

776
/* Return the first worker.  Safe with preemption disabled */
777
static struct worker *first_worker(struct worker_pool *pool)
778
{
779
	if (unlikely(list_empty(&pool->idle_list)))
780 781
		return NULL;

782
	return list_first_entry(&pool->idle_list, struct worker, entry);
783 784 785 786
}

/**
 * wake_up_worker - wake up an idle worker
787
 * @pool: worker pool to wake worker from
788
 *
789
 * Wake up the first idle worker of @pool.
790 791
 *
 * CONTEXT:
792
 * spin_lock_irq(pool->lock).
793
 */
794
static void wake_up_worker(struct worker_pool *pool)
795
{
796
	struct worker *worker = first_worker(pool);
797 798 799 800 801

	if (likely(worker))
		wake_up_process(worker->task);
}

802
/**
803 804 805 806 807 808 809 810 811 812
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
813
void wq_worker_waking_up(struct task_struct *task, int cpu)
814 815 816
{
	struct worker *worker = kthread_data(task);

817
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
818
		WARN_ON_ONCE(worker->pool->cpu != cpu);
819
		atomic_inc(&worker->pool->nr_running);
820
	}
821 822 823 824 825 826 827 828 829 830 831 832 833 834
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
835
 * Return:
836 837
 * Worker task on @cpu to wake up, %NULL if none.
 */
838
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
839 840
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
841
	struct worker_pool *pool;
842

843 844 845 846 847
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
848
	if (worker->flags & WORKER_NOT_RUNNING)
849 850
		return NULL;

851 852
	pool = worker->pool;

853
	/* this can only happen on the local cpu */
854 855
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
856 857 858 859 860 861

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
862 863 864
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
865
	 * manipulating idle_list, so dereferencing idle_list without pool
866
	 * lock is safe.
867
	 */
868 869
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
870
		to_wakeup = first_worker(pool);
871 872 873 874 875
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
876
 * @worker: self
877 878 879
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
880 881 882
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
883
 *
884
 * CONTEXT:
885
 * spin_lock_irq(pool->lock)
886 887 888 889
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
890
	struct worker_pool *pool = worker->pool;
891

892 893
	WARN_ON_ONCE(worker->task != current);

894 895 896 897 898 899 900 901
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
902
			if (atomic_dec_and_test(&pool->nr_running) &&
903
			    !list_empty(&pool->worklist))
904
				wake_up_worker(pool);
905
		} else
906
			atomic_dec(&pool->nr_running);
907 908
	}

909 910 911 912
	worker->flags |= flags;
}

/**
913
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
914
 * @worker: self
915 916
 * @flags: flags to clear
 *
917
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
918
 *
919
 * CONTEXT:
920
 * spin_lock_irq(pool->lock)
921 922 923
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
924
	struct worker_pool *pool = worker->pool;
925 926
	unsigned int oflags = worker->flags;

927 928
	WARN_ON_ONCE(worker->task != current);

929
	worker->flags &= ~flags;
930

931 932 933 934 935
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
936 937
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
938
			atomic_inc(&pool->nr_running);
939 940
}

941 942
/**
 * find_worker_executing_work - find worker which is executing a work
943
 * @pool: pool of interest
944 945
 * @work: work to find worker for
 *
946 947
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
948 949 950 951 952 953 954 955 956 957 958 959
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
960 961 962 963 964 965
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
966 967
 *
 * CONTEXT:
968
 * spin_lock_irq(pool->lock).
969
 *
970 971
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
972
 * otherwise.
973
 */
974
static struct worker *find_worker_executing_work(struct worker_pool *pool,
975
						 struct work_struct *work)
976
{
977 978
	struct worker *worker;

979
	hash_for_each_possible(pool->busy_hash, worker, hentry,
980 981 982
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
983 984 985
			return worker;

	return NULL;
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1003
 * spin_lock_irq(pool->lock).
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1087
static void pwq_activate_delayed_work(struct work_struct *work)
1088
{
1089
	struct pool_workqueue *pwq = get_work_pwq(work);
1090 1091

	trace_workqueue_activate_work(work);
1092
	move_linked_works(work, &pwq->pool->worklist, NULL);
1093
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1094
	pwq->nr_active++;
1095 1096
}

1097
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1098
{
1099
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1100 1101
						    struct work_struct, entry);

1102
	pwq_activate_delayed_work(work);
1103 1104
}

1105
/**
1106 1107
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1108 1109 1110
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1111
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1112 1113
 *
 * CONTEXT:
1114
 * spin_lock_irq(pool->lock).
1115
 */
1116
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1117
{
T
Tejun Heo 已提交
1118
	/* uncolored work items don't participate in flushing or nr_active */
1119
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1120
		goto out_put;
1121

1122
	pwq->nr_in_flight[color]--;
1123

1124 1125
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1126
		/* one down, submit a delayed one */
1127 1128
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1129 1130 1131
	}

	/* is flush in progress and are we at the flushing tip? */
1132
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1133
		goto out_put;
1134 1135

	/* are there still in-flight works? */
1136
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1137
		goto out_put;
1138

1139 1140
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1141 1142

	/*
1143
	 * If this was the last pwq, wake up the first flusher.  It
1144 1145
	 * will handle the rest.
	 */
1146 1147
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1148 1149
out_put:
	put_pwq(pwq);
1150 1151
}

1152
/**
1153
 * try_to_grab_pending - steal work item from worklist and disable irq
1154 1155
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1156
 * @flags: place to store irq state
1157 1158
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1159
 * stable state - idle, on timer or on worklist.
1160
 *
1161
 * Return:
1162 1163 1164
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1165 1166
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1167
 *
1168
 * Note:
1169
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1170 1171 1172
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1173 1174 1175 1176
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1177
 * This function is safe to call from any context including IRQ handler.
1178
 */
1179 1180
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1181
{
1182
	struct worker_pool *pool;
1183
	struct pool_workqueue *pwq;
1184

1185 1186
	local_irq_save(*flags);

1187 1188 1189 1190
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1191 1192 1193 1194 1195
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1196 1197 1198 1199 1200
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1201 1202 1203 1204 1205 1206 1207
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1208 1209
	pool = get_work_pool(work);
	if (!pool)
1210
		goto fail;
1211

1212
	spin_lock(&pool->lock);
1213
	/*
1214 1215 1216 1217 1218
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1219 1220
	 * item is currently queued on that pool.
	 */
1221 1222
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1223 1224 1225 1226 1227
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1228
		 * on the delayed_list, will confuse pwq->nr_active
1229 1230 1231 1232
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1233
			pwq_activate_delayed_work(work);
1234 1235

		list_del_init(&work->entry);
1236
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1237

1238
		/* work->data points to pwq iff queued, point to pool */
1239 1240 1241 1242
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1243
	}
1244
	spin_unlock(&pool->lock);
1245 1246 1247 1248 1249
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1250
	return -EAGAIN;
1251 1252
}

T
Tejun Heo 已提交
1253
/**
1254
 * insert_work - insert a work into a pool
1255
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1256 1257 1258 1259
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1260
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1261
 * work_struct flags.
T
Tejun Heo 已提交
1262 1263
 *
 * CONTEXT:
1264
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1265
 */
1266 1267
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1268
{
1269
	struct worker_pool *pool = pwq->pool;
1270

T
Tejun Heo 已提交
1271
	/* we own @work, set data and link */
1272
	set_work_pwq(work, pwq, extra_flags);
1273
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1274
	get_pwq(pwq);
1275 1276

	/*
1277 1278 1279
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1280 1281 1282
	 */
	smp_mb();

1283 1284
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1285 1286
}

1287 1288
/*
 * Test whether @work is being queued from another work executing on the
1289
 * same workqueue.
1290 1291 1292
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1293 1294 1295 1296 1297 1298 1299
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1300
	return worker && worker->current_pwq->wq == wq;
1301 1302
}

1303
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1304 1305
			 struct work_struct *work)
{
1306
	struct pool_workqueue *pwq;
1307
	struct worker_pool *last_pool;
1308
	struct list_head *worklist;
1309
	unsigned int work_flags;
1310
	unsigned int req_cpu = cpu;
1311 1312 1313 1314 1315 1316 1317 1318

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1319

1320
	debug_work_activate(work);
1321

1322
	/* if draining, only works from the same workqueue are allowed */
1323
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1324
	    WARN_ON_ONCE(!is_chained_work(wq)))
1325
		return;
1326
retry:
1327 1328 1329
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1330
	/* pwq which will be used unless @work is executing elsewhere */
1331
	if (!(wq->flags & WQ_UNBOUND))
1332
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1333 1334
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1335

1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1344

1345
		spin_lock(&last_pool->lock);
1346

1347
		worker = find_worker_executing_work(last_pool, work);
1348

1349 1350
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1351
		} else {
1352 1353
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1354
			spin_lock(&pwq->pool->lock);
1355
		}
1356
	} else {
1357
		spin_lock(&pwq->pool->lock);
1358 1359
	}

1360 1361 1362 1363
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1364 1365
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1379 1380
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1381

1382
	if (WARN_ON(!list_empty(&work->entry))) {
1383
		spin_unlock(&pwq->pool->lock);
1384 1385
		return;
	}
1386

1387 1388
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1389

1390
	if (likely(pwq->nr_active < pwq->max_active)) {
1391
		trace_workqueue_activate_work(work);
1392 1393
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1394 1395
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1396
		worklist = &pwq->delayed_works;
1397
	}
1398

1399
	insert_work(pwq, work, worklist, work_flags);
1400

1401
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1402 1403
}

1404
/**
1405 1406
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1407 1408 1409
 * @wq: workqueue to use
 * @work: work to queue
 *
1410 1411
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1412 1413
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1414
 */
1415 1416
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1417
{
1418
	bool ret = false;
1419
	unsigned long flags;
1420

1421
	local_irq_save(flags);
1422

1423
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1424
		__queue_work(cpu, wq, work);
1425
		ret = true;
1426
	}
1427

1428
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1429 1430
	return ret;
}
1431
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1432

1433
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1434
{
1435
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1436

1437
	/* should have been called from irqsafe timer with irq already off */
1438
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1439
}
1440
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1441

1442 1443
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1444
{
1445 1446 1447 1448 1449
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1450 1451
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1464
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1465

1466
	dwork->wq = wq;
1467
	dwork->cpu = cpu;
1468 1469 1470 1471 1472 1473
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1474 1475
}

1476 1477 1478 1479
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1480
 * @dwork: work to queue
1481 1482
 * @delay: number of jiffies to wait before queueing
 *
1483
 * Return: %false if @work was already on a queue, %true otherwise.  If
1484 1485
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1486
 */
1487 1488
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1489
{
1490
	struct work_struct *work = &dwork->work;
1491
	bool ret = false;
1492
	unsigned long flags;
1493

1494 1495
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1496

1497
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1498
		__queue_delayed_work(cpu, wq, dwork, delay);
1499
		ret = true;
1500
	}
1501

1502
	local_irq_restore(flags);
1503 1504
	return ret;
}
1505
EXPORT_SYMBOL(queue_delayed_work_on);
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1519
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1520 1521
 * pending and its timer was modified.
 *
1522
 * This function is safe to call from any context including IRQ handler.
1523 1524 1525 1526 1527 1528 1529
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1530

1531 1532 1533
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1534

1535 1536 1537
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1538
	}
1539 1540

	/* -ENOENT from try_to_grab_pending() becomes %true */
1541 1542
	return ret;
}
1543 1544
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1545 1546 1547 1548 1549 1550 1551 1552
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1553
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1554 1555
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1556
{
1557
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1558

1559 1560 1561 1562
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1563

1564 1565
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1566
	pool->nr_idle++;
1567
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1568 1569

	/* idle_list is LIFO */
1570
	list_add(&worker->entry, &pool->idle_list);
1571

1572 1573
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1574

1575
	/*
1576
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1577
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1578 1579
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1580
	 */
1581
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1582
		     pool->nr_workers == pool->nr_idle &&
1583
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1593
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1594 1595 1596
 */
static void worker_leave_idle(struct worker *worker)
{
1597
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1598

1599 1600
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1601
	worker_clr_flags(worker, WORKER_IDLE);
1602
	pool->nr_idle--;
T
Tejun Heo 已提交
1603 1604 1605
	list_del_init(&worker->entry);
}

1606
/**
1607 1608 1609 1610
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1611 1612 1613 1614 1615 1616
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1617
 * This function is to be used by unbound workers and rescuers to bind
1618 1619 1620
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1621
 * verbatim as it's best effort and blocking and pool may be
1622 1623
 * [dis]associated in the meantime.
 *
1624
 * This function tries set_cpus_allowed() and locks pool and verifies the
1625
 * binding against %POOL_DISASSOCIATED which is set during
1626 1627 1628
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1629 1630
 *
 * CONTEXT:
1631
 * Might sleep.  Called without any lock but returns with pool->lock
1632 1633
 * held.
 *
1634
 * Return:
1635
 * %true if the associated pool is online (@worker is successfully
1636 1637
 * bound), %false if offline.
 */
1638
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1639
__acquires(&pool->lock)
1640 1641
{
	while (true) {
1642
		/*
1643 1644 1645
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1646
		 * against POOL_DISASSOCIATED.
1647
		 */
1648
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1649
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1650

1651
		spin_lock_irq(&pool->lock);
1652
		if (pool->flags & POOL_DISASSOCIATED)
1653
			return false;
1654
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1655
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1656
			return true;
1657
		spin_unlock_irq(&pool->lock);
1658

1659 1660 1661 1662 1663 1664
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1665
		cpu_relax();
1666
		cond_resched();
1667 1668 1669
	}
}

T
Tejun Heo 已提交
1670 1671 1672 1673 1674
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1675 1676
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1677
		INIT_LIST_HEAD(&worker->scheduled);
1678
		INIT_LIST_HEAD(&worker->node);
1679 1680
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1681
	}
T
Tejun Heo 已提交
1682 1683 1684
	return worker;
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
 * Undo the attaching which had been done in create_worker().  The caller
 * worker shouldn't access to the pool after detached except it has other
 * reference to the pool.
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

	mutex_lock(&pool->manager_mutex);
1700 1701
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1702 1703 1704 1705 1706 1707 1708
		detach_completion = pool->detach_completion;
	mutex_unlock(&pool->manager_mutex);

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1709 1710
/**
 * create_worker - create a new workqueue worker
1711
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1712
 *
1713 1714
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1715 1716 1717 1718
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1719
 * Return:
T
Tejun Heo 已提交
1720 1721
 * Pointer to the newly created worker.
 */
1722
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1723 1724
{
	struct worker *worker = NULL;
1725
	int id = -1;
1726
	char id_buf[16];
T
Tejun Heo 已提交
1727

1728 1729
	lockdep_assert_held(&pool->manager_mutex);

1730 1731
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1732 1733
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1734 1735 1736 1737 1738

	worker = alloc_worker();
	if (!worker)
		goto fail;

1739
	worker->pool = pool;
T
Tejun Heo 已提交
1740 1741
	worker->id = id;

1742
	if (pool->cpu >= 0)
1743 1744
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1745
	else
1746 1747
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1748
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1749
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1750 1751 1752
	if (IS_ERR(worker->task))
		goto fail;

1753 1754 1755 1756 1757
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1758 1759 1760 1761
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1762
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1763

T
Tejun Heo 已提交
1764 1765 1766 1767 1768 1769
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1770
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1771

1772 1773
	/* successful, attach the worker to the pool */
	list_add_tail(&worker->node, &pool->workers);
1774

T
Tejun Heo 已提交
1775
	return worker;
1776

T
Tejun Heo 已提交
1777
fail:
1778
	if (id >= 0)
1779
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1780 1781 1782 1783 1784 1785 1786 1787
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1788
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1789 1790
 *
 * CONTEXT:
1791
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1792 1793 1794
 */
static void start_worker(struct worker *worker)
{
1795
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1796
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1797 1798 1799
	wake_up_process(worker->task);
}

1800 1801 1802 1803
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1804
 * Grab the managership of @pool and create and start a new worker for it.
1805 1806
 *
 * Return: 0 on success. A negative error code otherwise.
1807 1808 1809 1810 1811
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1812 1813
	mutex_lock(&pool->manager_mutex);

1814 1815 1816 1817 1818 1819 1820
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1821 1822
	mutex_unlock(&pool->manager_mutex);

1823 1824 1825
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1826 1827 1828 1829
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1830 1831
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1832 1833
 *
 * CONTEXT:
1834
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1835 1836 1837
 */
static void destroy_worker(struct worker *worker)
{
1838
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1839

1840 1841
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1842
	/* sanity check frenzy */
1843
	if (WARN_ON(worker->current_work) ||
1844 1845
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1846
		return;
T
Tejun Heo 已提交
1847

1848 1849
	pool->nr_workers--;
	pool->nr_idle--;
T
Tejun Heo 已提交
1850 1851

	list_del_init(&worker->entry);
1852
	worker->flags |= WORKER_DIE;
1853
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1854 1855
}

1856
static void idle_worker_timeout(unsigned long __pool)
1857
{
1858
	struct worker_pool *pool = (void *)__pool;
1859

1860
	spin_lock_irq(&pool->lock);
1861

1862
	while (too_many_workers(pool)) {
1863 1864 1865 1866
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1867
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1868 1869
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1870
		if (time_before(jiffies, expires)) {
1871
			mod_timer(&pool->idle_timer, expires);
1872
			break;
1873
		}
1874 1875

		destroy_worker(worker);
1876 1877
	}

1878
	spin_unlock_irq(&pool->lock);
1879
}
1880

1881
static void send_mayday(struct work_struct *work)
1882
{
1883 1884
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1885

1886
	lockdep_assert_held(&wq_mayday_lock);
1887

1888
	if (!wq->rescuer)
1889
		return;
1890 1891

	/* mayday mayday mayday */
1892
	if (list_empty(&pwq->mayday_node)) {
1893 1894 1895 1896 1897 1898
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1899
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1900
		wake_up_process(wq->rescuer->task);
1901
	}
1902 1903
}

1904
static void pool_mayday_timeout(unsigned long __pool)
1905
{
1906
	struct worker_pool *pool = (void *)__pool;
1907 1908
	struct work_struct *work;

1909
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1910
	spin_lock(&pool->lock);
1911

1912
	if (need_to_create_worker(pool)) {
1913 1914 1915 1916 1917 1918
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1919
		list_for_each_entry(work, &pool->worklist, entry)
1920
			send_mayday(work);
L
Linus Torvalds 已提交
1921
	}
1922

1923
	spin_unlock(&pool->lock);
1924
	spin_unlock_irq(&wq_mayday_lock);
1925

1926
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1927 1928
}

1929 1930
/**
 * maybe_create_worker - create a new worker if necessary
1931
 * @pool: pool to create a new worker for
1932
 *
1933
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1934 1935
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1936
 * sent to all rescuers with works scheduled on @pool to resolve
1937 1938
 * possible allocation deadlock.
 *
1939 1940
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1941 1942
 *
 * LOCKING:
1943
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1944 1945 1946
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1947
 * Return:
1948
 * %false if no action was taken and pool->lock stayed locked, %true
1949 1950
 * otherwise.
 */
1951
static bool maybe_create_worker(struct worker_pool *pool)
1952 1953
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1954
{
1955
	if (!need_to_create_worker(pool))
1956 1957
		return false;
restart:
1958
	spin_unlock_irq(&pool->lock);
1959

1960
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1961
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1962 1963 1964 1965

	while (true) {
		struct worker *worker;

1966
		worker = create_worker(pool);
1967
		if (worker) {
1968
			del_timer_sync(&pool->mayday_timer);
1969
			spin_lock_irq(&pool->lock);
1970
			start_worker(worker);
1971 1972
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1973 1974 1975
			return true;
		}

1976
		if (!need_to_create_worker(pool))
1977
			break;
L
Linus Torvalds 已提交
1978

1979 1980
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1981

1982
		if (!need_to_create_worker(pool))
1983 1984 1985
			break;
	}

1986
	del_timer_sync(&pool->mayday_timer);
1987
	spin_lock_irq(&pool->lock);
1988
	if (need_to_create_worker(pool))
1989 1990 1991 1992
		goto restart;
	return true;
}

1993
/**
1994 1995
 * manage_workers - manage worker pool
 * @worker: self
1996
 *
1997
 * Assume the manager role and manage the worker pool @worker belongs
1998
 * to.  At any given time, there can be only zero or one manager per
1999
 * pool.  The exclusion is handled automatically by this function.
2000 2001 2002 2003
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2004 2005
 *
 * CONTEXT:
2006
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2007 2008
 * multiple times.  Does GFP_KERNEL allocations.
 *
2009
 * Return:
2010 2011 2012 2013 2014
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2015
 */
2016
static bool manage_workers(struct worker *worker)
2017
{
2018
	struct worker_pool *pool = worker->pool;
2019
	bool ret = false;
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2042
	if (!mutex_trylock(&pool->manager_arb))
2043
		return ret;
2044

2045
	/*
2046 2047
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2048
	 */
2049
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2050
		spin_unlock_irq(&pool->lock);
2051
		mutex_lock(&pool->manager_mutex);
2052
		spin_lock_irq(&pool->lock);
2053 2054
		ret = true;
	}
2055

2056
	ret |= maybe_create_worker(pool);
2057

2058
	mutex_unlock(&pool->manager_mutex);
2059
	mutex_unlock(&pool->manager_arb);
2060
	return ret;
2061 2062
}

2063 2064
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2065
 * @worker: self
2066 2067 2068 2069 2070 2071 2072 2073 2074
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2075
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2076
 */
T
Tejun Heo 已提交
2077
static void process_one_work(struct worker *worker, struct work_struct *work)
2078 2079
__releases(&pool->lock)
__acquires(&pool->lock)
2080
{
2081
	struct pool_workqueue *pwq = get_work_pwq(work);
2082
	struct worker_pool *pool = worker->pool;
2083
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2084
	int work_color;
2085
	struct worker *collision;
2086 2087 2088 2089 2090 2091 2092 2093
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2094 2095 2096
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2097
#endif
2098 2099 2100
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2101
	 * unbound or a disassociated pool.
2102
	 */
2103
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2104
		     !(pool->flags & POOL_DISASSOCIATED) &&
2105
		     raw_smp_processor_id() != pool->cpu);
2106

2107 2108 2109 2110 2111 2112
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2113
	collision = find_worker_executing_work(pool, work);
2114 2115 2116 2117 2118
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2119
	/* claim and dequeue */
2120
	debug_work_deactivate(work);
2121
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2122
	worker->current_work = work;
2123
	worker->current_func = work->func;
2124
	worker->current_pwq = pwq;
2125
	work_color = get_work_color(work);
2126

2127 2128
	list_del_init(&work->entry);

2129 2130 2131 2132 2133 2134 2135
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2136
	/*
2137
	 * Unbound pool isn't concurrency managed and work items should be
2138 2139
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2140 2141
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2142

2143
	/*
2144
	 * Record the last pool and clear PENDING which should be the last
2145
	 * update to @work.  Also, do this inside @pool->lock so that
2146 2147
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2148
	 */
2149
	set_work_pool_and_clear_pending(work, pool->id);
2150

2151
	spin_unlock_irq(&pool->lock);
2152

2153
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2154
	lock_map_acquire(&lockdep_map);
2155
	trace_workqueue_execute_start(work);
2156
	worker->current_func(work);
2157 2158 2159 2160 2161
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2162
	lock_map_release(&lockdep_map);
2163
	lock_map_release(&pwq->wq->lockdep_map);
2164 2165

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2166 2167
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2168 2169
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2170 2171 2172 2173
		debug_show_held_locks(current);
		dump_stack();
	}

2174 2175 2176 2177 2178 2179 2180 2181 2182
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2183
	spin_lock_irq(&pool->lock);
2184

2185 2186 2187 2188
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2189
	/* we're done with it, release */
2190
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2191
	worker->current_work = NULL;
2192
	worker->current_func = NULL;
2193
	worker->current_pwq = NULL;
2194
	worker->desc_valid = false;
2195
	pwq_dec_nr_in_flight(pwq, work_color);
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2207
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2208 2209 2210
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2211
{
2212 2213
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2214
						struct work_struct, entry);
T
Tejun Heo 已提交
2215
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2216 2217 2218
	}
}

T
Tejun Heo 已提交
2219 2220
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2221
 * @__worker: self
T
Tejun Heo 已提交
2222
 *
2223 2224 2225 2226 2227
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2228 2229
 *
 * Return: 0
T
Tejun Heo 已提交
2230
 */
T
Tejun Heo 已提交
2231
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2232
{
T
Tejun Heo 已提交
2233
	struct worker *worker = __worker;
2234
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2235

2236 2237
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2238
woke_up:
2239
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2240

2241 2242
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2243
		spin_unlock_irq(&pool->lock);
2244 2245
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2246 2247

		set_task_comm(worker->task, "kworker/dying");
2248
		ida_simple_remove(&pool->worker_ida, worker->id);
2249 2250
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2251
		return 0;
T
Tejun Heo 已提交
2252
	}
2253

T
Tejun Heo 已提交
2254
	worker_leave_idle(worker);
2255
recheck:
2256
	/* no more worker necessary? */
2257
	if (!need_more_worker(pool))
2258 2259 2260
		goto sleep;

	/* do we need to manage? */
2261
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2262 2263
		goto recheck;

T
Tejun Heo 已提交
2264 2265 2266 2267 2268
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2269
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2270

2271
	/*
2272 2273 2274 2275 2276
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2277
	 */
2278
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2279 2280

	do {
T
Tejun Heo 已提交
2281
		struct work_struct *work =
2282
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2283 2284 2285 2286 2287 2288
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2289
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2290 2291 2292
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2293
		}
2294
	} while (keep_working(pool));
2295 2296

	worker_set_flags(worker, WORKER_PREP, false);
2297
sleep:
T
Tejun Heo 已提交
2298
	/*
2299 2300 2301 2302 2303
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2304 2305 2306
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2307
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2308 2309
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2310 2311
}

2312 2313
/**
 * rescuer_thread - the rescuer thread function
2314
 * @__rescuer: self
2315 2316
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2317
 * workqueue which has WQ_MEM_RECLAIM set.
2318
 *
2319
 * Regular work processing on a pool may block trying to create a new
2320 2321 2322 2323 2324
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2325 2326
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2327 2328 2329
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2330 2331
 *
 * Return: 0
2332
 */
2333
static int rescuer_thread(void *__rescuer)
2334
{
2335 2336
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2337
	struct list_head *scheduled = &rescuer->scheduled;
2338
	bool should_stop;
2339 2340

	set_user_nice(current, RESCUER_NICE_LEVEL);
2341 2342 2343 2344 2345 2346

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2347 2348 2349
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2359

2360
	/* see whether any pwq is asking for help */
2361
	spin_lock_irq(&wq_mayday_lock);
2362 2363 2364 2365

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2366
		struct worker_pool *pool = pwq->pool;
2367 2368 2369
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2370 2371
		list_del_init(&pwq->mayday_node);

2372
		spin_unlock_irq(&wq_mayday_lock);
2373 2374

		/* migrate to the target cpu if possible */
2375
		worker_maybe_bind_and_lock(pool);
2376
		rescuer->pool = pool;
2377 2378 2379 2380 2381

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2382
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2383
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2384
			if (get_work_pwq(work) == pwq)
2385 2386 2387
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2388

2389 2390 2391 2392 2393 2394
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2395
		/*
2396
		 * Leave this pool.  If keep_working() is %true, notify a
2397 2398 2399
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2400 2401
		if (keep_working(pool))
			wake_up_worker(pool);
2402

2403
		rescuer->pool = NULL;
2404
		spin_unlock(&pool->lock);
2405
		spin_lock(&wq_mayday_lock);
2406 2407
	}

2408
	spin_unlock_irq(&wq_mayday_lock);
2409

2410 2411 2412 2413 2414 2415
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2416 2417
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2418 2419
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2420 2421
}

O
Oleg Nesterov 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2433 2434
/**
 * insert_wq_barrier - insert a barrier work
2435
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2436
 * @barr: wq_barrier to insert
2437 2438
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2439
 *
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2452
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2453 2454
 *
 * CONTEXT:
2455
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2456
 */
2457
static void insert_wq_barrier(struct pool_workqueue *pwq,
2458 2459
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2460
{
2461 2462 2463
	struct list_head *head;
	unsigned int linked = 0;

2464
	/*
2465
	 * debugobject calls are safe here even with pool->lock locked
2466 2467 2468 2469
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2470
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2471
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2472
	init_completion(&barr->done);
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2489
	debug_work_activate(&barr->work);
2490
	insert_work(pwq, &barr->work, head,
2491
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2492 2493
}

2494
/**
2495
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2496 2497 2498 2499
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2500
 * Prepare pwqs for workqueue flushing.
2501
 *
2502 2503 2504 2505 2506
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2507 2508 2509 2510 2511 2512 2513
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2514
 * If @work_color is non-negative, all pwqs should have the same
2515 2516 2517 2518
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2519
 * mutex_lock(wq->mutex).
2520
 *
2521
 * Return:
2522 2523 2524
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2525
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2526
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2527
{
2528
	bool wait = false;
2529
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2530

2531
	if (flush_color >= 0) {
2532
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2533
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2534
	}
2535

2536
	for_each_pwq(pwq, wq) {
2537
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2538

2539
		spin_lock_irq(&pool->lock);
2540

2541
		if (flush_color >= 0) {
2542
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2543

2544 2545 2546
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2547 2548 2549
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2550

2551
		if (work_color >= 0) {
2552
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2553
			pwq->work_color = work_color;
2554
		}
L
Linus Torvalds 已提交
2555

2556
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2557
	}
2558

2559
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2560
		complete(&wq->first_flusher->done);
2561

2562
	return wait;
L
Linus Torvalds 已提交
2563 2564
}

2565
/**
L
Linus Torvalds 已提交
2566
 * flush_workqueue - ensure that any scheduled work has run to completion.
2567
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2568
 *
2569 2570
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2571
 */
2572
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2573
{
2574 2575 2576 2577 2578 2579
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2580

2581 2582
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2583

2584
	mutex_lock(&wq->mutex);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2597
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2598 2599 2600 2601 2602
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2603
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2604 2605 2606

			wq->first_flusher = &this_flusher;

2607
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2608 2609 2610 2611 2612 2613 2614 2615
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2616
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2617
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2618
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2629
	mutex_unlock(&wq->mutex);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2642
	mutex_lock(&wq->mutex);
2643

2644 2645 2646 2647
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2648 2649
	wq->first_flusher = NULL;

2650 2651
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2664 2665
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2685
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2686 2687 2688
		}

		if (list_empty(&wq->flusher_queue)) {
2689
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2690 2691 2692 2693 2694
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2695
		 * the new first flusher and arm pwqs.
2696
		 */
2697 2698
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2699 2700 2701 2702

		list_del_init(&next->list);
		wq->first_flusher = next;

2703
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2714
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2715
}
2716
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2732
	struct pool_workqueue *pwq;
2733 2734 2735 2736

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2737
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2738
	 */
2739
	mutex_lock(&wq->mutex);
2740
	if (!wq->nr_drainers++)
2741
		wq->flags |= __WQ_DRAINING;
2742
	mutex_unlock(&wq->mutex);
2743 2744 2745
reflush:
	flush_workqueue(wq);

2746
	mutex_lock(&wq->mutex);
2747

2748
	for_each_pwq(pwq, wq) {
2749
		bool drained;
2750

2751
		spin_lock_irq(&pwq->pool->lock);
2752
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2753
		spin_unlock_irq(&pwq->pool->lock);
2754 2755

		if (drained)
2756 2757 2758 2759
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2760
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2761
				wq->name, flush_cnt);
2762

2763
		mutex_unlock(&wq->mutex);
2764 2765 2766 2767
		goto reflush;
	}

	if (!--wq->nr_drainers)
2768
		wq->flags &= ~__WQ_DRAINING;
2769
	mutex_unlock(&wq->mutex);
2770 2771 2772
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2773
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2774
{
2775
	struct worker *worker = NULL;
2776
	struct worker_pool *pool;
2777
	struct pool_workqueue *pwq;
2778 2779

	might_sleep();
2780 2781

	local_irq_disable();
2782
	pool = get_work_pool(work);
2783 2784
	if (!pool) {
		local_irq_enable();
2785
		return false;
2786
	}
2787

2788
	spin_lock(&pool->lock);
2789
	/* see the comment in try_to_grab_pending() with the same code */
2790 2791 2792
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2793
			goto already_gone;
2794
	} else {
2795
		worker = find_worker_executing_work(pool, work);
2796
		if (!worker)
T
Tejun Heo 已提交
2797
			goto already_gone;
2798
		pwq = worker->current_pwq;
2799
	}
2800

2801
	insert_wq_barrier(pwq, barr, work, worker);
2802
	spin_unlock_irq(&pool->lock);
2803

2804 2805 2806 2807 2808 2809
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2810
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2811
		lock_map_acquire(&pwq->wq->lockdep_map);
2812
	else
2813 2814
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2815

2816
	return true;
T
Tejun Heo 已提交
2817
already_gone:
2818
	spin_unlock_irq(&pool->lock);
2819
	return false;
2820
}
2821 2822 2823 2824 2825

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2826 2827
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2828
 *
2829
 * Return:
2830 2831 2832 2833 2834
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2835 2836
	struct wq_barrier barr;

2837 2838 2839
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2840 2841 2842 2843 2844 2845 2846
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2847
}
2848
EXPORT_SYMBOL_GPL(flush_work);
2849

2850
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2851
{
2852
	unsigned long flags;
2853 2854 2855
	int ret;

	do {
2856 2857 2858 2859 2860 2861
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2862
			flush_work(work);
2863 2864
	} while (unlikely(ret < 0));

2865 2866 2867 2868
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2869
	flush_work(work);
2870
	clear_work_data(work);
2871 2872 2873
	return ret;
}

2874
/**
2875 2876
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2877
 *
2878 2879 2880 2881
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2882
 *
2883 2884
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2885
 *
2886
 * The caller must ensure that the workqueue on which @work was last
2887
 * queued can't be destroyed before this function returns.
2888
 *
2889
 * Return:
2890
 * %true if @work was pending, %false otherwise.
2891
 */
2892
bool cancel_work_sync(struct work_struct *work)
2893
{
2894
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2895
}
2896
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2897

2898
/**
2899 2900
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2901
 *
2902 2903 2904
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2905
 *
2906
 * Return:
2907 2908
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2909
 */
2910 2911
bool flush_delayed_work(struct delayed_work *dwork)
{
2912
	local_irq_disable();
2913
	if (del_timer_sync(&dwork->timer))
2914
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2915
	local_irq_enable();
2916 2917 2918 2919
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2920
/**
2921 2922
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2923
 *
2924 2925 2926 2927 2928 2929 2930 2931 2932
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2933
 *
2934
 * This function is safe to call from any context including IRQ handler.
2935
 */
2936
bool cancel_delayed_work(struct delayed_work *dwork)
2937
{
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2948 2949
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2950
	local_irq_restore(flags);
2951
	return ret;
2952
}
2953
EXPORT_SYMBOL(cancel_delayed_work);
2954

2955 2956 2957 2958 2959 2960
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2961
 * Return:
2962 2963 2964
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2965
{
2966
	return __cancel_work_timer(&dwork->work, true);
2967
}
2968
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2969

2970
/**
2971
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2972 2973
 * @func: the function to call
 *
2974 2975
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2976
 * schedule_on_each_cpu() is very slow.
2977
 *
2978
 * Return:
2979
 * 0 on success, -errno on failure.
2980
 */
2981
int schedule_on_each_cpu(work_func_t func)
2982 2983
{
	int cpu;
2984
	struct work_struct __percpu *works;
2985

2986 2987
	works = alloc_percpu(struct work_struct);
	if (!works)
2988
		return -ENOMEM;
2989

2990 2991
	get_online_cpus();

2992
	for_each_online_cpu(cpu) {
2993 2994 2995
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2996
		schedule_work_on(cpu, work);
2997
	}
2998 2999 3000 3001

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3002
	put_online_cpus();
3003
	free_percpu(works);
3004 3005 3006
	return 0;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3031 3032
void flush_scheduled_work(void)
{
3033
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3034
}
3035
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3046
 * Return:	0 - function was executed
3047 3048
 *		1 - function was scheduled for execution
 */
3049
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3050 3051
{
	if (!in_interrupt()) {
3052
		fn(&ew->work);
3053 3054 3055
		return 0;
	}

3056
	INIT_WORK(&ew->work, fn);
3057 3058 3059 3060 3061 3062
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3090 3091
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3092 3093 3094 3095 3096
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3097
static DEVICE_ATTR_RO(per_cpu);
3098

3099 3100
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3101 3102 3103 3104 3105 3106
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3107 3108 3109
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3120
static DEVICE_ATTR_RW(max_active);
3121

3122 3123 3124 3125
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3126
};
3127
ATTRIBUTE_GROUPS(wq_sysfs);
3128

3129 3130
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3131 3132
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3133 3134
	const char *delim = "";
	int node, written = 0;
3135 3136

	rcu_read_lock_sched();
3137 3138 3139 3140 3141 3142 3143
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3155 3156 3157
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3171 3172 3173
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3189
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3204 3205 3206
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3267
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3268
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3269 3270
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3271
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3272 3273 3274 3275 3276
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3277
	.dev_groups			= wq_sysfs_groups,
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3306
 * Return: 0 on success, -errno on failure.
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3399 3400 3401
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3413
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3414 3415 3416 3417 3418 3419
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3420 3421 3422 3423 3424
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3425 3426 3427 3428 3429 3430
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3431 3432 3433 3434 3435 3436 3437 3438
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3439 3440
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3455 3456 3457 3458 3459
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3460 3461
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3462 3463
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3464 3465
 */
static int init_worker_pool(struct worker_pool *pool)
3466 3467
{
	spin_lock_init(&pool->lock);
3468 3469
	pool->id = -1;
	pool->cpu = -1;
3470
	pool->node = NUMA_NO_NODE;
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3484
	mutex_init(&pool->manager_mutex);
3485
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3486

3487
	ida_init(&pool->worker_ida);
3488 3489 3490 3491
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3492 3493 3494 3495
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3496 3497
}

3498 3499 3500 3501
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3502
	ida_destroy(&pool->worker_ida);
3503 3504 3505 3506 3507 3508 3509 3510 3511
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3512 3513 3514
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3515 3516
 *
 * Should be called with wq_pool_mutex held.
3517 3518 3519
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3520
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3521 3522
	struct worker *worker;

3523 3524 3525
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3526 3527 3528 3529
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3530
	    WARN_ON(!list_empty(&pool->worklist)))
3531 3532 3533 3534 3535 3536 3537
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3538 3539 3540 3541 3542
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3543 3544
	mutex_lock(&pool->manager_arb);

3545
	spin_lock_irq(&pool->lock);
3546 3547 3548 3549
	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3550 3551

	mutex_lock(&pool->manager_mutex);
3552
	if (!list_empty(&pool->workers))
3553
		pool->detach_completion = &detach_completion;
3554
	mutex_unlock(&pool->manager_mutex);
3555 3556 3557 3558

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3576
 * create a new one.
3577 3578
 *
 * Should be called with wq_pool_mutex held.
3579 3580 3581
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3582 3583 3584 3585 3586
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3587
	int node;
3588

3589
	lockdep_assert_held(&wq_pool_mutex);
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3604 3605 3606
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3607
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3608 3609
	copy_workqueue_attrs(pool->attrs, attrs);

3610 3611 3612 3613 3614 3615
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3627 3628 3629 3630
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3631
	if (create_and_start_worker(pool) < 0)
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3660
	bool is_last;
T
Tejun Heo 已提交
3661 3662 3663 3664

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3665
	/*
3666
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3667 3668 3669
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3670
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3671
	list_del_rcu(&pwq->pwqs_node);
3672
	is_last = list_empty(&wq->pwqs);
3673
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3674

3675
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3676
	put_unbound_pool(pool);
3677 3678
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3679 3680 3681 3682 3683 3684
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3685 3686
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3687
		kfree(wq);
3688
	}
T
Tejun Heo 已提交
3689 3690
}

3691
/**
3692
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3693 3694
 * @pwq: target pool_workqueue
 *
3695 3696 3697
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3698
 */
3699
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3700
{
3701 3702 3703 3704
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3705
	lockdep_assert_held(&wq->mutex);
3706 3707 3708 3709 3710

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3711
	spin_lock_irq(&pwq->pool->lock);
3712 3713 3714

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3715

3716 3717 3718
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3719 3720 3721 3722 3723 3724

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3725 3726 3727 3728
	} else {
		pwq->max_active = 0;
	}

3729
	spin_unlock_irq(&pwq->pool->lock);
3730 3731
}

3732
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3733 3734
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3735 3736 3737
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3738 3739
	memset(pwq, 0, sizeof(*pwq));

3740 3741 3742
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3743
	pwq->refcnt = 1;
3744
	INIT_LIST_HEAD(&pwq->delayed_works);
3745
	INIT_LIST_HEAD(&pwq->pwqs_node);
3746
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3747
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3748
}
3749

3750
/* sync @pwq with the current state of its associated wq and link it */
3751
static void link_pwq(struct pool_workqueue *pwq)
3752 3753 3754 3755
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3756

3757 3758 3759 3760
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3761 3762
	/*
	 * Set the matching work_color.  This is synchronized with
3763
	 * wq->mutex to avoid confusing flush_workqueue().
3764
	 */
3765
	pwq->work_color = wq->work_color;
3766 3767 3768 3769 3770

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3771
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3772
}
3773

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3787
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3788 3789 3790
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3791
	}
3792

3793 3794
	init_pwq(pwq, wq, pool);
	return pwq;
3795 3796
}

3797 3798 3799 3800 3801 3802 3803
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3804
		kmem_cache_free(pwq_cache, pwq);
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3817
 * calculation.  The result is stored in @cpumask.
3818 3819 3820 3821 3822 3823 3824 3825
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3826 3827 3828
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3829 3830 3831 3832
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3833
	if (!wq_numa_enabled || attrs->no_numa)
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3870 3871 3872 3873 3874
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3875 3876 3877 3878 3879 3880
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3881
 *
3882 3883 3884
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3885 3886 3887 3888
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3889 3890
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3891
	int node, ret;
3892

3893
	/* only unbound workqueues can change attributes */
3894 3895 3896
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3897 3898 3899 3900
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3901
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3902
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3903 3904
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3905 3906
		goto enomem;

3907
	/* make a copy of @attrs and sanitize it */
3908 3909 3910
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3925
	mutex_lock(&wq_pool_mutex);
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3947
	mutex_unlock(&wq_pool_mutex);
3948

3949
	/* all pwqs have been created successfully, let's install'em */
3950
	mutex_lock(&wq->mutex);
3951

3952
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3953 3954

	/* save the previous pwq and install the new one */
3955
	for_each_node(node)
3956 3957 3958 3959 3960
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3961 3962

	mutex_unlock(&wq->mutex);
3963

3964 3965 3966 3967 3968 3969
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3970 3971 3972
	ret = 0;
	/* fall through */
out_free:
3973
	free_workqueue_attrs(tmp_attrs);
3974
	free_workqueue_attrs(new_attrs);
3975
	kfree(pwq_tbl);
3976
	return ret;
3977

3978 3979 3980 3981 3982 3983 3984
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3985
enomem:
3986 3987
	ret = -ENOMEM;
	goto out_free;
3988 3989
}

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4035 4036
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4037 4038 4039 4040 4041 4042 4043 4044

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4045
	 * wq's, the default pwq should be used.
4046 4047 4048 4049 4050
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4051
		goto use_dfl_pwq;
4052 4053 4054 4055 4056 4057 4058
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4059 4060
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4061 4062
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4085
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4086
{
4087
	bool highpri = wq->flags & WQ_HIGHPRI;
4088
	int cpu, ret;
4089 4090

	if (!(wq->flags & WQ_UNBOUND)) {
4091 4092
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4093 4094 4095
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4096 4097
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4098
			struct worker_pool *cpu_pools =
4099
				per_cpu(cpu_worker_pools, cpu);
4100

4101 4102 4103
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4104
			link_pwq(pwq);
4105
			mutex_unlock(&wq->mutex);
4106
		}
4107
		return 0;
4108 4109 4110 4111 4112 4113 4114
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4115
	} else {
4116
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4117
	}
T
Tejun Heo 已提交
4118 4119
}

4120 4121
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4122
{
4123 4124 4125
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4126 4127
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4128

4129
	return clamp_val(max_active, 1, lim);
4130 4131
}

4132
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4133 4134 4135
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4136
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4137
{
4138
	size_t tbl_size = 0;
4139
	va_list args;
L
Linus Torvalds 已提交
4140
	struct workqueue_struct *wq;
4141
	struct pool_workqueue *pwq;
4142

4143 4144 4145 4146
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4147
	/* allocate wq and format name */
4148 4149 4150 4151
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4152
	if (!wq)
4153
		return NULL;
4154

4155 4156 4157 4158 4159 4160
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4161 4162
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4163
	va_end(args);
L
Linus Torvalds 已提交
4164

4165
	max_active = max_active ?: WQ_DFL_ACTIVE;
4166
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4167

4168
	/* init wq */
4169
	wq->flags = flags;
4170
	wq->saved_max_active = max_active;
4171
	mutex_init(&wq->mutex);
4172
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4173
	INIT_LIST_HEAD(&wq->pwqs);
4174 4175
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4176
	INIT_LIST_HEAD(&wq->maydays);
4177

4178
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4179
	INIT_LIST_HEAD(&wq->list);
4180

4181
	if (alloc_and_link_pwqs(wq) < 0)
4182
		goto err_free_wq;
T
Tejun Heo 已提交
4183

4184 4185 4186 4187 4188
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4189 4190
		struct worker *rescuer;

4191
		rescuer = alloc_worker();
4192
		if (!rescuer)
4193
			goto err_destroy;
4194

4195 4196
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4197
					       wq->name);
4198 4199 4200 4201
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4202

4203
		wq->rescuer = rescuer;
4204
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4205
		wake_up_process(rescuer->task);
4206 4207
	}

4208 4209 4210
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4211
	/*
4212 4213 4214
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4215
	 */
4216
	mutex_lock(&wq_pool_mutex);
4217

4218
	mutex_lock(&wq->mutex);
4219 4220
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4221
	mutex_unlock(&wq->mutex);
4222

T
Tejun Heo 已提交
4223
	list_add(&wq->list, &workqueues);
4224

4225
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4226

4227
	return wq;
4228 4229

err_free_wq:
4230
	free_workqueue_attrs(wq->unbound_attrs);
4231 4232 4233 4234
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4235
	return NULL;
4236
}
4237
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4238

4239 4240 4241 4242 4243 4244 4245 4246
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4247
	struct pool_workqueue *pwq;
4248
	int node;
4249

4250 4251
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4252

4253
	/* sanity checks */
4254
	mutex_lock(&wq->mutex);
4255
	for_each_pwq(pwq, wq) {
4256 4257
		int i;

4258 4259
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4260
				mutex_unlock(&wq->mutex);
4261
				return;
4262 4263 4264
			}
		}

4265
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4266
		    WARN_ON(pwq->nr_active) ||
4267
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4268
			mutex_unlock(&wq->mutex);
4269
			return;
4270
		}
4271
	}
4272
	mutex_unlock(&wq->mutex);
4273

4274 4275 4276 4277
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4278
	mutex_lock(&wq_pool_mutex);
4279
	list_del_init(&wq->list);
4280
	mutex_unlock(&wq_pool_mutex);
4281

4282 4283
	workqueue_sysfs_unregister(wq);

4284
	if (wq->rescuer) {
4285
		kthread_stop(wq->rescuer->task);
4286
		kfree(wq->rescuer);
4287
		wq->rescuer = NULL;
4288 4289
	}

T
Tejun Heo 已提交
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4300 4301
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4302
		 */
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4315
		put_pwq_unlocked(pwq);
4316
	}
4317 4318 4319
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4332
	struct pool_workqueue *pwq;
4333

4334 4335 4336 4337
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4338
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4339

4340
	mutex_lock(&wq->mutex);
4341 4342 4343

	wq->saved_max_active = max_active;

4344 4345
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4346

4347
	mutex_unlock(&wq->mutex);
4348
}
4349
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4350

4351 4352 4353 4354 4355
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4356 4357
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4358 4359 4360 4361 4362
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4363
	return worker && worker->rescue_wq;
4364 4365
}

4366
/**
4367 4368 4369
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4370
 *
4371 4372 4373
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4374
 *
4375 4376 4377 4378 4379 4380
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4381
 * Return:
4382
 * %true if congested, %false otherwise.
4383
 */
4384
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4385
{
4386
	struct pool_workqueue *pwq;
4387 4388
	bool ret;

4389
	rcu_read_lock_sched();
4390

4391 4392 4393
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4394 4395 4396
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4397
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4398

4399
	ret = !list_empty(&pwq->delayed_works);
4400
	rcu_read_unlock_sched();
4401 4402

	return ret;
L
Linus Torvalds 已提交
4403
}
4404
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4405

4406 4407 4408 4409 4410 4411 4412 4413
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4414
 * Return:
4415 4416 4417
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4418
{
4419
	struct worker_pool *pool;
4420 4421
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4422

4423 4424
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4425

4426 4427
	local_irq_save(flags);
	pool = get_work_pool(work);
4428
	if (pool) {
4429
		spin_lock(&pool->lock);
4430 4431
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4432
		spin_unlock(&pool->lock);
4433
	}
4434
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4435

4436
	return ret;
L
Linus Torvalds 已提交
4437
}
4438
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4439

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4510
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4511 4512 4513 4514 4515 4516
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4517 4518 4519
/*
 * CPU hotplug.
 *
4520
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4521
 * are a lot of assumptions on strong associations among work, pwq and
4522
 * pool which make migrating pending and scheduled works very
4523
 * difficult to implement without impacting hot paths.  Secondly,
4524
 * worker pools serve mix of short, long and very long running works making
4525 4526
 * blocked draining impractical.
 *
4527
 * This is solved by allowing the pools to be disassociated from the CPU
4528 4529
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4530
 */
L
Linus Torvalds 已提交
4531

4532
static void wq_unbind_fn(struct work_struct *work)
4533
{
4534
	int cpu = smp_processor_id();
4535
	struct worker_pool *pool;
4536
	struct worker *worker;
4537

4538
	for_each_cpu_worker_pool(pool, cpu) {
4539
		WARN_ON_ONCE(cpu != smp_processor_id());
4540

4541
		mutex_lock(&pool->manager_mutex);
4542
		spin_lock_irq(&pool->lock);
4543

4544
		/*
4545
		 * We've blocked all manager operations.  Make all workers
4546 4547 4548 4549 4550
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4551
		for_each_pool_worker(worker, pool)
4552
			worker->flags |= WORKER_UNBOUND;
4553

4554
		pool->flags |= POOL_DISASSOCIATED;
4555

4556
		spin_unlock_irq(&pool->lock);
4557
		mutex_unlock(&pool->manager_mutex);
4558

4559 4560 4561 4562 4563 4564 4565
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4566

4567 4568 4569 4570 4571 4572 4573 4574
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4575
		atomic_set(&pool->nr_running, 0);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4586 4587
}

T
Tejun Heo 已提交
4588 4589 4590 4591
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4592
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4593 4594 4595
 */
static void rebind_workers(struct worker_pool *pool)
{
4596
	struct worker *worker;
T
Tejun Heo 已提交
4597 4598 4599

	lockdep_assert_held(&pool->manager_mutex);

4600 4601 4602 4603 4604 4605 4606
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4607
	for_each_pool_worker(worker, pool)
4608 4609
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4610

4611
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4612

4613
	for_each_pool_worker(worker, pool) {
4614
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4615 4616

		/*
4617 4618 4619 4620 4621 4622
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4623
		 */
4624 4625
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4626

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4646
	}
4647 4648

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4649 4650
}

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4678
	for_each_pool_worker(worker, pool)
4679 4680 4681 4682
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4683 4684 4685 4686
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4687
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4688 4689
					       unsigned long action,
					       void *hcpu)
4690
{
4691
	int cpu = (unsigned long)hcpu;
4692
	struct worker_pool *pool;
4693
	struct workqueue_struct *wq;
4694
	int pi;
4695

T
Tejun Heo 已提交
4696
	switch (action & ~CPU_TASKS_FROZEN) {
4697
	case CPU_UP_PREPARE:
4698
		for_each_cpu_worker_pool(pool, cpu) {
4699 4700
			if (pool->nr_workers)
				continue;
4701
			if (create_and_start_worker(pool) < 0)
4702
				return NOTIFY_BAD;
4703
		}
T
Tejun Heo 已提交
4704
		break;
4705

4706 4707
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4708
		mutex_lock(&wq_pool_mutex);
4709 4710

		for_each_pool(pool, pi) {
4711
			mutex_lock(&pool->manager_mutex);
4712

4713 4714 4715 4716
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4717

4718 4719 4720 4721
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4722

4723
			mutex_unlock(&pool->manager_mutex);
4724
		}
4725

4726 4727 4728 4729
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4730
		mutex_unlock(&wq_pool_mutex);
4731
		break;
4732
	}
4733 4734 4735 4736 4737 4738 4739
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4740
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4741 4742 4743
						 unsigned long action,
						 void *hcpu)
{
4744
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4745
	struct work_struct unbind_work;
4746
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4747

4748 4749
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4750
		/* unbinding per-cpu workers should happen on the local CPU */
4751
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4752
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4753 4754 4755 4756 4757 4758 4759 4760

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4761
		flush_work(&unbind_work);
4762
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4763
		break;
4764 4765 4766 4767
	}
	return NOTIFY_OK;
}

4768
#ifdef CONFIG_SMP
4769

4770
struct work_for_cpu {
4771
	struct work_struct work;
4772 4773 4774 4775 4776
	long (*fn)(void *);
	void *arg;
	long ret;
};

4777
static void work_for_cpu_fn(struct work_struct *work)
4778
{
4779 4780
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4781 4782 4783 4784 4785 4786 4787 4788 4789
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4790
 * It is up to the caller to ensure that the cpu doesn't go offline.
4791
 * The caller must not hold any locks which would prevent @fn from completing.
4792 4793
 *
 * Return: The value @fn returns.
4794
 */
4795
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4796
{
4797
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4798

4799 4800
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4801
	flush_work(&wfc.work);
4802
	destroy_work_on_stack(&wfc.work);
4803 4804 4805 4806 4807
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4808 4809 4810 4811 4812
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4813
 * Start freezing workqueues.  After this function returns, all freezable
4814
 * workqueues will queue new works to their delayed_works list instead of
4815
 * pool->worklist.
4816 4817
 *
 * CONTEXT:
4818
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4819 4820 4821
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4822
	struct worker_pool *pool;
4823 4824
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4825
	int pi;
4826

4827
	mutex_lock(&wq_pool_mutex);
4828

4829
	WARN_ON_ONCE(workqueue_freezing);
4830 4831
	workqueue_freezing = true;

4832
	/* set FREEZING */
4833
	for_each_pool(pool, pi) {
4834
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4835 4836
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4837
		spin_unlock_irq(&pool->lock);
4838
	}
4839

4840
	list_for_each_entry(wq, &workqueues, list) {
4841
		mutex_lock(&wq->mutex);
4842 4843
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4844
		mutex_unlock(&wq->mutex);
4845
	}
4846

4847
	mutex_unlock(&wq_pool_mutex);
4848 4849 4850
}

/**
4851
 * freeze_workqueues_busy - are freezable workqueues still busy?
4852 4853 4854 4855 4856
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4857
 * Grabs and releases wq_pool_mutex.
4858
 *
4859
 * Return:
4860 4861
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4862 4863 4864 4865
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4866 4867
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4868

4869
	mutex_lock(&wq_pool_mutex);
4870

4871
	WARN_ON_ONCE(!workqueue_freezing);
4872

4873 4874 4875
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4876 4877 4878 4879
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4880
		rcu_read_lock_sched();
4881
		for_each_pwq(pwq, wq) {
4882
			WARN_ON_ONCE(pwq->nr_active < 0);
4883
			if (pwq->nr_active) {
4884
				busy = true;
4885
				rcu_read_unlock_sched();
4886 4887 4888
				goto out_unlock;
			}
		}
4889
		rcu_read_unlock_sched();
4890 4891
	}
out_unlock:
4892
	mutex_unlock(&wq_pool_mutex);
4893 4894 4895 4896 4897 4898 4899
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4900
 * frozen works are transferred to their respective pool worklists.
4901 4902
 *
 * CONTEXT:
4903
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4904 4905 4906
 */
void thaw_workqueues(void)
{
4907 4908 4909
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4910
	int pi;
4911

4912
	mutex_lock(&wq_pool_mutex);
4913 4914 4915 4916

	if (!workqueue_freezing)
		goto out_unlock;

4917
	/* clear FREEZING */
4918
	for_each_pool(pool, pi) {
4919
		spin_lock_irq(&pool->lock);
4920 4921
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4922
		spin_unlock_irq(&pool->lock);
4923
	}
4924

4925 4926
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4927
		mutex_lock(&wq->mutex);
4928 4929
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4930
		mutex_unlock(&wq->mutex);
4931 4932 4933 4934
	}

	workqueue_freezing = false;
out_unlock:
4935
	mutex_unlock(&wq_pool_mutex);
4936 4937 4938
}
#endif /* CONFIG_FREEZER */

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4951 4952 4953 4954 4955
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4956 4957 4958
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4959 4960 4961 4962 4963 4964 4965 4966 4967
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4968 4969
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4985
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4986
{
T
Tejun Heo 已提交
4987 4988
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4989

4990 4991 4992 4993
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4994
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4995
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4996

4997 4998
	wq_numa_init();

4999
	/* initialize CPU pools */
5000
	for_each_possible_cpu(cpu) {
5001
		struct worker_pool *pool;
5002

T
Tejun Heo 已提交
5003
		i = 0;
5004
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5005
			BUG_ON(init_worker_pool(pool));
5006
			pool->cpu = cpu;
5007
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5008
			pool->attrs->nice = std_nice[i++];
5009
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5010

T
Tejun Heo 已提交
5011
			/* alloc pool ID */
5012
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5013
			BUG_ON(worker_pool_assign_id(pool));
5014
			mutex_unlock(&wq_pool_mutex);
5015
		}
5016 5017
	}

5018
	/* create the initial worker */
5019
	for_each_online_cpu(cpu) {
5020
		struct worker_pool *pool;
5021

5022
		for_each_cpu_worker_pool(pool, cpu) {
5023
			pool->flags &= ~POOL_DISASSOCIATED;
5024
			BUG_ON(create_and_start_worker(pool) < 0);
5025
		}
5026 5027
	}

5028
	/* create default unbound and ordered wq attrs */
5029 5030 5031 5032 5033 5034
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5045 5046
	}

5047
	system_wq = alloc_workqueue("events", 0, 0);
5048
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5049
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5050 5051
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5052 5053
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5054 5055 5056 5057 5058
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5059
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5060 5061 5062
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5063
	return 0;
L
Linus Torvalds 已提交
5064
}
5065
early_initcall(init_workqueues);