dma-mapping.c 63.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/genalloc.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
22
#include <linux/dma-contiguous.h>
23
#include <linux/highmem.h>
24
#include <linux/memblock.h>
25
#include <linux/slab.h>
26
#include <linux/iommu.h>
27
#include <linux/io.h>
28
#include <linux/vmalloc.h>
29
#include <linux/sizes.h>
30
#include <linux/cma.h>
L
Linus Torvalds 已提交
31

32
#include <asm/memory.h>
33
#include <asm/highmem.h>
L
Linus Torvalds 已提交
34 35
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
36
#include <asm/mach/arch.h>
37
#include <asm/dma-iommu.h>
38 39 40
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
41

42
#include "dma.h"
43 44
#include "mm.h"

45 46 47 48 49 50 51
struct arm_dma_alloc_args {
	struct device *dev;
	size_t size;
	gfp_t gfp;
	pgprot_t prot;
	const void *caller;
	bool want_vaddr;
52
	int coherent_flag;
53 54 55 56 57 58 59 60 61 62
};

struct arm_dma_free_args {
	struct device *dev;
	size_t size;
	void *cpu_addr;
	struct page *page;
	bool want_vaddr;
};

63 64 65
#define NORMAL	    0
#define COHERENT    1

66 67 68 69 70 71
struct arm_dma_allocator {
	void *(*alloc)(struct arm_dma_alloc_args *args,
		       struct page **ret_page);
	void (*free)(struct arm_dma_free_args *args);
};

72 73 74
struct arm_dma_buffer {
	struct list_head list;
	void *virt;
75
	struct arm_dma_allocator *allocator;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
};

static LIST_HEAD(arm_dma_bufs);
static DEFINE_SPINLOCK(arm_dma_bufs_lock);

static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
{
	struct arm_dma_buffer *buf, *found = NULL;
	unsigned long flags;

	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
	list_for_each_entry(buf, &arm_dma_bufs, list) {
		if (buf->virt == virt) {
			list_del(&buf->list);
			found = buf;
			break;
		}
	}
	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	return found;
}

98 99 100 101 102 103 104 105 106 107 108 109
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
110
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111
		size_t, enum dma_data_direction);
112
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 114
		size_t, enum dma_data_direction);

115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
129
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130
	     unsigned long offset, size_t size, enum dma_data_direction dir,
131
	     unsigned long attrs)
132
{
133
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 135
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 137
}

R
Rob Herring 已提交
138 139
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
140
	     unsigned long attrs)
R
Rob Herring 已提交
141 142 143 144
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
159
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160
		size_t size, enum dma_data_direction dir, unsigned long attrs)
161
{
162
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 164
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
165 166
}

167
static void arm_dma_sync_single_for_cpu(struct device *dev,
168 169 170 171
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
172
	__dma_page_dev_to_cpu(page, offset, size, dir);
173 174
}

175
static void arm_dma_sync_single_for_device(struct device *dev,
176 177 178 179
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
180
	__dma_page_cpu_to_dev(page, offset, size, dir);
181 182
}

183
const struct dma_map_ops arm_dma_ops = {
184 185 186
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
187
	.get_sgtable		= arm_dma_get_sgtable,
188 189 190 191 192 193 194 195 196 197 198
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
199
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200
	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
R
Rob Herring 已提交
201
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202
				  dma_addr_t handle, unsigned long attrs);
203 204
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205
		 unsigned long attrs);
R
Rob Herring 已提交
206

207
const struct dma_map_ops arm_coherent_dma_ops = {
R
Rob Herring 已提交
208 209
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
210
	.mmap			= arm_coherent_dma_mmap,
R
Rob Herring 已提交
211 212 213 214 215 216
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

217 218 219 220 221 222 223 224 225 226 227
static int __dma_supported(struct device *dev, u64 mask, bool warn)
{
	unsigned long max_dma_pfn;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
228
	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		if (warn) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
		}
		return 0;
	}

	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
		if (warn)
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 max_dma_pfn + 1);
		return 0;
	}

	return 1;
}

255 256
static u64 get_coherent_dma_mask(struct device *dev)
{
257
	u64 mask = (u64)DMA_BIT_MASK(32);
258 259 260 261 262 263 264 265 266 267 268 269 270

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

271
		if (!__dma_supported(dev, mask, true))
272 273
			return 0;
	}
L
Linus Torvalds 已提交
274

275 276 277
	return mask;
}

278
static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279 280 281 282 283
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
284 285 286 287 288 289
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
290 291
			if (coherent_flag != COHERENT)
				dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 293 294 295
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
296 297
		if (coherent_flag != COHERENT)
			outer_flush_range(base, end);
298 299
	} else {
		void *ptr = page_address(page);
300
		memset(ptr, 0, size);
301 302 303 304
		if (coherent_flag != COHERENT) {
			dmac_flush_range(ptr, ptr + size);
			outer_flush_range(__pa(ptr), __pa(ptr) + size);
		}
305
	}
306 307
}

308 309 310 311
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
312 313
static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
				       gfp_t gfp, int coherent_flag)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

329
	__dma_clear_buffer(page, size, coherent_flag);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

347
#ifdef CONFIG_MMU
348

349
static void *__alloc_from_contiguous(struct device *dev, size_t size,
350
				     pgprot_t prot, struct page **ret_page,
351
				     const void *caller, bool want_vaddr,
352
				     int coherent_flag, gfp_t gfp);
353

354 355
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
356
				 const void *caller, bool want_vaddr);
357

358 359 360
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
361
{
362 363 364 365
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
366 367 368
	return dma_common_contiguous_remap(page, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
			prot, caller);
369
}
L
Linus Torvalds 已提交
370

371
static void __dma_free_remap(void *cpu_addr, size_t size)
372
{
373 374
	dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375 376
}

377
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
378
static struct gen_pool *atomic_pool;
379

380
static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381 382 383

static int __init early_coherent_pool(char *p)
{
384
	atomic_pool_size = memparse(p, &p);
385 386 387 388
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

389 390 391 392 393
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
394
	BUG_ON(atomic_pool);
395 396 397 398 399

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
400 401
	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool_size = size;
402 403
}

404 405 406
/*
 * Initialise the coherent pool for atomic allocations.
 */
407
static int __init atomic_pool_init(void)
408
{
409
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 412 413
	struct page *page;
	void *ptr;

414 415 416
	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
	if (!atomic_pool)
		goto out;
417 418 419 420
	/*
	 * The atomic pool is only used for non-coherent allocations
	 * so we must pass NORMAL for coherent_flag.
	 */
421
	if (dev_get_cma_area(NULL))
422
		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423 424
				      &page, atomic_pool_init, true, NORMAL,
				      GFP_KERNEL);
425
	else
426
		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
427
					   &page, atomic_pool_init, true);
428
	if (ptr) {
429 430 431 432 433 434 435 436 437 438 439
		int ret;

		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
					page_to_phys(page),
					atomic_pool_size, -1);
		if (ret)
			goto destroy_genpool;

		gen_pool_set_algo(atomic_pool,
				gen_pool_first_fit_order_align,
				(void *)PAGE_SHIFT);
440
		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
441
		       atomic_pool_size / 1024);
442 443
		return 0;
	}
444

445 446 447 448
destroy_genpool:
	gen_pool_destroy(atomic_pool);
	atomic_pool = NULL;
out:
449
	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
450
	       atomic_pool_size / 1024);
451 452 453 454 455
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
456
postcore_initcall(atomic_pool_init);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
486
			continue;
487 488 489 490 491 492 493

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
494 495 496 497 498 499 500
		 * Clear previous low-memory mapping to ensure that the
		 * TLB does not see any conflicting entries, then flush
		 * the TLB of the old entries before creating new mappings.
		 *
		 * This ensures that any speculatively loaded TLB entries
		 * (even though they may be rare) can not cause any problems,
		 * and ensures that this code is architecturally compliant.
501 502
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
503
		     addr += PMD_SIZE)
504 505
			pmd_clear(pmd_off_k(addr));

506 507 508
		flush_tlb_kernel_range(__phys_to_virt(start),
				       __phys_to_virt(end));

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
534
				 const void *caller, bool want_vaddr)
535 536
{
	struct page *page;
537
	void *ptr = NULL;
538 539 540 541 542
	/*
	 * __alloc_remap_buffer is only called when the device is
	 * non-coherent
	 */
	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
543 544
	if (!page)
		return NULL;
545 546
	if (!want_vaddr)
		goto out;
547 548 549 550 551 552 553

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

554
 out:
555 556 557 558
	*ret_page = page;
	return ptr;
}

559
static void *__alloc_from_pool(size_t size, struct page **ret_page)
560
{
561
	unsigned long val;
562
	void *ptr = NULL;
563

564
	if (!atomic_pool) {
565
		WARN(1, "coherent pool not initialised!\n");
566 567 568
		return NULL;
	}

569 570 571 572 573 574
	val = gen_pool_alloc(atomic_pool, size);
	if (val) {
		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);

		*ret_page = phys_to_page(phys);
		ptr = (void *)val;
575
	}
576 577

	return ptr;
578 579
}

580 581
static bool __in_atomic_pool(void *start, size_t size)
{
582
	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
583 584
}

585
static int __free_from_pool(void *start, size_t size)
586
{
587
	if (!__in_atomic_pool(start, size))
588 589
		return 0;

590
	gen_pool_free(atomic_pool, (unsigned long)start, size);
591

592 593 594 595
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
596
				     pgprot_t prot, struct page **ret_page,
597
				     const void *caller, bool want_vaddr,
598
				     int coherent_flag, gfp_t gfp)
599 600 601 602
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
603
	void *ptr = NULL;
604

605
	page = dma_alloc_from_contiguous(dev, count, order, gfp);
606 607 608
	if (!page)
		return NULL;

609
	__dma_clear_buffer(page, size, coherent_flag);
610

611 612 613
	if (!want_vaddr)
		goto out;

614 615 616 617 618 619 620 621 622 623
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
624 625

 out:
626
	*ret_page = page;
627
	return ptr;
628 629 630
}

static void __free_from_contiguous(struct device *dev, struct page *page,
631
				   void *cpu_addr, size_t size, bool want_vaddr)
632
{
633 634 635 636 637 638
	if (want_vaddr) {
		if (PageHighMem(page))
			__dma_free_remap(cpu_addr, size);
		else
			__dma_remap(page, size, PAGE_KERNEL);
	}
639 640 641
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

642
static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
643
{
644 645 646
	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
			pgprot_writecombine(prot) :
			pgprot_dmacoherent(prot);
647 648 649
	return prot;
}

650 651
#define nommu() 0

652
#else	/* !CONFIG_MMU */
653

654 655
#define nommu() 1

656 657
#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
658
#define __alloc_from_pool(size, ret_page)			NULL
659
#define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp)	NULL
660
#define __free_from_pool(cpu_addr, size)			do { } while (0)
661
#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
662
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
663 664 665

#endif	/* CONFIG_MMU */

666 667
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
668
{
669
	struct page *page;
670 671
	/* __alloc_simple_buffer is only called when the device is coherent */
	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
672 673 674 675 676 677 678
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}

679 680 681 682 683 684
static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
				    struct page **ret_page)
{
	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
				     ret_page);
}
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
static void simple_allocator_free(struct arm_dma_free_args *args)
{
	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator simple_allocator = {
	.alloc = simple_allocator_alloc,
	.free = simple_allocator_free,
};

static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
				 struct page **ret_page)
{
	return __alloc_from_contiguous(args->dev, args->size, args->prot,
				       ret_page, args->caller,
701 702
				       args->want_vaddr, args->coherent_flag,
				       args->gfp);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
}

static void cma_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
			       args->size, args->want_vaddr);
}

static struct arm_dma_allocator cma_allocator = {
	.alloc = cma_allocator_alloc,
	.free = cma_allocator_free,
};

static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
				  struct page **ret_page)
{
	return __alloc_from_pool(args->size, ret_page);
}

static void pool_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_pool(args->cpu_addr, args->size);
}

static struct arm_dma_allocator pool_allocator = {
	.alloc = pool_allocator_alloc,
	.free = pool_allocator_free,
};

static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
				   struct page **ret_page)
{
	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
				    args->prot, ret_page, args->caller,
				    args->want_vaddr);
}

static void remap_allocator_free(struct arm_dma_free_args *args)
{
	if (args->want_vaddr)
		__dma_free_remap(args->cpu_addr, args->size);

	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator remap_allocator = {
	.alloc = remap_allocator_alloc,
	.free = remap_allocator_free,
};
752 753

static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
754
			 gfp_t gfp, pgprot_t prot, bool is_coherent,
755
			 unsigned long attrs, const void *caller)
756 757
{
	u64 mask = get_coherent_dma_mask(dev);
758
	struct page *page = NULL;
759
	void *addr;
760
	bool allowblock, cma;
761
	struct arm_dma_buffer *buf;
762 763 764 765 766 767
	struct arm_dma_alloc_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.gfp = gfp,
		.prot = prot,
		.caller = caller,
768
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
769
		.coherent_flag = is_coherent ? COHERENT : NORMAL,
770
	};
771

772 773 774 775 776 777 778 779 780 781 782 783
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

784 785
	buf = kzalloc(sizeof(*buf),
		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
786 787 788
	if (!buf)
		return NULL;

789 790 791
	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

792 793 794 795 796 797 798 799
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);
800
	args.gfp = gfp;
801

802
	*handle = DMA_ERROR_CODE;
803 804 805 806 807 808 809 810 811
	allowblock = gfpflags_allow_blocking(gfp);
	cma = allowblock ? dev_get_cma_area(dev) : false;

	if (cma)
		buf->allocator = &cma_allocator;
	else if (nommu() || is_coherent)
		buf->allocator = &simple_allocator;
	else if (allowblock)
		buf->allocator = &remap_allocator;
812
	else
813 814 815
		buf->allocator = &pool_allocator;

	addr = buf->allocator->alloc(&args, &page);
816

817 818 819
	if (page) {
		unsigned long flags;

820
		*handle = pfn_to_dma(dev, page_to_pfn(page));
821
		buf->virt = args.want_vaddr ? addr : page;
822 823 824 825 826 827 828

		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
		list_add(&buf->list, &arm_dma_bufs);
		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	} else {
		kfree(buf);
	}
829

830
	return args.want_vaddr ? addr : page;
831
}
L
Linus Torvalds 已提交
832 833 834 835 836

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
837
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
838
		    gfp_t gfp, unsigned long attrs)
L
Linus Torvalds 已提交
839
{
840
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
841

R
Rob Herring 已提交
842
	return __dma_alloc(dev, size, handle, gfp, prot, false,
843
			   attrs, __builtin_return_address(0));
R
Rob Herring 已提交
844 845 846
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
847
	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
R
Rob Herring 已提交
848
{
849
	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
850
			   attrs, __builtin_return_address(0));
L
Linus Torvalds 已提交
851 852
}

853
static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
854
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
855
		 unsigned long attrs)
L
Linus Torvalds 已提交
856
{
857 858
	int ret = -ENXIO;
#ifdef CONFIG_MMU
859 860
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
861
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
862 863
	unsigned long off = vma->vm_pgoff;

864 865 866
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

867 868 869 870 871 872
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
873 874 875
#else
	ret = vm_iomap_memory(vma, vma->vm_start,
			      (vma->vm_end - vma->vm_start));
876
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
877 878 879 880

	return ret;
}

881 882 883 884 885
/*
 * Create userspace mapping for the DMA-coherent memory.
 */
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
886
		 unsigned long attrs)
887 888 889 890 891 892
{
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
893
		 unsigned long attrs)
894 895 896 897 898 899 900
{
#ifdef CONFIG_MMU
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
#endif	/* CONFIG_MMU */
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

L
Linus Torvalds 已提交
901
/*
902
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
903
 */
R
Rob Herring 已提交
904
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
905
			   dma_addr_t handle, unsigned long attrs,
R
Rob Herring 已提交
906
			   bool is_coherent)
L
Linus Torvalds 已提交
907
{
908
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
909
	struct arm_dma_buffer *buf;
910 911 912 913 914
	struct arm_dma_free_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.cpu_addr = cpu_addr,
		.page = page,
915
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
916
	};
917 918 919 920

	buf = arm_dma_buffer_find(cpu_addr);
	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
		return;
921

922
	buf->allocator->free(&args);
923
	kfree(buf);
L
Linus Torvalds 已提交
924
}
925

R
Rob Herring 已提交
926
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
927
		  dma_addr_t handle, unsigned long attrs)
R
Rob Herring 已提交
928 929 930 931 932
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
933
				  dma_addr_t handle, unsigned long attrs)
R
Rob Herring 已提交
934 935 936 937
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

938 939 940 941 942 943 944 945 946 947 948
/*
 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
 * that the intention is to allow exporting memory allocated via the
 * coherent DMA APIs through the dma_buf API, which only accepts a
 * scattertable.  This presents a couple of problems:
 * 1. Not all memory allocated via the coherent DMA APIs is backed by
 *    a struct page
 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
 *    as we will try to flush the memory through a different alias to that
 *    actually being used (and the flushes are redundant.)
 */
949 950
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
951
		 unsigned long attrs)
952
{
953 954
	unsigned long pfn = dma_to_pfn(dev, handle);
	struct page *page;
955 956
	int ret;

957 958 959 960 961 962
	/* If the PFN is not valid, we do not have a struct page */
	if (!pfn_valid(pfn))
		return -ENXIO;

	page = pfn_to_page(pfn);

963 964 965 966 967 968 969 970
	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

971
static void dma_cache_maint_page(struct page *page, unsigned long offset,
972 973
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
974
{
975 976 977 978 979 980
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

981 982 983 984 985 986 987 988
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
989 990
		void *vaddr;

991 992
		page = pfn_to_page(pfn);

993
		if (PageHighMem(page)) {
994
			if (len + offset > PAGE_SIZE)
995
				len = PAGE_SIZE - offset;
996 997

			if (cache_is_vipt_nonaliasing()) {
998
				vaddr = kmap_atomic(page);
999
				op(vaddr + offset, len, dir);
1000
				kunmap_atomic(vaddr);
1001 1002 1003 1004 1005 1006
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
1007
			}
1008 1009
		} else {
			vaddr = page_address(page) + offset;
1010
			op(vaddr, len, dir);
1011 1012
		}
		offset = 0;
1013
		pfn++;
1014 1015 1016
		left -= len;
	} while (left);
}
1017

1018 1019 1020 1021 1022 1023 1024
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1025 1026
	size_t size, enum dma_data_direction dir)
{
1027
	phys_addr_t paddr;
1028

1029
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1030 1031

	paddr = page_to_phys(page) + off;
1032 1033 1034 1035 1036 1037
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
1038 1039
}

1040
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1041 1042
	size_t size, enum dma_data_direction dir)
{
1043
	phys_addr_t paddr = page_to_phys(page) + off;
1044 1045

	/* FIXME: non-speculating: not required */
1046 1047
	/* in any case, don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
1048 1049
		outer_inv_range(paddr, paddr + size);

1050 1051
		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
	}
1052 1053

	/*
1054
	 * Mark the D-cache clean for these pages to avoid extra flushing.
1055
	 */
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
1072
}
1073

1074
/**
1075
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
1090
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1091
		enum dma_data_direction dir, unsigned long attrs)
1092
{
1093
	const struct dma_map_ops *ops = get_dma_ops(dev);
1094
	struct scatterlist *s;
1095
	int i, j;
1096 1097

	for_each_sg(sg, s, nents, i) {
1098 1099 1100
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
1101 1102
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
1103 1104
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
1105 1106
	}
	return nents;
1107 1108 1109

 bad_mapping:
	for_each_sg(sg, s, i, j)
1110
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111
	return 0;
1112 1113 1114
}

/**
1115
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1116 1117
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
1118
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1119 1120 1121 1122 1123
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
1124
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1125
		enum dma_data_direction dir, unsigned long attrs)
1126
{
1127
	const struct dma_map_ops *ops = get_dma_ops(dev);
1128 1129 1130
	struct scatterlist *s;

	int i;
1131

1132
	for_each_sg(sg, s, nents, i)
1133
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1134 1135 1136
}

/**
1137
 * arm_dma_sync_sg_for_cpu
1138 1139 1140 1141 1142
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1143
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1144 1145
			int nents, enum dma_data_direction dir)
{
1146
	const struct dma_map_ops *ops = get_dma_ops(dev);
1147 1148 1149
	struct scatterlist *s;
	int i;

1150 1151 1152
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
1153 1154 1155
}

/**
1156
 * arm_dma_sync_sg_for_device
1157 1158 1159 1160 1161
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1162
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1163 1164
			int nents, enum dma_data_direction dir)
{
1165
	const struct dma_map_ops *ops = get_dma_ops(dev);
1166 1167 1168
	struct scatterlist *s;
	int i;

1169 1170 1171
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1172
}
1173

1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
1182
	return __dma_supported(dev, mask, false);
1183 1184 1185
}
EXPORT_SYMBOL(dma_supported);

1186 1187 1188 1189 1190 1191 1192
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
1193
core_initcall(dma_debug_do_init);
1194 1195 1196

#ifdef CONFIG_ARM_DMA_USE_IOMMU

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
{
	int prot = 0;

	if (attrs & DMA_ATTR_PRIVILEGED)
		prot |= IOMMU_PRIV;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return prot;
	}
}

1216 1217
/* IOMMU */

1218 1219
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

1220 1221 1222 1223 1224 1225
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
1226
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1227
	unsigned long flags;
1228 1229
	dma_addr_t iova;
	int i;
1230

1231 1232 1233
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1234 1235
	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;
1236 1237

	spin_lock_irqsave(&mapping->lock, flags);
1238 1239 1240 1241 1242 1243 1244 1245 1246
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
1247 1248
	}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
1270 1271
	spin_unlock_irqrestore(&mapping->lock, flags);

1272
	iova = mapping->base + (mapping_size * i);
1273
	iova += start << PAGE_SHIFT;
1274 1275

	return iova;
1276 1277 1278 1279 1280
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
1281
	unsigned int start, count;
1282
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1283
	unsigned long flags;
1284 1285 1286 1287 1288 1289
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

1290
	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1291 1292
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

1293
	bitmap_base = mapping->base + mapping_size * bitmap_index;
1294

1295
	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1296

1297
	if (addr + size > bitmap_base + mapping_size) {
1298 1299 1300 1301 1302 1303 1304 1305
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
1306
		count = size >> PAGE_SHIFT;
1307 1308

	spin_lock_irqsave(&mapping->lock, flags);
1309
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1310 1311 1312
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1313 1314 1315
/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
static const int iommu_order_array[] = { 9, 8, 4, 0 };

1316
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1317
					  gfp_t gfp, unsigned long attrs,
1318
					  int coherent_flag)
1319 1320 1321 1322 1323
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;
1324
	int order_idx = 0;
1325 1326

	if (array_size <= PAGE_SIZE)
1327
		pages = kzalloc(array_size, GFP_KERNEL);
1328 1329 1330 1331 1332
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1333
	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1334 1335 1336 1337
	{
		unsigned long order = get_order(size);
		struct page *page;

1338
		page = dma_alloc_from_contiguous(dev, count, order, gfp);
1339 1340 1341
		if (!page)
			goto error;

1342
		__dma_clear_buffer(page, size, coherent_flag);
1343 1344 1345 1346 1347 1348 1349

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1350
	/* Go straight to 4K chunks if caller says it's OK. */
1351
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1352 1353
		order_idx = ARRAY_SIZE(iommu_order_array) - 1;

1354 1355 1356 1357 1358
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1359
	while (count) {
1360 1361
		int j, order;

1362 1363 1364 1365 1366 1367
		order = iommu_order_array[order_idx];

		/* Drop down when we get small */
		if (__fls(count) < order) {
			order_idx++;
			continue;
1368
		}
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		if (order) {
			/* See if it's easy to allocate a high-order chunk */
			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);

			/* Go down a notch at first sign of pressure */
			if (!pages[i]) {
				order_idx++;
				continue;
			}
		} else {
1380 1381 1382 1383
			pages[i] = alloc_pages(gfp, 0);
			if (!pages[i])
				goto error;
		}
1384

1385
		if (order) {
1386
			split_page(pages[i], order);
1387 1388 1389 1390
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1391

1392
		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1393 1394 1395 1396 1397 1398
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1399
	while (i--)
1400 1401
		if (pages[i])
			__free_pages(pages[i], 0);
1402
	kvfree(pages);
1403 1404 1405
	return NULL;
}

1406
static int __iommu_free_buffer(struct device *dev, struct page **pages,
1407
			       size_t size, unsigned long attrs)
1408 1409 1410
{
	int count = size >> PAGE_SHIFT;
	int i;
1411

1412
	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1413 1414 1415 1416 1417 1418 1419
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1420
	kvfree(pages);
1421 1422 1423 1424 1425 1426 1427
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1428 1429
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1430
{
1431 1432
	return dma_common_pages_remap(pages, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1433 1434 1435 1436 1437 1438
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
1439 1440
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
		       unsigned long attrs)
1441
{
1442
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1443 1444
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
1445
	int i;
1446 1447 1448 1449 1450 1451 1452

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
1453 1454
		int ret;

1455 1456 1457 1458 1459 1460 1461 1462 1463
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1464
		ret = iommu_map(mapping->domain, iova, phys, len,
1465
				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
1480
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1494 1495
static struct page **__atomic_get_pages(void *addr)
{
1496 1497 1498 1499 1500
	struct page *page;
	phys_addr_t phys;

	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
	page = phys_to_page(phys);
1501

1502
	return (struct page **)page;
1503 1504
}

1505
static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1506 1507 1508
{
	struct vm_struct *area;

1509 1510 1511
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1512
	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1513 1514
		return cpu_addr;

1515 1516 1517 1518 1519 1520
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1521
static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1522 1523
				  dma_addr_t *handle, int coherent_flag,
				  unsigned long attrs)
1524 1525 1526 1527
{
	struct page *page;
	void *addr;

1528 1529 1530 1531
	if (coherent_flag  == COHERENT)
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
	else
		addr = __alloc_from_pool(size, &page);
1532 1533 1534
	if (!addr)
		return NULL;

1535
	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1546
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1547
			dma_addr_t handle, size_t size, int coherent_flag)
1548 1549
{
	__iommu_remove_mapping(dev, handle, size);
1550 1551 1552 1553
	if (coherent_flag == COHERENT)
		__dma_free_buffer(virt_to_page(cpu_addr), size);
	else
		__free_from_pool(cpu_addr, size);
1554 1555
}

1556
static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1557
	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1558
	    int coherent_flag)
1559
{
1560
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1561 1562 1563 1564 1565 1566
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1567 1568
	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
		return __iommu_alloc_simple(dev, size, gfp, handle,
1569
					    coherent_flag, attrs);
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1580
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1581 1582 1583
	if (!pages)
		return NULL;

1584
	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1585 1586 1587
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1588
	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1589 1590
		return pages;

1591 1592
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1593 1594 1595 1596 1597 1598 1599 1600
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1601
	__iommu_free_buffer(dev, pages, size, attrs);
1602 1603 1604
	return NULL;
}

1605
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1606
	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1607 1608 1609 1610 1611
{
	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
}

static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1612
		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1613 1614 1615 1616 1617
{
	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
}

static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1618
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1619
		    unsigned long attrs)
1620
{
1621 1622
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1623
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1624 1625
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned long off = vma->vm_pgoff;
1626

1627 1628
	if (!pages)
		return -ENXIO;
1629

1630 1631 1632
	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
		return -ENXIO;

1633 1634
	pages += off;

1635 1636 1637 1638 1639 1640 1641 1642 1643
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1644 1645 1646

	return 0;
}
1647 1648
static int arm_iommu_mmap_attrs(struct device *dev,
		struct vm_area_struct *vma, void *cpu_addr,
1649
		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1650 1651 1652 1653 1654 1655 1656 1657
{
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
}

static int arm_coherent_iommu_mmap_attrs(struct device *dev,
		struct vm_area_struct *vma, void *cpu_addr,
1658
		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1659 1660 1661
{
	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
}
1662 1663 1664 1665 1666

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
1667
void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1668
	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1669
{
1670
	struct page **pages;
1671 1672
	size = PAGE_ALIGN(size);

1673 1674
	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1675
		return;
1676
	}
1677

1678 1679 1680
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1681 1682 1683
		return;
	}

1684
	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1685 1686
		dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1687
	}
1688 1689

	__iommu_remove_mapping(dev, handle, size);
1690
	__iommu_free_buffer(dev, pages, size, attrs);
1691 1692
}

1693
void arm_iommu_free_attrs(struct device *dev, size_t size,
1694
		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1695 1696 1697 1698 1699
{
	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
}

void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1700
		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1701 1702 1703 1704
{
	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
}

1705 1706
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
1707
				 size_t size, unsigned long attrs)
1708 1709 1710 1711 1712 1713 1714 1715 1716
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1717 1718 1719 1720 1721 1722 1723
}

/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
1724
			  enum dma_data_direction dir, unsigned long attrs,
R
Rob Herring 已提交
1725
			  bool is_coherent)
1726
{
1727
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1728 1729 1730 1731
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1732
	int prot;
1733 1734 1735 1736 1737 1738 1739 1740 1741

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
D
Dan Williams 已提交
1742
		phys_addr_t phys = page_to_phys(sg_page(s));
1743 1744
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

1745
		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1746 1747
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1748
		prot = __dma_info_to_prot(dir, attrs);
1749 1750

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1765
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1766
		     enum dma_data_direction dir, unsigned long attrs,
R
Rob Herring 已提交
1767
		     bool is_coherent)
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1783
			    dir, attrs, is_coherent) < 0)
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1796 1797
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1812
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1813 1814
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1815 1816
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1817
 *
R
Rob Herring 已提交
1818 1819 1820 1821
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1822
 */
R
Rob Herring 已提交
1823
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1824
		int nents, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1842
		int nents, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1843 1844 1845 1846 1847
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1848 1849
		int nents, enum dma_data_direction dir,
		unsigned long attrs, bool is_coherent)
1850 1851 1852 1853 1854 1855 1856 1857
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
1858
		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1859 1860 1861 1862 1863
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1875 1876
		int nents, enum dma_data_direction dir,
		unsigned long attrs)
R
Rob Herring 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1892 1893
			enum dma_data_direction dir,
			unsigned long attrs)
R
Rob Herring 已提交
1894 1895 1896 1897
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1912
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1930
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1931 1932 1933 1934
}


/**
R
Rob Herring 已提交
1935
 * arm_coherent_iommu_map_page
1936 1937 1938 1939 1940 1941
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1942
 * Coherent IOMMU aware version of arm_dma_map_page()
1943
 */
R
Rob Herring 已提交
1944
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1945
	     unsigned long offset, size_t size, enum dma_data_direction dir,
1946
	     unsigned long attrs)
1947
{
1948
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1949
	dma_addr_t dma_addr;
1950
	int ret, prot, len = PAGE_ALIGN(size + offset);
1951 1952 1953 1954 1955

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1956
	prot = __dma_info_to_prot(dir, attrs);
1957 1958

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1959 1960 1961 1962 1963 1964 1965 1966 1967
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
1980
	     unsigned long attrs)
R
Rob Herring 已提交
1981
{
1982
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
R
Rob Herring 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1998
		size_t size, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1999
{
2000
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
R
Rob Herring 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
2022
		size_t size, enum dma_data_direction dir, unsigned long attrs)
2023
{
2024
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2025 2026 2027 2028 2029 2030 2031 2032
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

2033
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2034 2035 2036 2037 2038 2039
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
/**
 * arm_iommu_map_resource - map a device resource for DMA
 * @dev: valid struct device pointer
 * @phys_addr: physical address of resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static dma_addr_t arm_iommu_map_resource(struct device *dev,
		phys_addr_t phys_addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t dma_addr;
	int ret, prot;
	phys_addr_t addr = phys_addr & PAGE_MASK;
	unsigned int offset = phys_addr & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

2062
	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

/**
 * arm_iommu_unmap_resource - unmap a device DMA resource
 * @dev: valid struct device pointer
 * @dma_handle: DMA address to resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
		size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova = dma_handle & PAGE_MASK;
	unsigned int offset = dma_handle & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

2097 2098 2099
static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
2100
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2101 2102 2103 2104 2105 2106 2107
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
2108
	__dma_page_dev_to_cpu(page, offset, size, dir);
2109 2110 2111 2112 2113
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
2114
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

2125
const struct dma_map_ops iommu_ops = {
2126 2127 2128
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
2129
	.get_sgtable	= arm_iommu_get_sgtable,
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2140 2141 2142

	.map_resource		= arm_iommu_map_resource,
	.unmap_resource		= arm_iommu_unmap_resource,
2143 2144
};

2145
const struct dma_map_ops iommu_coherent_ops = {
2146 2147 2148
	.alloc		= arm_coherent_iommu_alloc_attrs,
	.free		= arm_coherent_iommu_free_attrs,
	.mmap		= arm_coherent_iommu_mmap_attrs,
R
Rob Herring 已提交
2149 2150 2151 2152 2153 2154 2155
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2156 2157 2158

	.map_resource	= arm_iommu_map_resource,
	.unmap_resource	= arm_iommu_unmap_resource,
R
Rob Herring 已提交
2159 2160
};

2161 2162 2163 2164
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
2165
 * @size: maximum size of the valid IO address space
2166 2167 2168 2169 2170 2171 2172 2173 2174
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
2175
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2176
{
2177 2178
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2179
	struct dma_iommu_mapping *mapping;
2180
	int extensions = 1;
2181 2182
	int err = -ENOMEM;

2183 2184 2185 2186
	/* currently only 32-bit DMA address space is supported */
	if (size > DMA_BIT_MASK(32) + 1)
		return ERR_PTR(-ERANGE);

2187
	if (!bitmap_size)
2188 2189
		return ERR_PTR(-EINVAL);

2190 2191 2192 2193 2194
	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

2195 2196 2197 2198
	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

2199 2200
	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2201 2202
				GFP_KERNEL);
	if (!mapping->bitmaps)
2203 2204
		goto err2;

2205
	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2206 2207 2208 2209 2210
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
2211
	mapping->base = base;
2212
	mapping->bits = BITS_PER_BYTE * bitmap_size;
2213

2214 2215 2216 2217
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
2218
		goto err4;
2219 2220 2221

	kref_init(&mapping->kref);
	return mapping;
2222 2223
err4:
	kfree(mapping->bitmaps[0]);
2224
err3:
2225
	kfree(mapping->bitmaps);
2226 2227 2228 2229 2230
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
2231
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2232 2233 2234

static void release_iommu_mapping(struct kref *kref)
{
2235
	int i;
2236 2237 2238 2239
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
2240 2241 2242
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
2243 2244 2245
	kfree(mapping);
}

2246 2247 2248 2249
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

2250
	if (mapping->nr_bitmaps >= mapping->extensions)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

2264 2265 2266 2267 2268
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
2269
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static int __arm_iommu_attach_device(struct device *dev,
				     struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
2281
	to_dma_iommu_mapping(dev) = mapping;
2282 2283 2284 2285 2286

	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
	return 0;
}

2287 2288 2289 2290 2291 2292
/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
2293 2294 2295 2296
 * Attaches specified io address space mapping to the provided device.
 * This replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version.
 *
2297 2298
 * More than one client might be attached to the same io address space
 * mapping.
2299 2300 2301 2302 2303 2304
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

2305
	err = __arm_iommu_attach_device(dev, mapping);
2306 2307 2308
	if (err)
		return err;

2309
	set_dma_ops(dev, &iommu_ops);
2310 2311
	return 0;
}
2312
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2313

2314
static void __arm_iommu_detach_device(struct device *dev)
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
2326
	to_dma_iommu_mapping(dev) = NULL;
2327 2328 2329

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	__arm_iommu_detach_device(dev);
	set_dma_ops(dev, NULL);
}
2343
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2344

2345
static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2346 2347 2348 2349 2350
{
	return coherent ? &iommu_coherent_ops : &iommu_ops;
}

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2351
				    const struct iommu_ops *iommu)
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
{
	struct dma_iommu_mapping *mapping;

	if (!iommu)
		return false;

	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
	if (IS_ERR(mapping)) {
		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
				size, dev_name(dev));
		return false;
	}

2365
	if (__arm_iommu_attach_device(dev, mapping)) {
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
				dev_name(dev));
		arm_iommu_release_mapping(mapping);
		return false;
	}

	return true;
}

static void arm_teardown_iommu_dma_ops(struct device *dev)
{
2377
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2378

2379 2380 2381
	if (!mapping)
		return;

2382
	__arm_iommu_detach_device(dev);
2383 2384 2385 2386 2387 2388
	arm_iommu_release_mapping(mapping);
}

#else

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2389
				    const struct iommu_ops *iommu)
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
{
	return false;
}

static void arm_teardown_iommu_dma_ops(struct device *dev) { }

#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops

#endif	/* CONFIG_ARM_DMA_USE_IOMMU */

2400
static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2401 2402 2403 2404 2405
{
	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
}

void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2406
			const struct iommu_ops *iommu, bool coherent)
2407
{
2408
	const struct dma_map_ops *dma_ops;
2409

2410
	dev->archdata.dma_coherent = coherent;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
		dma_ops = arm_get_iommu_dma_map_ops(coherent);
	else
		dma_ops = arm_get_dma_map_ops(coherent);

	set_dma_ops(dev, dma_ops);
}

void arch_teardown_dma_ops(struct device *dev)
{
	arm_teardown_iommu_dma_ops(dev);
}