dma-mapping.c 19.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/highmem.h>
21
#include <linux/slab.h>
L
Linus Torvalds 已提交
22

23
#include <asm/memory.h>
24
#include <asm/highmem.h>
L
Linus Torvalds 已提交
25 26
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
27
#include <asm/sizes.h>
28
#include <asm/mach/arch.h>
29

30 31
#include "mm.h"

32 33 34 35 36 37 38 39 40 41 42 43
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
44
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
45
		size_t, enum dma_data_direction);
46
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
47 48
		size_t, enum dma_data_direction);

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
63
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
64 65 66
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
67 68 69
	if (!arch_is_coherent())
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
}

/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
86
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
87 88 89
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
90 91 92
	if (!arch_is_coherent())
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
93 94
}

95
static void arm_dma_sync_single_for_cpu(struct device *dev,
96 97 98 99
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
100 101
	if (!arch_is_coherent())
		__dma_page_dev_to_cpu(page, offset, size, dir);
102 103
}

104
static void arm_dma_sync_single_for_device(struct device *dev,
105 106 107 108
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
109 110
	if (!arch_is_coherent())
		__dma_page_cpu_to_dev(page, offset, size, dir);
111 112 113 114 115
}

static int arm_dma_set_mask(struct device *dev, u64 dma_mask);

struct dma_map_ops arm_dma_ops = {
116 117 118
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
119 120 121 122 123 124 125 126 127 128 129 130
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

131 132
static u64 get_coherent_dma_mask(struct device *dev)
{
133
	u64 mask = (u64)arm_dma_limit;
134 135 136 137 138 139 140 141 142 143 144 145 146

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

147
		if ((~mask) & (u64)arm_dma_limit) {
148 149
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
150
				 mask, (u64)arm_dma_limit);
151 152 153
			return 0;
		}
	}
L
Linus Torvalds 已提交
154

155 156 157
	return mask;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;
	void *ptr;
	u64 mask = get_coherent_dma_mask(dev);

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
	memset(ptr, 0, size);
	dmac_flush_range(ptr, ptr + size);
	outer_flush_range(__pa(ptr), __pa(ptr) + size);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

220
#ifdef CONFIG_MMU
221

222
#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
223
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
224

L
Linus Torvalds 已提交
225
/*
226
 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
L
Linus Torvalds 已提交
227
 */
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static pte_t **consistent_pte;

#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M

unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;

void __init init_consistent_dma_size(unsigned long size)
{
	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);

	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
	BUG_ON(base < VMALLOC_END);

	/* Grow region to accommodate specified size  */
	if (base < consistent_base)
		consistent_base = base;
}
L
Linus Torvalds 已提交
245

246
#include "vmregion.h"
L
Linus Torvalds 已提交
247

248 249
static struct arm_vmregion_head consistent_head = {
	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
L
Linus Torvalds 已提交
250 251 252 253 254 255 256 257
	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_end		= CONSISTENT_END,
};

#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif

258 259 260 261 262 263 264
/*
 * Initialise the consistent memory allocation.
 */
static int __init consistent_init(void)
{
	int ret = 0;
	pgd_t *pgd;
R
Russell King 已提交
265
	pud_t *pud;
266 267 268
	pmd_t *pmd;
	pte_t *pte;
	int i = 0;
269
	unsigned long base = consistent_base;
270
	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
271 272 273 274 275 276 277 278 279

	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
	if (!consistent_pte) {
		pr_err("%s: no memory\n", __func__);
		return -ENOMEM;
	}

	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
	consistent_head.vm_start = base;
280 281 282

	do {
		pgd = pgd_offset(&init_mm, base);
R
Russell King 已提交
283 284 285

		pud = pud_alloc(&init_mm, pgd, base);
		if (!pud) {
286
			pr_err("%s: no pud tables\n", __func__);
R
Russell King 已提交
287 288 289 290 291
			ret = -ENOMEM;
			break;
		}

		pmd = pmd_alloc(&init_mm, pud, base);
292
		if (!pmd) {
293
			pr_err("%s: no pmd tables\n", __func__);
294 295 296 297 298 299 300
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, base);
		if (!pte) {
301
			pr_err("%s: no pte tables\n", __func__);
302 303 304 305 306
			ret = -ENOMEM;
			break;
		}

		consistent_pte[i++] = pte;
307
		base += PMD_SIZE;
308 309 310 311 312 313 314
	} while (base < CONSISTENT_END);

	return ret;
}

core_initcall(consistent_init);

L
Linus Torvalds 已提交
315
static void *
316 317
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
L
Linus Torvalds 已提交
318
{
319
	struct arm_vmregion *c;
320 321
	size_t align;
	int bit;
L
Linus Torvalds 已提交
322

323
	if (!consistent_pte) {
324
		pr_err("%s: not initialised\n", __func__);
325 326 327 328
		dump_stack();
		return NULL;
	}

329 330 331 332 333 334
	/*
	 * Align the virtual region allocation - maximum alignment is
	 * a section size, minimum is a page size.  This helps reduce
	 * fragmentation of the DMA space, and also prevents allocations
	 * smaller than a section from crossing a section boundary.
	 */
335
	bit = fls(size - 1);
336 337 338 339
	if (bit > SECTION_SHIFT)
		bit = SECTION_SHIFT;
	align = 1 << bit;

L
Linus Torvalds 已提交
340 341 342
	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
343
	c = arm_vmregion_alloc(&consistent_head, align, size,
344
			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
L
Linus Torvalds 已提交
345
	if (c) {
346 347 348
		pte_t *pte;
		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
L
Linus Torvalds 已提交
349

350
		pte = consistent_pte[idx] + off;
L
Linus Torvalds 已提交
351 352 353 354 355
		c->vm_pages = page;

		do {
			BUG_ON(!pte_none(*pte));

R
Russell King 已提交
356
			set_pte_ext(pte, mk_pte(page, prot), 0);
L
Linus Torvalds 已提交
357 358
			page++;
			pte++;
359 360 361 362 363
			off++;
			if (off >= PTRS_PER_PTE) {
				off = 0;
				pte = consistent_pte[++idx];
			}
L
Linus Torvalds 已提交
364 365
		} while (size -= PAGE_SIZE);

366 367
		dsb();

L
Linus Torvalds 已提交
368 369 370 371
		return (void *)c->vm_start;
	}
	return NULL;
}
372 373 374 375 376 377 378 379 380 381 382

static void __dma_free_remap(void *cpu_addr, size_t size)
{
	struct arm_vmregion *c;
	unsigned long addr;
	pte_t *ptep;
	int idx;
	u32 off;

	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
	if (!c) {
383
		pr_err("%s: trying to free invalid coherent area: %p\n",
384 385 386 387 388 389
		       __func__, cpu_addr);
		dump_stack();
		return;
	}

	if ((c->vm_end - c->vm_start) != size) {
390
		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	idx = CONSISTENT_PTE_INDEX(c->vm_start);
	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
	ptep = consistent_pte[idx] + off;
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

		ptep++;
		addr += PAGE_SIZE;
		off++;
		if (off >= PTRS_PER_PTE) {
			off = 0;
			ptep = consistent_pte[++idx];
		}

411
		if (pte_none(pte) || !pte_present(pte))
412 413
			pr_crit("%s: bad page in kernel page table\n",
				__func__);
414 415 416 417 418 419 420
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	arm_vmregion_free(&consistent_head, c);
}

421 422 423 424 425 426 427 428
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

429
#else	/* !CONFIG_MMU */
430

431
#define __dma_alloc_remap(page, size, gfp, prot, c)	page_address(page)
432
#define __dma_free_remap(addr, size)			do { } while (0)
433
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
434 435 436

#endif	/* CONFIG_MMU */

437 438
static void *
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
439
	    pgprot_t prot, const void *caller)
440
{
441
	struct page *page;
442
	void *addr;
443

444 445 446 447 448 449 450 451 452
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

453
	*handle = DMA_ERROR_CODE;
454
	size = PAGE_ALIGN(size);
455

456 457 458
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
459

460
	if (!arch_is_coherent())
461
		addr = __dma_alloc_remap(page, size, gfp, prot, caller);
462 463
	else
		addr = page_address(page);
464

465
	if (addr)
466
		*handle = pfn_to_dma(dev, page_to_pfn(page));
467 468
	else
		__dma_free_buffer(page, size);
469

470 471
	return addr;
}
L
Linus Torvalds 已提交
472 473 474 475 476

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
477 478
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
479
{
480
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
481 482 483 484 485
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

486
	return __dma_alloc(dev, size, handle, gfp, prot,
487
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
488 489 490
}

/*
491
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
492
 */
493 494 495
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
496
{
497 498
	int ret = -ENXIO;
#ifdef CONFIG_MMU
499 500
	unsigned long user_size, kern_size;
	struct arm_vmregion *c;
L
Linus Torvalds 已提交
501

502 503
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

504 505 506
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

L
Linus Torvalds 已提交
507 508
	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

509
	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
L
Linus Torvalds 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522
	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}
523
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
524 525 526 527 528 529

	return ret;
}

/*
 * free a page as defined by the above mapping.
530
 * Must not be called with IRQs disabled.
L
Linus Torvalds 已提交
531
 */
532 533
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
534
{
535 536
	WARN_ON(irqs_disabled());

537 538 539
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

540 541
	size = PAGE_ALIGN(size);

542 543
	if (!arch_is_coherent())
		__dma_free_remap(cpu_addr, size);
544

545
	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
L
Linus Torvalds 已提交
546 547
}

548
static void dma_cache_maint_page(struct page *page, unsigned long offset,
549 550
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
551 552 553 554 555 556 557 558 559 560
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
561 562 563 564 565 566 567 568 569 570 571 572 573
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
574
				op(vaddr, len, dir);
575
				kunmap_high(page);
576
			} else if (cache_is_vipt()) {
577 578
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
579
				op(vaddr + offset, len, dir);
580
				kunmap_atomic(vaddr);
581
			}
582 583
		} else {
			vaddr = page_address(page) + offset;
584
			op(vaddr, len, dir);
585 586 587 588 589 590
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}
591

592 593 594 595 596 597 598
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
599 600
	size_t size, enum dma_data_direction dir)
{
601 602
	unsigned long paddr;

603
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
604 605

	paddr = page_to_phys(page) + off;
606 607 608 609 610 611
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
612 613
}

614
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
615 616
	size_t size, enum dma_data_direction dir)
{
617 618 619 620 621 622 623
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

624
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
625 626 627 628 629 630

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
631
}
632

633
/**
634
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
635 636 637 638 639 640 641 642 643 644 645 646 647 648
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
649 650
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
651
{
652
	struct dma_map_ops *ops = get_dma_ops(dev);
653
	struct scatterlist *s;
654
	int i, j;
655 656

	for_each_sg(sg, s, nents, i) {
657 658
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
659 660
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
661 662
	}
	return nents;
663 664 665

 bad_mapping:
	for_each_sg(sg, s, i, j)
666
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
667
	return 0;
668 669 670
}

/**
671
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
672 673
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
674
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
675 676 677 678 679
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
680 681
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
682
{
683
	struct dma_map_ops *ops = get_dma_ops(dev);
684
	struct scatterlist *s;
685

686 687 688
	int i;

	for_each_sg(sg, s, nents, i)
689
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
690 691 692
}

/**
693
 * arm_dma_sync_sg_for_cpu
694 695 696 697 698
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
699
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
700 701
			int nents, enum dma_data_direction dir)
{
702
	struct dma_map_ops *ops = get_dma_ops(dev);
703 704 705
	struct scatterlist *s;
	int i;

706 707 708
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
709 710 711
}

/**
712
 * arm_dma_sync_sg_for_device
713 714 715 716 717
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
718
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
719 720
			int nents, enum dma_data_direction dir)
{
721
	struct dma_map_ops *ops = get_dma_ops(dev);
722 723 724
	struct scatterlist *s;
	int i;

725 726 727
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
728
}
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
	if (mask < (u64)arm_dma_limit)
		return 0;
	return 1;
}
EXPORT_SYMBOL(dma_supported);

744
static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
745 746 747 748 749 750 751 752 753
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

754 755 756 757
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
758 759 760
#ifdef CONFIG_MMU
	arm_vmregion_create_proc("dma-mappings", &consistent_head);
#endif
761 762 763 764
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);