dma-mapping.c 54.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/gfp.h>
L
Linus Torvalds 已提交
16 17 18 19 20
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
21
#include <linux/dma-contiguous.h>
22
#include <linux/highmem.h>
23
#include <linux/memblock.h>
24
#include <linux/slab.h>
25
#include <linux/iommu.h>
26
#include <linux/io.h>
27
#include <linux/vmalloc.h>
28
#include <linux/sizes.h>
L
Linus Torvalds 已提交
29

30
#include <asm/memory.h>
31
#include <asm/highmem.h>
L
Linus Torvalds 已提交
32 33
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
34
#include <asm/mach/arch.h>
35
#include <asm/dma-iommu.h>
36 37 38
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
39

40 41
#include "mm.h"

42 43 44 45 46 47 48 49 50 51 52 53
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
54
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55
		size_t, enum dma_data_direction);
56
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 58
		size_t, enum dma_data_direction);

59 60 61 62 63 64 65 66 67 68 69 70 71 72
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
73
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 75 76
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
77
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 79
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80 81
}

R
Rob Herring 已提交
82 83 84 85 86 87 88
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
103
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 105 106
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
107
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 109
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
110 111
}

112
static void arm_dma_sync_single_for_cpu(struct device *dev,
113 114 115 116
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
117
	__dma_page_dev_to_cpu(page, offset, size, dir);
118 119
}

120
static void arm_dma_sync_single_for_device(struct device *dev,
121 122 123 124
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
125
	__dma_page_cpu_to_dev(page, offset, size, dir);
126 127 128
}

struct dma_map_ops arm_dma_ops = {
129 130 131
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
132
	.get_sgtable		= arm_dma_get_sgtable,
133 134 135 136 137 138 139 140 141 142 143 144
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
	.mmap			= arm_dma_mmap,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static int __dma_supported(struct device *dev, u64 mask, bool warn)
{
	unsigned long max_dma_pfn;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
	    dma_to_pfn(dev, ~0) < max_pfn) {
		if (warn) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
		}
		return 0;
	}

	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
		if (warn)
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 max_dma_pfn + 1);
		return 0;
	}

	return 1;
}

199 200
static u64 get_coherent_dma_mask(struct device *dev)
{
201
	u64 mask = (u64)DMA_BIT_MASK(32);
202 203 204 205 206 207 208 209 210 211 212 213 214

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

215
		if (!__dma_supported(dev, mask, true))
216 217
			return 0;
	}
L
Linus Torvalds 已提交
218

219 220 221
	return mask;
}

222 223 224 225 226 227
static void __dma_clear_buffer(struct page *page, size_t size)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
228 229 230 231 232 233 234 235 236 237 238 239 240 241
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
242 243 244 245
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
246 247
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

268
	__dma_clear_buffer(page, size);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

286
#ifdef CONFIG_MMU
287

288
static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 290
				     pgprot_t prot, struct page **ret_page,
				     const void *caller);
291

292 293 294
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller);
295

296 297 298
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
299
{
300 301
	struct vm_struct *area;
	unsigned long addr;
302

303 304 305 306 307 308 309 310 311 312
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
		return NULL;
	addr = (unsigned long)area->addr;
	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313

314 315 316 317 318
	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
		vunmap((void *)addr);
		return NULL;
	}
	return (void *)addr;
319
}
L
Linus Torvalds 已提交
320

321
static void __dma_free_remap(void *cpu_addr, size_t size)
322
{
323 324 325 326 327
	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
	struct vm_struct *area = find_vm_area(cpu_addr);
	if (!area || (area->flags & flags) != flags) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
328
	}
329 330
	unmap_kernel_range((unsigned long)cpu_addr, size);
	vunmap(cpu_addr);
331 332
}

333 334
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K

335 336 337 338 339 340
struct dma_pool {
	size_t size;
	spinlock_t lock;
	unsigned long *bitmap;
	unsigned long nr_pages;
	void *vaddr;
341
	struct page **pages;
342 343
};

344
static struct dma_pool atomic_pool = {
345
	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346
};
347 348 349

static int __init early_coherent_pool(char *p)
{
350
	atomic_pool.size = memparse(p, &p);
351 352 353 354
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
	BUG_ON(atomic_pool.vaddr);

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool.size = size;
}

370 371 372
/*
 * Initialise the coherent pool for atomic allocations.
 */
373
static int __init atomic_pool_init(void)
374
{
375
	struct dma_pool *pool = &atomic_pool;
376
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 379
	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
	unsigned long *bitmap;
380
	struct page *page;
381
	struct page **pages;
382
	void *ptr;
383
	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384

385 386 387
	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!bitmap)
		goto no_bitmap;
388

389 390 391 392
	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
	if (!pages)
		goto no_pages;

393
	if (IS_ENABLED(CONFIG_DMA_CMA))
394 395
		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
					      atomic_pool_init);
396
	else
397 398
		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
					   atomic_pool_init);
399
	if (ptr) {
400 401 402 403 404
		int i;

		for (i = 0; i < nr_pages; i++)
			pages[i] = page + i;

405 406
		spin_lock_init(&pool->lock);
		pool->vaddr = ptr;
407
		pool->pages = pages;
408 409 410 411
		pool->bitmap = bitmap;
		pool->nr_pages = nr_pages;
		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
		       (unsigned)pool->size / 1024);
412 413
		return 0;
	}
414 415

	kfree(pages);
416
no_pages:
417 418 419 420
	kfree(bitmap);
no_bitmap:
	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
	       (unsigned)pool->size / 1024);
421 422 423 424 425
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
426
postcore_initcall(atomic_pool_init);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
456
			continue;
457 458 459 460 461 462 463 464 465 466

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
		 * Clear previous low-memory mapping
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467
		     addr += PMD_SIZE)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
			pmd_clear(pmd_off_k(addr));

		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller)
{
	struct page *page;
	void *ptr;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

	*ret_page = page;
	return ptr;
}

513
static void *__alloc_from_pool(size_t size, struct page **ret_page)
514
{
515 516 517 518 519
	struct dma_pool *pool = &atomic_pool;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned int pageno;
	unsigned long flags;
	void *ptr = NULL;
520
	unsigned long align_mask;
521

522 523
	if (!pool->vaddr) {
		WARN(1, "coherent pool not initialised!\n");
524 525 526 527 528 529 530 531
		return NULL;
	}

	/*
	 * Align the region allocation - allocations from pool are rather
	 * small, so align them to their order in pages, minimum is a page
	 * size. This helps reduce fragmentation of the DMA space.
	 */
532
	align_mask = (1 << get_order(size)) - 1;
533 534 535

	spin_lock_irqsave(&pool->lock, flags);
	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536
					    0, count, align_mask);
537 538 539
	if (pageno < pool->nr_pages) {
		bitmap_set(pool->bitmap, pageno, count);
		ptr = pool->vaddr + PAGE_SIZE * pageno;
540
		*ret_page = pool->pages[pageno];
541 542 543 544
	} else {
		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
			    "Please increase it with coherent_pool= kernel parameter!\n",
			    (unsigned)pool->size / 1024);
545
	}
546 547 548
	spin_unlock_irqrestore(&pool->lock, flags);

	return ptr;
549 550
}

551 552 553 554 555 556 557
static bool __in_atomic_pool(void *start, size_t size)
{
	struct dma_pool *pool = &atomic_pool;
	void *end = start + size;
	void *pool_start = pool->vaddr;
	void *pool_end = pool->vaddr + pool->size;

558
	if (start < pool_start || start >= pool_end)
559 560 561 562 563 564 565 566 567 568 569
		return false;

	if (end <= pool_end)
		return true;

	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
	     start, end - 1, pool_start, pool_end - 1);

	return false;
}

570
static int __free_from_pool(void *start, size_t size)
571
{
572 573 574
	struct dma_pool *pool = &atomic_pool;
	unsigned long pageno, count;
	unsigned long flags;
575

576
	if (!__in_atomic_pool(start, size))
577 578
		return 0;

579 580 581 582 583 584 585
	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
	count = size >> PAGE_SHIFT;

	spin_lock_irqsave(&pool->lock, flags);
	bitmap_clear(pool->bitmap, pageno, count);
	spin_unlock_irqrestore(&pool->lock, flags);

586 587 588 589
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 591
				     pgprot_t prot, struct page **ret_page,
				     const void *caller)
592 593 594 595
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
596
	void *ptr;
597 598 599 600 601 602 603

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);

604 605 606 607 608 609 610 611 612 613
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
614
	*ret_page = page;
615
	return ptr;
616 617 618
}

static void __free_from_contiguous(struct device *dev, struct page *page,
619
				   void *cpu_addr, size_t size)
620
{
621 622 623
	if (PageHighMem(page))
		__dma_free_remap(cpu_addr, size);
	else
624
		__dma_remap(page, size, PAGE_KERNEL);
625 626 627
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

628 629 630 631 632 633 634 635
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

636 637
#define nommu() 0

638
#else	/* !CONFIG_MMU */
639

640 641
#define nommu() 1

642
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
643
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
644
#define __alloc_from_pool(size, ret_page)			NULL
645
#define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
646
#define __free_from_pool(cpu_addr, size)			0
647
#define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
648
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
649 650 651

#endif	/* CONFIG_MMU */

652 653
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
654
{
655 656 657 658 659 660 661 662 663 664 665 666
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
667
			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668 669
{
	u64 mask = get_coherent_dma_mask(dev);
670
	struct page *page = NULL;
671
	void *addr;
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

688 689 690 691 692 693 694 695 696
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

697
	*handle = DMA_ERROR_CODE;
698
	size = PAGE_ALIGN(size);
699

R
Rob Herring 已提交
700
	if (is_coherent || nommu())
701
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
702
	else if (!(gfp & __GFP_WAIT))
703
		addr = __alloc_from_pool(size, &page);
704
	else if (!IS_ENABLED(CONFIG_DMA_CMA))
705
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706
	else
707
		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708

709
	if (addr)
710
		*handle = pfn_to_dma(dev, page_to_pfn(page));
711

712 713
	return addr;
}
L
Linus Torvalds 已提交
714 715 716 717 718

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
719 720
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
721
{
722
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 724 725 726 727
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
728 729 730 731 732 733 734
	return __dma_alloc(dev, size, handle, gfp, prot, false,
			   __builtin_return_address(0));
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
735
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
R
Rob Herring 已提交
736 737 738 739 740 741
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
742
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
743 744 745
}

/*
746
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
747
 */
748 749 750
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
751
{
752 753
	int ret = -ENXIO;
#ifdef CONFIG_MMU
754 755
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 758
	unsigned long off = vma->vm_pgoff;

759 760
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

761 762 763
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

764 765 766 767 768 769
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
770
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
771 772 773 774 775

	return ret;
}

/*
776
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
777
 */
R
Rob Herring 已提交
778 779 780
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
781
{
782
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783

784 785 786
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

787 788
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
789
	if (is_coherent || nommu()) {
790
		__dma_free_buffer(page, size);
791 792
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
793
	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794
		__dma_free_remap(cpu_addr, size);
795 796 797 798 799 800
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
801
		__free_from_contiguous(dev, page, cpu_addr, size);
802
	}
L
Linus Torvalds 已提交
803
}
804

R
Rob Herring 已提交
805 806 807 808 809 810 811 812 813 814 815 816
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

832
static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 834
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
835
{
836 837 838 839 840 841
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

842 843 844 845 846 847 848 849
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
850 851
		void *vaddr;

852 853
		page = pfn_to_page(pfn);

854
		if (PageHighMem(page)) {
855
			if (len + offset > PAGE_SIZE)
856
				len = PAGE_SIZE - offset;
857 858

			if (cache_is_vipt_nonaliasing()) {
859
				vaddr = kmap_atomic(page);
860
				op(vaddr + offset, len, dir);
861
				kunmap_atomic(vaddr);
862 863 864 865 866 867
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
868
			}
869 870
		} else {
			vaddr = page_address(page) + offset;
871
			op(vaddr, len, dir);
872 873
		}
		offset = 0;
874
		pfn++;
875 876 877
		left -= len;
	} while (left);
}
878

879 880 881 882 883 884 885
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 887
	size_t size, enum dma_data_direction dir)
{
888 889
	unsigned long paddr;

890
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891 892

	paddr = page_to_phys(page) + off;
893 894 895 896 897 898
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
899 900
}

901
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 903
	size_t size, enum dma_data_direction dir)
{
904 905 906 907 908 909 910
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

911
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912 913

	/*
914
	 * Mark the D-cache clean for these pages to avoid extra flushing.
915
	 */
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
932
}
933

934
/**
935
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
936 937 938 939 940 941 942 943 944 945 946 947 948 949
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
950 951
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
952
{
953
	struct dma_map_ops *ops = get_dma_ops(dev);
954
	struct scatterlist *s;
955
	int i, j;
956 957

	for_each_sg(sg, s, nents, i) {
958 959 960
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
961 962
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
963 964
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
965 966
	}
	return nents;
967 968 969

 bad_mapping:
	for_each_sg(sg, s, i, j)
970
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
971
	return 0;
972 973 974
}

/**
975
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
976 977
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
978
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
979 980 981 982 983
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
984 985
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
986
{
987
	struct dma_map_ops *ops = get_dma_ops(dev);
988 989 990
	struct scatterlist *s;

	int i;
991

992
	for_each_sg(sg, s, nents, i)
993
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
994 995 996
}

/**
997
 * arm_dma_sync_sg_for_cpu
998 999 1000 1001 1002
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1003
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004 1005
			int nents, enum dma_data_direction dir)
{
1006
	struct dma_map_ops *ops = get_dma_ops(dev);
1007 1008 1009
	struct scatterlist *s;
	int i;

1010 1011 1012
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
1013 1014 1015
}

/**
1016
 * arm_dma_sync_sg_for_device
1017 1018 1019 1020 1021
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1022
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023 1024
			int nents, enum dma_data_direction dir)
{
1025
	struct dma_map_ops *ops = get_dma_ops(dev);
1026 1027 1028
	struct scatterlist *s;
	int i;

1029 1030 1031
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1032
}
1033

1034 1035 1036 1037 1038 1039 1040 1041
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
1042
	return __dma_supported(dev, mask, false);
1043 1044 1045
}
EXPORT_SYMBOL(dma_supported);

1046
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047 1048 1049 1050 1051 1052 1053 1054 1055
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

1056 1057 1058 1059 1060 1061 1062 1063
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1064 1065 1066 1067 1068

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

1069 1070
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

1071 1072 1073 1074 1075 1076 1077
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
	unsigned long flags;
1078 1079
	dma_addr_t iova;
	int i;
1080

1081 1082 1083
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1084 1085
	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;
1086 1087

	spin_lock_irqsave(&mapping->lock, flags);
1088 1089 1090 1091 1092 1093 1094 1095 1096
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
1097 1098
	}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
1120 1121
	spin_unlock_irqrestore(&mapping->lock, flags);

1122
	iova = mapping->base + (mapping->size * i);
1123
	iova += start << PAGE_SHIFT;
1124 1125

	return iova;
1126 1127 1128 1129 1130
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
1131
	unsigned int start, count;
1132
	unsigned long flags;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

	bitmap_base = mapping->base + mapping->size * bitmap_index;

1144
	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	if (addr + size > bitmap_base + mapping->size) {
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
1155
		count = size >> PAGE_SHIFT;
1156 1157

	spin_lock_irqsave(&mapping->lock, flags);
1158
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159 1160 1161
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1162 1163
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, gfp);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1194 1195 1196 1197 1198
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1199
	while (count) {
1200
		int j, order = __fls(count);
1201

1202
		pages[i] = alloc_pages(gfp, order);
1203
		while (!pages[i] && order)
1204
			pages[i] = alloc_pages(gfp, --order);
1205 1206 1207
		if (!pages[i])
			goto error;

1208
		if (order) {
1209
			split_page(pages[i], order);
1210 1211 1212 1213
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1214 1215 1216 1217 1218 1219 1220 1221

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1222
	while (i--)
1223 1224
		if (pages[i])
			__free_pages(pages[i], 0);
1225
	if (array_size <= PAGE_SIZE)
1226 1227 1228 1229 1230 1231
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1232 1233
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1234 1235 1236 1237
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1238 1239 1240 1241 1242 1243 1244 1245 1246

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1247
	if (array_size <= PAGE_SIZE)
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1258 1259
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1260
{
1261 1262 1263
	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct vm_struct *area;
	unsigned long p;
1264

1265 1266 1267
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
1268 1269
		return NULL;

1270 1271 1272
	area->pages = pages;
	area->nr_pages = nr_pages;
	p = (unsigned long)area->addr;
1273

1274 1275 1276 1277 1278
	for (i = 0; i < nr_pages; i++) {
		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
			goto err;
		p += PAGE_SIZE;
1279
	}
1280 1281 1282 1283
	return area->addr;
err:
	unmap_kernel_range((unsigned long)area->addr, size);
	vunmap(area->addr);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	return NULL;
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1313 1314
		ret = iommu_map(mapping->domain, iova, phys, len,
				IOMMU_READ|IOMMU_WRITE);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1343 1344 1345 1346 1347 1348 1349 1350 1351
static struct page **__atomic_get_pages(void *addr)
{
	struct dma_pool *pool = &atomic_pool;
	struct page **pages = pool->pages;
	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;

	return pages + offs;
}

1352
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353 1354 1355
{
	struct vm_struct *area;

1356 1357 1358
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1359 1360 1361
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1362 1363 1364 1365 1366 1367
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1389
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390 1391 1392
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
1393
	__free_from_pool(cpu_addr, size);
1394 1395
}

1396 1397 1398
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
1399
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400 1401 1402 1403 1404 1405
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1406
	if (!(gfp & __GFP_WAIT))
1407 1408
		return __iommu_alloc_atomic(dev, size, handle);

1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1418
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419 1420 1421 1422 1423 1424 1425
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1426 1427 1428
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1429 1430
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1431 1432 1433 1434 1435 1436 1437 1438
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1439
	__iommu_free_buffer(dev, pages, size, attrs);
1440 1441 1442 1443 1444 1445 1446
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1447 1448
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1449
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1450 1451 1452

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1453 1454
	if (!pages)
		return -ENXIO;
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1476
	struct page **pages;
1477 1478
	size = PAGE_ALIGN(size);

1479 1480
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size);
1481
		return;
1482
	}
1483

1484 1485 1486
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487 1488 1489
		return;
	}

1490 1491 1492 1493
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
		unmap_kernel_range((unsigned long)cpu_addr, size);
		vunmap(cpu_addr);
	}
1494 1495

	__iommu_remove_mapping(dev, handle, size);
1496
	__iommu_free_buffer(dev, pages, size, attrs);
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
	int prot;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		prot = IOMMU_READ | IOMMU_WRITE;
		break;
	case DMA_TO_DEVICE:
		prot = IOMMU_READ;
		break;
	case DMA_FROM_DEVICE:
		prot = IOMMU_WRITE;
		break;
	default:
		prot = 0;
	}

	return prot;
}

1534 1535 1536 1537 1538
/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1539 1540
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1541 1542 1543 1544 1545 1546
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1547
	int prot;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1560 1561
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562 1563
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1564 1565 1566
		prot = __dma_direction_to_prot(dir);

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1581 1582 1583
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1599
			    dir, attrs, is_coherent) < 0)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1612 1613
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1628
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629 1630
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1631 1632
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1633
 *
R
Rob Herring 已提交
1634 1635 1636 1637
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1638
 */
R
Rob Herring 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1666 1667 1668 1669 1670 1671 1672 1673
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1674
		if (!is_coherent &&
1675
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676 1677 1678 1679 1680
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1727
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1745
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746 1747 1748 1749
}


/**
R
Rob Herring 已提交
1750
 * arm_coherent_iommu_map_page
1751 1752 1753 1754 1755 1756
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1757
 * Coherent IOMMU aware version of arm_dma_map_page()
1758
 */
R
Rob Herring 已提交
1759
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760 1761 1762 1763 1764
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t dma_addr;
1765
	int ret, prot, len = PAGE_ALIGN(size + offset);
1766 1767 1768 1769 1770

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1771
	prot = __dma_direction_to_prot(dir);
1772 1773

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774 1775 1776 1777 1778 1779 1780 1781 1782
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1850
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1868
	__dma_page_dev_to_cpu(page, offset, size, dir);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1889
	.get_sgtable	= arm_iommu_get_sgtable,
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1900 1901

	.set_dma_mask		= arm_dma_set_mask,
1902 1903
};

R
Rob Herring 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1915 1916

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1917 1918
};

1919 1920 1921 1922
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
1923
 * @size: maximum size of the valid IO address space
1924 1925 1926 1927 1928 1929 1930 1931 1932
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
1933
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934
{
1935 1936
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937
	struct dma_iommu_mapping *mapping;
1938
	int extensions = 1;
1939 1940
	int err = -ENOMEM;

1941
	if (!bitmap_size)
1942 1943
		return ERR_PTR(-EINVAL);

1944 1945 1946 1947 1948
	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

1949 1950 1951 1952
	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

1953 1954
	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955 1956
				GFP_KERNEL);
	if (!mapping->bitmaps)
1957 1958
		goto err2;

1959
	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960 1961 1962 1963 1964
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
1965
	mapping->base = base;
1966
	mapping->bits = BITS_PER_BYTE * bitmap_size;
1967
	mapping->size = mapping->bits << PAGE_SHIFT;
1968

1969 1970 1971 1972
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
1973
		goto err4;
1974 1975 1976

	kref_init(&mapping->kref);
	return mapping;
1977 1978
err4:
	kfree(mapping->bitmaps[0]);
1979
err3:
1980
	kfree(mapping->bitmaps);
1981 1982 1983 1984 1985
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
1986
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987 1988 1989

static void release_iommu_mapping(struct kref *kref)
{
1990
	int i;
1991 1992 1993 1994
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
1995 1996 1997
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
1998 1999 2000
	kfree(mapping);
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

	if (mapping->nr_bitmaps > mapping->extensions)
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

2019 2020 2021 2022 2023
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
2024
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device,
 * this replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version. More than one client might be attached to
 * the same io address space mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	dev->archdata.mapping = mapping;
	set_dma_ops(dev, &iommu_ops);

2050
	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051 2052
	return 0;
}
2053
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
2074
	dev->archdata.mapping = NULL;
2075 2076 2077 2078
	set_dma_ops(dev, NULL);

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2079
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080

2081
#endif